
Citation: Dey, S.; Tomko, M.; Winter,

S. Map-Matching Error Identification

in the Absence of Ground Truth.

ISPRS Int. J. Geo-Inf. 2022, 11, 538.

https://doi.org/10.3390/ijgi11110538

Academic Editors: Hartwig H.

Hochmair and Wolfgang Kainz

Received: 10 August 2022

Accepted: 25 October 2022

Published: 27 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Map-Matching Error Identification in the Absence of
Ground Truth
Subhrasankha Dey * , Martin Tomko and Stephan Winter

Department of Infrastructure Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
* Correspondence: deys@student.unimelb.edu.au

Abstract: Map-matching of trajectory data has widespread applications in vehicle tracking, traffic
flow analysis, route planning, and intelligent transportation systems. Map-matching algorithms
snap a set of trajectory points observed by a satellite navigation system to the most likely route
segments of a map. However, due to the unavoidable errors in the recorded trajectory points and the
incomplete map data, map-matching algorithms may match points to incorrect segments, leading to
map-matching errors. Identification of these map-matching errors in the absence of ground truth can
only be achieved by visual inspection and reasoning. Thus, the identification of map-matching errors
without ground truth is a time-consuming and mundane task. Although research has focused on
improving map-matching algorithms, to our knowledge no attempts have been made to automatically
classify and identify the residual map-matching errors. In this work, we propose the first method
to automatically identify map-matching errors in the absence of ground truth, i.e., only using the
recorded trajectory points and the map-matched route. We have evaluated our method on a public
dataset and observed an average accuracy of 91% in automatically identifying map-matching errors,
thus helping analysts to significantly reduce manual effort for map-matching quality assurance.

Keywords: trajectory data; map-matching; error identification; unsupervised classification

1. Introduction

The map matching of trajectory data is essential for many intelligent transportation
applications, such as vehicle tracking, traffic flow analysis, detection of transport modes,
and route planning [1–6]. Trajectory data consist of geolocation points recorded on the
basis of global navigation satellite systems (GNSS) by a tracking application on a vehicle or
any other object, and map-matching is applied to trajectory data if the movement is along a
known mobility network [7]. Map-matching algorithms determine the most likely segment
of the mobility network for each GNSS point in the trajectory data [5,8,9].

Existing map-matching algorithms consider numerous approaches to handle map-
matching errors [10,11]. However, they are still prone to errors due to many reasons,
such as the inevitable occurrence of systematic GNSS errors, including blocked signals
and multipath effects (measurement error) [4,12,13], low sample rate GNSS trajectories
(sampling error) [10], limitations in the efficiency of online map-matching algorithms,
incomplete map data [14], matching errors at junctions [11], and matching to wrong
mobility networks [8,10–12].

The above-mentioned applications require either online or offline map-matching
algorithms [6]. Online map-matching algorithms produce the most likely mobility network
segment as soon as the GNSS point is recorded [15,16]. On the contrary, offline algorithms
use an already recorded set of GNSS points to identify the path traversed by the moving
object in hindsight [5,6]. This paper is concerned with offline map-matching. In this case,
map-matching error identification would be straightforward in the presence of ground
truth trajectory data (e.g., the mode and the route of the travel). However, the typical
absence of ground-truth data makes it harder to identify and quantify map-matching errors.
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Currently, offline map-matching is open to visual inspection, which enables a visual process
of validation by human reasoning. Using this process for identifying map-matching errors
is a laborious task when large numbers of trajectories are processed.

Thus, for this case of the absence of ground truth, we first define a map-matching
error: When a map-matched segment, incorporated in a map-matched route, reveals an unrealistic
travel behavior, then matching this segment is considered to be an error. Consequently, map-
matching errors can be quantified by counting the number of incorrectly (or unreasonably) matched
segments. With these two definitions at hand, we propose the following research question:
How can we automatically identify and quantify map matching errors when ground truth is not
available?

We present a scalable automatic error identification technique that quantifies the
map-matching error by counting the number of incorrectly (or unreasonably) matched
segments. The automatic error identification is implemented based on an graph-theoretic
unsupervised learning approach such that no human intervention is required. The proposed
methodology is implemented as a component within a Python-based open-source tool that
also allows one to interactively analyze visually the map-matched route of a trajectory
point set (Figure 1). Due to the lack of ground truth data, the visual analysis allows one to
establish this ground truth, and to use this ground truth for a performance analysis of our
novel technique.

Figure 1. Proposed methodology for map-matching error identification in the absence of
ground truth.

The implemented tool sketched in Figure 1 can function as a fully autonomous tool
when the goal is to save human labor. However, a guided visual inspection to automatically
identify map-matching errors can further improve the quality of the automatic process. The
major contribution of this article, however, is the automatic algorithm for offline identifying
errors in mapping matching. The algorithm is scalable because it does not require human
intervention. Only for quality checks or performance measurements is a visual analytics
component available.

The rest of the paper is structured as follows. Section 2 describes current map-matching
techniques. Section 3 describes the relevant theory regarding errors in map-matching.
Section 4 presents our methodology for identifying incorrectly mapped GNSS points.
Section 5 describes the techniques and the experimental results to validate our methodology
and measure its performance. Conclusions are provided in Section 6.

2. Literature Review

There are two main approaches for map matching in the literature: (i) geometry-based
approaches and (ii) statistics-based approaches.

2.1. Geometry Based Map-Matching

Geometry-based approaches perform map-matching based on certain geometric prop-
erties (e.g., closeness) of the GNSS points and the shape of the road segments. Popular
approaches are point-to-point map-matching (matching GNSS points to the nearest node
of a road network) [17], point-to-curve map-matching (matching the nearest point along
with a road segment) [18], curve-to-curve map-matching (matching a collection of points
along with a road segment) [19], and Fréchet-distance-based matching [20] (the recorded
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GNSS points are matched onto the road segments of nearest Fréchet distance) [1,21–23].
The Fréchet-distance-based approach produces better results than the other geometric
map-matching method [3]. However, the Fréchet-distance-based approach assumes that
the complete trajectory is recorded before the matching process. Hence, this approach is
unable to map match in real time [1]. Furthermore, geometry-based map-matching has
limitations at road junctions and often produces incorrectly matched segments [10].

2.2. Statistic-Based Map-Matching

In statistic-based approaches, map-matching accuracy has been improved using dif-
ferent statistical models, e.g., the hidden Markov model (HMM) [5,10,13]. The purpose
of the HMM is to match each location measurement with the most probable road seg-
ment by finding the most probable route in the road network [5,13]. The HMM takes
into account the probabilities that govern the state measurements and the probabilities
that govern the transitions between states (road segments) at each time [5,13]. The HMM
calculates the emission probabilities by modeling the measurement noise and the transition
probabilities by modeling the distance between the GNSS measurements and the proba-
ble route [5,7,9,24]. The Viterbi algorithm is used to calculate the best route through the
HMM lattice [5,13,24,25]. Alternatively, using a bidirectional version of Dijkstra’s algorithm
leads to similar precision [9]. HMM-based map matching is also used in online map-
matching [15,16,26]. Improvements in HMM-based map matching have been made using a
segment-based hidden Markov model in denser road networks [13]. Another approach
focuses on the junctions where the algorithm can map the wrong road segment [8].

Another major challenge, often unaddressed, is the unraveling of map matching and
transport-mode detection [4,12]. According to the current literature, mode detection and
map matching mainly consist of two steps [12]: (1) GNSS points are arranged according
to multiple unimodal segments, and after that (2) map-matching and mode detection for
each unimodal segment are done separately. When unimodal segments are not correctly
identified by a mode-detection algorithm, the GNSS points are matched with a wrong
segment of the mobility network [8,12]. Furthermore, mode segmentation does not typically
consider travel logic; for example, the transition between two vehicle modes cannot occur
without walking [4]. Mode detection algorithms perform poorly depending on the strength
of the GNSS signal and the sparsity of the collected data [4,12]. Thus, GNSS points
unlabeled with travel modes and induced with systematic error leads to erroneous map-
matching [8].

In summary, all existing algorithms may incorrectly map some GNSS points onto a
wrong road segment due to many factors, e.g., measurement errors in GNSS points, low
sampling rates of GNSS points, limitations in computational resources for online map-
matching, and complicated topology at road junctions [10]. The challenge of avoiding
map-matching errors has not been systematically solved to date. Recent map-matching
methods have achieved up to 92% precision for a high sample rate (under 1 min) and up
to 82% precision for a low sample rate (one to two minutes) of recorded GNSS points,
respectively [10]. Therefore, there remains the possibility of a residual map-matching error
due to the stochastic approaches of existing methods [11]. To the best of our knowledge, no
method has been proposed to identify these remaining map-matching errors. To overcome
the above -entioned challenge in error identification in map-matched segments, we propose
a reasoning-based approach to identify and quantify map-matching errors.

3. Concepts of Map-Matching Error Identification

In this section, we first discuss how the residual map-matching errors can be charac-
terized (Section 3.1). This characterization allows then to formalize the quantitative error in
a map-matched trajectory point series (Section 3.2) and to introduce an edit distance for
this quantification (Section 3.3).
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3.1. Qualitative Error in Map-Matching

Qualitative error in map-matching requires a specification of stationarity; e.g., is a
car stopping at a red light interrupting its movement between two stationary activities?
This requires consideration of the context of the movement, that is, the travel mode of the
movement before and after a stop and the mode-specific thresholds of acceptable duration
of these stops. Most frequently, these trajectories are sampled at regular time intervals,
although sampling at regular distance intervals and irregular sampling is possible as well.
Regular sampling strategies can also show gaps in their recordings. We have considered
the following categories of unrealistic travel behavior to be reflected by qualitative errors
in a map-matching algorithm:

• Infinite velocity.
• Unrealistic acceleration.
• Presence in multiple locations simultaneously.

Unrealistic travel behavior in a map-matched segment occurs due to three main rea-
sons: (i) measurement error in collected GNSS points (since collected GNSS points are
exposed to measurement error, true positions remain unknown, resulting in incorrectly
matched segments in the road network [27]); (ii) complex topology and incomplete map
information in the road network [11], leading to erroneous transition probability calcu-
lations in both statistics and distance-based approaches [5]; and (iii) mismatch of travel
mode and road network type (e.g., map-matching of a car route on a public transport net-
work) [12]. As a result of map-matching, in a map-matched route, there will be two types
of map-matched segments: (i) correctly map-matched segments (reflects realistic travel
behavior) and (ii) incorrectly map-matched segments (reflects unrealistic travel behavior).

3.2. Quantitative Error in Map-Matching

We propose quantifying qualitative mapping errors after a mapping algorithm pro-
duces the estimated route and map-matched segments. Let a trajectory T contain a number
d of recorded GNSS data points, d ≥ 2, such that the jth data point (d ≥ j ≥ 1 ) contains the
tuple < xj, yj, tj >, where xj and yj are the coordinates of the location of the jth point (e.g.,
longitude and latitude, respectively), and tj is the timestamp of the location record. Let E
be the set of edges and V be the set of vertices in the directed graph (digraph) of the road
network G = (V, E). Then:

E ⊆ {{p, q} | p, q ∈ V and p 6= q} (1)

Here, edges represent road segments on a map, a possible candidate segment of map-
matching. We will refer to the term edge in the context of a graph and to a segment in
the context of map data. The ground truth route of a trajectory data T is a sequence of
connected road segments of the traveled route on the map. For this, we assume that the
map is complete.

Let R be a sequence of the ground-truth map segments of the trajectory data T. Hence,
R contains a sequence of connected road segments, i.e., map segments, which are expected
to be matched correctly with GNSS points recorded on the same map segment. Let R have
n ≥ 1 edges, and let VR ⊂ V be a subset of vertices of G such that there exists an induced
connected subgraph GR whose vertex set is VR and whose edge set ER = {r1, · · · , rn} ⊆ E
such that the vertex connectivity κ(GR) = 1—i.e., GR is 1-vertex-connected. The vertex cut
or separating set of GR contains at least one vertex whose removal renders GR disconnected.
Thus, the ground truth route R = (r1 → r2 → · · · rn) is a walk in the digraph GR.

Let the map-matched route R̂ for the trajectory T consist of a set of m ≥ 1 edges:
{r̂1, · · · , r̂m} ⊆ E. Thus, R̂ = (r̂1 → r̂2 → · · · r̂m). Map matching ensures that for a set
of GNSS data points given by coordinate {(xj, yj)} there exists a matching set of road
segments {r̂i = (p, q)i} where (pi, qi) ∈ V and (p, q)i ∈ E. The set of location points has a
subjective functional relationship with the set of map-matched segments such that multiple
points can be matched with one and the same road segment.
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For a correctly map-matched route, R̂ = R will have a finite sequence of map-matched
segments such that any ith(i ≥ 2) map-matched segment r̂i (with vertices pi and qi) will
have an incident edge r̂i−1 where:

qi−1 = pi (2)

A map-matching error occurs if:

R̂ 6= R (3)

Equation (3) implies that given ground truth R, any difference of R̂ can be identified
and labeled as a map-matching error. Equation (3) further refers to the fact that R̂ 6= R
follows qi−1 6= pi in a map-matching error.

3.3. Edit-Distance-Based Quantification

Edit distance is a string metric that measures the minimum number of operations
required to transform one string into the other [28]. The identified map-matching errors
can be quantified by calculating the edit distance between R and R̂, i.e., by quantifying the
single-segment edits (insertions, deletions, or substitutions) between the sequences in R
and R̂. We apply the Levenshtein distance, among various edit distances, because it caters
for these three edit operations [28].

The Levenshtein distance between two walks R and R̂ of lengths |R| and |R̂|, respec-
tively, can be given by lev(R, R̂), where

lev(R, R̂) =



|R| if |R̂| = 0,
|R̂| if |R| = 0,
lev
(

tail(R), tail(R̂)
)

if R[0] = R̂[0]

1 + min


lev
(

tail(R), R̂
)

lev
(

R, tail(R̂)
)

lev
(

tail(R), tail(R̂)
) otherwise,

(4)

where the tail of a walk is the walk shortened by its first edge. The first edge, or head
element, of a walk R is R[0]. Thus, the Levenshtein distance evaluates the number of
mismatches between ground truth and the map-matched route.

We categorize four common types of error in map-matching algorithms (Figures 2–5),
all of which reveal unrealistic travel behavior in a map-matched segment. In the figures,
the recorded GNSS points are shown as blue dots, and map-matched segments are shown
in green lines. Each matched segment has a unique segment identification number in the
travel sequence, shown in black. The identified common categories of map matching errors
are the following:

1. Cat-I error: This type of error occurs when the incorrectly matched segments are
unidirectional or hanging from the actual route (Figure 2). Referring to Equation (2),
Cat-I error occurs in the ith map-matched segment r̂i : (pi, qi) of R̂ when the following
conditions are true:

qi 6= pi+1

pi = pi+1 = qi−1 (5)

Such map-matched segments suggest the traveler needs to jump from the end of
the segment (qi) back to its start (pi) in order to come back to the original route. An
illustrative example of Cat-I error is shown in Figure 2.
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2. Cat-II error: This type of error occurs when isolated lanes are matched with the GNSS
points (Figure 3). Cat-II error occurs in the ith map-matched segment r̂m : (pm, qm) of
R̂ when the following conditions are true:

qi 6= pi+1

pi 6= qi−1

r̂i /∈ R (6)

Such map-matched segments suggest that the traveler needs to have infinite velocity
at that isolated segment. One illustrative example of a Cat-II error is shown in Figure 3.
Note that the underlying movement behavior is perfectly legal and physically possible.

3. Cat-III error: This type of error occurs when there are discontinuities in the matched
route due to sparseness of the recorded data points (Figure 4). Cat-III error occurs in
the ith map-matched segment r̂i : (pi, qi) of R̂ when the following conditions are true:

qi 6= pi+1

pi 6= qi−1

r̂i ∈ R (7)

Such map-matched segments suggest that the traveler needs to have infinite velocity
while transiting from one segment to the very next disconnected segment. The
illustration of Cat-III error is shown in Figure 4.

4. Cat-IV error: Sometimes, map matched segments are ambiguously selected by the
algorithm due to measurement error in the recorded points (Figure 5). These are
special cases of Cat-II and Cat-III errors:

qi 6= pi+1

pi 6= qi−1 (8)

Equation (8) is independent of condition r̂i ∈ R or r̂i /∈ R. Such map-matched
segments suggest the traveler needs to be in both the segments at the same time as if
there is a simultaneous presence at two different lanes. This type of error is a Cat-IV
error, as shown in Figure 5.

Figure 2. Cat-I error: hanging segments.
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Figure 3. Cat-II error: isolated lane selection.

Figure 4. Cat-III error: discontinuity in the route.

Figure 5. Cat-IV error: ambiguous lane selection.

However, in the absence of a ground truth map-matched route (R), map-matching
errors (e.g., Cat-I–IV errors) can only be identified by visual analysis of R̂ based on common-
sense reasoning. With knowledge of R and R̂, the Levenshtein distance can be calculated
using Equation (4).

4. Computing the Map-Matching Error Estimation

We propose an autonomous two-step methodology to estimate whether a map-
matched segment r̂i is likely to be erroneous or not. We label each map-matched segment
in R̂ as either correctly matched or incorrectly matched. Step 1: estimating the effect of
measurement noise in the recorded GNSS points on map-matched segments. Step 2: identi-
fying unrealistic travel behavior due to unreasonable sequences in the map-matched route.
Combining both Step 1 and Step 2, we label each map-matched segment either as correctly



ISPRS Int. J. Geo-Inf. 2022, 11, 538 8 of 17

matched or incorrectly matched. We utilize the Levenshtein edit distance as a quantitative
measure of this error.

4.1. Step 1: Identification of Map-Matched Segments Affected by Noisy GNSS Points

In Step 1, our objective is to detect whether a segment matched with the map is influ-
enced by the measurement error at the GNSS points. All recorded GNSS points have some
measurement error. For some points, the measurement error is within an acceptable quality
for map-matching. The rest of the points are not within the granularity of map-matching.
The threshold value for the acceptability of the induced measurement error is unknown
for classifying the GNSS points. Hence, we developed a new unsupervised classification
technique to classify the recorded GNSS points into two categories: (i) acceptable erroneous
points and (ii) unacceptable erroneous points (or decidedly erroneous point). We perform
a binary labeling of each GNSS point followed by classification. Then, we measure the
likelihood of a segment to be influenced by each labeled GNSS point. Figure 6 presents a
flow diagram to identify map-matching errors and the responsible erroneous GNSS points.

GNSS points
and road-
network

Map-matched
route

Feature
extractions

Unsupervised
learning

Binary labeling
of GNSS points

Binary labeling
of map-
matched
segments

Map-matching

Voting

Figure 6. Step 1 of the proposed methodology for map-matching error identification.

For the figure, a database of raw GNSS points {(x, y, t)} and a road network graph G
were used by a map-matching algorithm to generate the sequences of matched segments R̂.
We define the relevant features that are obtained using the recorded data point (xj, yj, tj)
and the corresponding map-matched segment r̂j. These feature values will be used for
unsupervised binary classifications of GNSS points {(x, y, t)} to filter out unacceptable
erroneous points from less erroneous points. Each GNSS point has a corresponding map-
matched segment, and there exists a surjection mapping between the set of GNSS points
and the set of map-matched segments: multiple GNSS points may be matched to a single
segment. We performed a binary labeling of each map-matched segment on the route
depending on the statistical mode of the labeled GNSS points matched to that segment.
Thus, we achieve Step 1 of identifying incorrectly matched segments.

4.1.1. Feature Engineering

In the HMM-based model, the transition and emission probabilities of each map-
matched segment depend on (i) the orthogonal distance of a GNSS point from the set of
probable segments and (ii) the probability of measurement error in each GNSS point. Hence,
the categorization of each GNSS point is achieved based on two measures (or features): (i)
how far a GNSS point is away from the map-matched segment and (ii) how likely the GNSS
point is to be corrupted. Features are individual measurable properties of an event being
observed, here in the process of map-matching. Each feature is derived from a GNSS point
(in T) and the corresponding mapped segment. Therefore, each feature of the jth point is a
function of (p, q, cj) where cj = (xj, yj). We have defined two features for the classifications
discussed in the following subsections: (i) orthogonal distance and (ii) estimated noise.
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Orthogonal Distance

We can write a straight line passing through the points p, q as: fi = p + K(p− q),
where bold means a vector and K is a constant. Then, the orthogonal distance of the jth
GNSS point from fi can be calculated as:

oj =
fi · cj∥∥cj
∥∥ (9)

Estimated Noise

We use a Kalman filter [29] to estimate the noise of the recorded GNSS points induced
by measurement error. Noise can be determined if we can estimate the true position of a
recorded GNSS point. A typical Kalman filter estimates the next true position based on the
current true position and the current estimated position, using two processes, a prediction
process, and a correction process [29]. The prediction process at the jth timestamp is
governed by the following equations.

X̂−j = AjX̂j−1 (10)

P−j = AjPj−1A>j + Q (11)

where X is the state vector; X̂ the estimated state vector; Pj the variance-co-variance matrix
for jth state; P0 the initial variance-co-variance matrix; Q the process co-variance, i.e., the
Gaussian noise in prediction N(0, q2), where q is the standard deviation of the process
error [30]; and Aj is the time transition matrix. If dtj = tj − tj−1, then:

Xj =


xj
yj
ẋj
ẏj

 (12)

Aj =


1 0 dtj 0
0 1 0 dtj
0 0 1 0
0 0 0 1

 (13)

Pj =


σx

2 σxy σxẋ σxẏ
σyx σy

2 σyẋ σyẏ
σẋx σẋy σẋ

2 σẋẏ
σẏx σẏy σẏẋ σ2

ẏ

 (14)

The correction process at the jth state is controlled by the following set of equations.

Kj =
Pj
−H>

HPj
−H> + Me

(15)

Pj = (I−KjH)P−j (16)

X̂j = X̂−j + Kj[Zj −HX̂−j ] (17)

where Kj is the Kalman gain matrix in the jth state, H the measurement matrix for the
observation process, Zj the observations at the jth state, and Me the co-variance matrix of
the measurement error, that is, the Gaussian noise in the measurement N(0, σ2), where σ is
the standard deviation of the measurement error [14]. We will get the estimated position
ĉj = (x̂j, ŷj)

′ from X̂j. Thus, we derived our fourth feature as the estimated noise in cj as:

η̂j =
∥∥cj − ĉj

∥∥ (18)
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4.1.2. Unsupervised-Learning-Based Classification

Once we extracted the feature values of each GNSS point in the trajectory data T, we
prepared a training dataset UT for the classification of J points. UT has 2 columns and J
rows. Each jth row of the training dataset UT has feature values {oj, η̂j} and is unlabeled
(that is, we do not know the acceptable error in GNSS points). Hence, we used unsupervised
learning to classify the GNSS points in UT using a Gaussian mixture model [31]. Gaussian
mixture models (GMMs) are probabilistic models, where each cluster corresponds to a
normal multivariate probability distribution. The GMM clustering algorithms define soft
boundaries. The aim of the proposed GMM is to perform binary clustering of GNSS points
based on some features to separate unacceptable erroneous GNSS points from acceptable
erroneous GNSS points. The cluster centers will reveal the binary labels of the recorded
GNSS points, 1 for no acceptable erroneous points and 0 for acceptable erroneous points. We
identified the GNSS points associated with each map-matched segment. A map-matched
segment will then be assigned a label based on a voting-based approach: the labels with
the highest majority win. Each segment in UT were labeled either 0 (correctly matched) or
1 (incorrectly matched), based on the label of the majority of the GNSS points associated
with the segment.

4.2. Step 2: Identification of Unrealistic Travel Behavior Due to Topological Irregularities

This step aims to estimate the ground truth R from R̂. A correctly map-matched
route (when R = R̂) has the properties of a walk in a digraph G. Therefore, R̂ cannot
be disconnected, cannot contain multiple components, and cannot have a unidirectional
segment (Equation (5)) or a unidirectional claw in G. In graph theory, a claw S3 is a star with
three edges. S3 is a tree with one internal node and 2 leaves, i.e., a complete bipartite graph
S1,3. The presence of multiple components and/or unidirectional claws on a map-matched
route R̂ is addressed as topological irregularities in a travel route. Hence, in Step 2, we aim
to detect whether a map-matched segment is causing unrealistic travel behavior due to the
self-generated topological irregularities in the map-matched route. We propose labeling
segments erroneously matched by the following methods:

4.2.1. Connected Components Analysis

A connected component is a maximally connected subgraph of a graph. We looked
for the number of connected components in the map-matched route R̂. In this way, we
can determine any discontinuities in the map-matched route and the disconnected map-
matched segments responsible for Cat-II, Cat-III, and Cat-IV error.

4.2.2. Claw Detection

In graph theory, a star with three edges is called a claw. Since unidirectional hanging
segments are responsible for Cat-I errors, the ground truth R must be claw-free. After
completing Step 2, each segment in UT will be labeled 0 (correctly matched) or 1 (incorrectly
matched). We create a new database LT to store the output of Step 2 after labeling.

5. Performance of the Automatic Map-Matching Error Identification

In this section, we discuss the validation of our method and its performance using
GeoLife trajectory data [32]. Since GeoLife data are in principle multi-modal, but labeled
with the transportation mode, we selected only the datasets labeled drive/car to not confuse
separate map-matching challenges. Our experimental dataset T from GeoLife contains
23 datasets with in total 15, 047 GNSS points. Additionally, we used the state-of-the-art
HMM-based map matching [5], which produced 1296 map-matched segments.

5.1. Establishing Ground Truth from Visual Inspection

Validation and performance assessment of the automatic error identification requires
ground truth data for the map-matched segments. Since ground truth of map-matched
segment data is not available with large-trajectory datasets [14,32], we apply visual in-
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spection of the map-matched segments, applying the criteria of reasonable sequencing
described above.

For example, in Figure 7, part of the trajectory data of Dataset 4 is presented, where
we can visually identify incorrectly map-matched segments from human reasoning. The
discontinuities between Segments 8 and 9 suggest a Cat-III error, and those between
Segments 5 and 6 suggest a Cat-IV error, according to Equations (7) and (8). A person
would need infinite velocity to travel from Segment 5 to 6, and from Segment 8 to 9.

Once an error is visually identified, we label each erroneously map-matched segment
r̂e. Thus, we create a ground truth dataset GT , where each map-matched segment of T is
manually labeled as either 0 (if correctly matched) or 1 (if incorrectly matched).

Figure 7. Multiple different types of error observed in Dataset 4.

To realize the visual inspection, we have developed an interactive, map-based tool
(Figure 8). The recorded GNSS points are shown as red dots, and map-matched segments
are shown as blue markers with popup numbers. The tool tracks user interactions such
as in the figure, where the map-matched segment 6388 has been clicked as a ground truth
error by a human inspector.

5.2. Using the Ground Truth for Validation and Performance Assessment

Our proposed method labels the map-matched segments as correctly or incorrectly
map-matched, and creates LT . We compared LT with the ground truth dataset GT and
performed an error analysis of our method. For this analysis, we applied the usual er-
ror measures:

1. True positive (TP): The proposed method correctly identifies an erroneous segment
according to ground truth.

2. False positive (FP): The proposed method indicates an error when there is no error in
the map-matching.

3. False negative (FN): The proposed method fails to indicate an observed error in
the map-matching.

4. True negative (TN): The proposed method correctly labeled a segment as non-erroneous.

Say the ground truth route R has n segments and the map-matched route R̂ has m
segments, of those, mC (≤ m) segments are correctly matched. Let the observed (ground
truth) error in map-matching occur in mobs

Error of segments. Then:

mobs
Error = m−mC = lev(R, R̂) (19)
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Figure 8. A screenshot of the visual inspection tool.

We have defined two error measures to evaluate the accuracy of a map-matching
algorithm: (i) the error percentage of the map-matching algorithm εMM and (ii) the er-
ror percentage of the model outcome εPM. Let m̂C be the number of correctly labeled
segments. Then:

mest
Error = m− m̂C (20)

εMM =
mobs

Error
m
· 100% (21)

εPM =
|mobs

Error − m̂C|
mobs

Error
· 100% (22)

In Figure 7, Dataset 4 has five map-matched segments; hence, m = 5. The Cat-III
error between Segments 8 and 9, and the Cat-IV error between Segments 5 and 6 equate to
mobs

Error = 2. The automatic method identified the Cat-III error correctly, but the Cat-IV error
went undetected. Therefore, m̂C = 1, with one true positive and one false positive. Thus,

εMM =
2
5
· 100% = 40% (23)

εPM =
2− 1

2
· 100% = 50% (24)

We will conclude our validation by comparing sensitivity analysis (true positive rate)
and specificity analysis (true negative rate).

5.3. Performance Results of Automatic Error Identification

Illustrations of identified errors are presented in Figures 9–12. All blue dots indicate
recorded GNSS points. The incorrectly map-matched segments as estimation results are
shown as red lines. The correctly estimated map-matched segments are shown with
green lines.
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• In Figure 9, a Cat-I error has been identified and highlighted by a red line with Segments
2, 22, 20, and 18.

• In Figure 10, a Cat-II error has been identified and highlighted by a red line with
Segment 22.

• In Figure 11, a Cat-III error has been identified and highlighted by red lines with
Segments 16 and 15 and a green line 14, as it was not detected by our method.

• In Figure 12, a Cat-IV error has been identified and highlighted by the red line with
Segments 11 and 10.

Figure 9. Model outcome for Cat-I error: identified hanging segments in Dataset 26.

Figure 10. Model outcome for Cat-II error: identified isolated lane in Dataset 7.

Figure 11. Model outcome for Cat-III error: discrete jumps in Dataset 12.

In this way, we have compared the 23 drive-only map-matched trajectories from
GeoLife by counting the total ground truth segments (n), the observed errors in map-
matching (mobs

Error), correctly estimated errors (m̂C), false positives (incorrectly estimated
errors), and false negatives (not estimated errors) in the proposed method. Then, we have
calculated εMM and εPM based on Equations (21) and (22). The results are presented in
Table 1, sorted according to the values of εMM in ascending order.

We have derived a two-dimensional matching matrix (Table 1) to visualise the perfor-
mance of the proposed methodology. Each row of the matching matrix represents observed
instances, that is, the ground truth label of the map-matched segments: (i) without error
and (ii) with error. Each column of the matching matrix represents the estimated instances,
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that is, the estimated labels of the map-matched segments using the proposed method: (i)
segments estimated without error and (ii) segments estimated with error. Thus, a matching
matrix evaluates a quantitative measure of mislabeled segments on the map using the
proposed methodology. A matching matrix generated for the proposed methodology
is presented in Table 2, where P and N in parentheses indicate positive and negative
instances, respectively.

Figure 12. Model outcome for Cat-IV error: identified ambiguous lane in Dataset 6.

Table 1. Model performance validation with the GeoLife datasets 1–23.

DS m mest
Error mobs

Error m̂C (TN) FP FN TP εMM εPM

1 91 14 26 13 1 13 64 28.57 50.00
2 31 13 14 12 1 2 16 45.16 14.29
3 16 4 3 3 1 0 12 18.75 0.00
4 30 12 14 9 3 5 13 46.67 35.71
5 19 7 6 3 4 3 9 31.58 50.00
6 91 23 21 19 4 2 66 23.08 9.52
7 91 14 19 12 2 7 70 20.88 36.84
8 5 0 1 0 0 1 4 20.00 100.00
9 59 12 12 10 2 2 45 20.34 16.67
10 54 4 7 2 2 5 45 12.96 71.43
11 20 10 8 7 3 1 9 40.00 12.50
12 60 8 12 5 3 7 45 20.00 58.33
13 75 17 21 16 1 5 53 28.00 23.81
14 85 26 29 26 0 3 56 34.12 10.34
15 150 16 18 13 3 5 129 12.00 27.78
16 89 10 4 4 6 0 79 4.49 0.00
17 26 7 9 4 3 5 14 34.62 55.56
18 43 4 5 4 0 1 38 11.63 20.00
19 34 5 6 5 0 1 28 17.65 16.67
20 62 8 10 7 1 3 51 16.13 30.00
21 94 8 11 8 0 3 83 11.70 27.27
22 21 5 7 5 0 2 14 33.33 28.57
23 50 1 5 1 0 4 45 10.00 80.00
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Table 2. Matching matrix generated using the proposed method.

Estimated

Without Error (P) With Error (N) Sensitivity (Recall)

Observed

Without error (P) TP = 988 FN = 80 0.93

With error (N) FP = 40 TN = 188 0.18

Precision 0.96 0.30

Our proposed method was evaluated based on the following scores, obtained after
evaluating the proposed matching matrix: AUC (area under the curve)—ROC (receiver
operating characteristic), true positive rate (TPR), true negative rate (TNR), positive pre-
dictive value (PPV), false omission rate (FOR), F1 score, and overall accuracy (ACC), as
defined in Equations (25)–(31):

AUC = 0.87 (25)

TPR =
TP

TP + FN
= 0.93 (26)

TNR =
TN

TN + FP
= 0.82 (27)

PPV =
TP

TP + FP
= 0.96 (28)

FOR =
FN

FN + TN
= 0.30 (29)

F1 =
2TP

2TP + FP + FN
= 0.94 (30)

ACC =
TP + TN

TP + TN + FN + FP
= 0.91 (31)

6. Conclusions

Identifying errors in online and offline map-matching processes is important for
related intelligent transportation applications, including driving behavior and traffic flow
analyses, identifying changes in the street network, and planning of transport routes. In
this paper, we have proposed a methodology to identify those map-matching errors in
offline processes. We have discussed the theory of map-matching error identification.
We then introduced and formalized a typology of four common types of map-matching
errors arising from measurement errors and complex map topology. We proceeded to
develop the theory to identify erroneous map-matched segments within map-matched
trajectory data based on an unsupervised classification followed by a graph-theoretic
approach to spot unrealistic travel behavior. Thus, our research question can be answered
positively: We can automatically identify and quantify map matching errors when ground
truth is not available. Beyond identification, we can also classify these errors using the
proposed classification.

We have validated our methodology using real-world data collected in the GeoLife
project. The validation results show that our method has a good accuracy score when
map-matching errors are notably present: The method achieves an average accuracy of 91%
in automatically identifying map-matching errors. This result indicates that our method
can efficiently help the analysts to reduce human efforts in map-matching quality control
by a large margin. By the choice of the unimodal trajectory subset of GeoLife, we evaluated
data that should already work better with map-matching algorithms (i.e., present a hard
baseline), and yet we demonstrated the presence and the ability of our method to identify
of significant errors of current map-matching methods. The amount of potential errors
that should be detectable using the proposed method is likely to be significantly higher for
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multimodal trajectories, observed in multimodal mobility networks. The proposed method
and error categorization method remain valid for these trajectories and errors.

As a limitation of our method, we detected erroneously map-matched segments
without correction. Although our method contributes a theoretical and practical step
forward towards map-matching error identification, further investigations into feature
engineering and classification algorithms could overcome current limitations. In future
work, it will be interesting to investigate the performance measures of our model on Cat-I
to Cat-IV errors separately. Although the proposed method is applied with offline map-
matching, can also be applied in online map-matching (e.g., using a real-time simulation-
based approach with Geolife data).
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