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Abstract: The development management of the city constantly pursues sustainable development of
human-land matching. Under the new research framework, this study discusses the urban human-
land relationship from the perspective of the source-sink of daily population mobility, making up for
the lack of a static research perspective in the past. The spatial relationship between population source-
sink and land use intensity was studied by bivariate Moran’s I and multivariate correspondence
analysis. The results show that there is a significant spatial correlation between urban population
source-sink and land use intensity, which is obviously affected by urban circles and land use types,
and these laws are cyclical day after day. The urban fringe becomes the main place where spatial
mismatch occurs. Currently, the spatial mismatch of cities in northeast China, represented by
Shenyang, is dominated by the high intensity of land use and low flow of the population. The key
to solving the problem is to curb the high-density urban sprawl. The research results improve the
integrity and accuracy of urban human-land spatial mismatch analysis and provide support for
formulating more specific urban land use policies.

Keywords: spatial mismatch; population source-sink; land use intensity; mobile phone signaling
data; Shenyang

1. Introduction

In a global context, urbanization is an ongoing issue of concern. Urbanization pro-
motes economic and social development, but also adversely affects ecological and social
systems [1]. A large influx of people and rapid expansion of land use force a city to face
the pressure of providing transportation, housing, and resources, and the ecological en-
vironment is affected by problems such as pollution, soil erosion, and a sharp decline in
biodiversity [2–4]. Dense populations, industrial agglomeration, and frequent interaction
make the human-land relationship between cities complicated. Thus, cities are gradually
becoming an essential vessel for human-land relationship research [5]. Efforts in this area
have included developing higher-density compact cities [6,7], controlling urban sprawl,
rationally developing urban growth boundaries and achieving smart urban growth [8,9],
and developing urban resilience [10], to achieve smart sustainable cities [11]. These efforts
result from planners and managers who have carefully examined the relationship between
urban development and the environment and are committed to the efficient and rational use
of urban land to create a better living environment to achieve the coordinated development
of urban human-land matching. After experiencing rapid urban expansion, China’s urban
land use has gradually changed from incremental to stock [12]. The high-density urban
sprawl has become a concern in Chinese cities [13,14]. When these high-intensity areas lack
connection to urban society and the economy, a serious waste of resources will result [15].
Empty cities and ghost towns are extreme cases of human-land spatial mismatch [16]. We
urgently need to focus on urban human-land spatial mismatch and promote the realization
of a balanced, coordinated, and sustainable urban development vision.
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Spatial mismatch has been widely discussed and applied by various disciplines since it
was proposed [17,18]. Many achievements have been made in applying spatial mismatch to
the analysis of aspects of urban internal structure and social equity, such as the relationship
between housing and employment, residential isolation, and equality and accessibility of
public services [19–23], as well as aspects of environmental sustainability, such as land
use, spatial growth, and resource protection [24]. Urban human-land spatial mismatch
focuses on the mismatch between urban populations and their social production spaces,
and “land” extends more to the human built environment in the human-land relation [25].
There are two research paradigms, macroscopic and microscopic, in existing research on
urban human-land spatial mismatch. Macroscopic research focuses on measuring land
use efficiency from the perspective of a whole city [26,27] or optimizing the allocation
of urban land [28,29]. Stochastic frontier analysis (SFA) and data envelopment analysis
(DEA) are the most representative land use efficiency evaluation methods [30,31]. There
are linear programming, multi-objective programming, and system dynamics methods for
urban land optimization, and methods for spatial layout optimization, such as the CLUE
model, cellular automata (CA), multi-agent systems (MAS), bionic intelligent algorithms,
and so on [32–37]. These studies have the characteristics of a long time-span and large
spatial scale. Through model construction and algorithm optimization, it evaluates and
simulates urban land use combined with population distribution. However, it pays too
much attention to the influence of natural and socioeconomic factors on land use and
pays too little attention to human subjects in the study of human-land mismatch. Micro
studies mostly start from the perspective of urban residents and focus on the spatial mis-
match between humans and land caused by specific urban problems based on accessibility
studies, such as the spatial mismatch between residence and employment, schooling, and
leisure [17,38,39]. Gravimetry-based and opportunity-based measurement methods are
the two most commonly used methods in accessibility studies. These studies focus on
whether various functional configurations of cities meet the needs of the population but
pay insufficient attention to land use. In both macro and micro human-land mismatch
research, there is little research focused on the problem of "human" and "land" itself. The
advantage of detecting the urban human-land mismatch by bivariate LISA is to return the
research perspective to the human-land relationship itself.

Most data sources for urban human-land spatial mismatch research were based on
questionnaire surveys or government census data and were characterized by low accuracy,
low coverage, low collection efficiency, and limited spatiotemporal accuracy. This approach
is limited in understanding the daily laws of a city and has little guiding significance
for the interior of the city. With the development of information and communications
technology (ICT), the use of remote sensing, point-of-interest (POI) data, and other data to
identify urban land use [40–42] and discover urban functions through traffic data [43,44] has
promoted the study of urban populations and land use [45,46]. The recent wide application
of big data has promoted the development of urban population research in a dynamic and
refined direction. Scholars have constructed a dynamic population analysis framework,
quantified the distribution of urban vitality, and examined the relationship between urban
population and time changes [47,48]. We found that although ICT has promoted urban
research from a dynamic perspective and enriched urban land use research, with the
trend of urban population research gradually turning to dynamic changes, the urban
human-land relationship is still more concerned with static spatial balance. Little research
has been completed on urban dynamic human-land spatial mismatch, although some
scholars have attempted to address this problem. However, whether it is to distinguish the
urban spatial mismatch between daytime and nighttime through POI data and nighttime
lights [49–51] or to focus on the relationship between urban population density and land
use over time [24,52], it is still impossible to objectively reflect the state of urban population
flow due to data limitations. There are urban areas with low population densities but
dense population flow. These places with strong population mobility and large source-sink
magnitudes are also places with a high demand for urban facilities. Therefore, using mobile
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phone signaling data to study the relationship between urban source-sink and the intensity
of land use can compensate for some deficiencies compared to the analysis of the human-
land relationship from the perspective of static population distribution. The characteristics
of a high sampling rate and high update rate of mobile phone signaling data have natural
advantages for understanding the urban spatial structure and the distribution of daily
population activities [53]. Using mobile phone signaling data and merging multi-source
data can help us to better understand the problem of urban dynamic human-land spatial
mismatch [54,55].

In this study, urban human-land spatial mismatch from a source-sink perspective was
analyzed, avoiding the contradiction that urban land is a static object, whereas population
is dynamic. The source-sink theory has been widely used in landscape ecology since it
was first proposed [56–59]. It has also been applied to urban transportation sources and
sinks [60], as well as large-scale population migration studies [61], such as the annual
spatial mismatch of the population in China’s “Spring Festival”. Most importantly, the
source-sink theory can organically integrate the pattern and the process. In this study,
population source-sink is used to represent the dynamic changes in the urban population.
The population inflow area is the sink area, and the population outflow area is the source
area. The sink population is the population inflow of the study unit, and the source
population is the population outflow of the study unit. Population sources and sinks show
the increase and decrease in population in cities, reflecting the agglomeration or dissipation
of the population in specific areas over time. For this study, we chose land use intensity to
represent “land” in the urban human-land relationship. Land use intensity is the quantity or
degree of land development in a region [44] or the sum of investment in land [62–64]. Urban
land use intensity is the degree of urban land development, a widely used measure in urban
planning, design, and management [65]. Previous research on urban land use intensity is
divided into two aspects: first, measurement of urban land use intensity, which is calculated
by remote sensing spatiotemporal spectral changes [44], POI [63], and building data [50,66],
and second, factors that influence urban land use intensity and its relationship to various
other urban elements [67], such as urban vitality [50], cultivated land protection [68], and
ecological networks [40]. The national, regional, and urban scales of the study of urban land
use intensity are common [69]. A focus on dynamic urban changes and smaller internal
scales, when studying the spatial relationship between urban population and land use
intensity, extends existing urban land use intensity research.

In this study, three questions were addressed: (1) What is the spatiotemporal dis-
tribution pattern of urban population source-sink? (2) What is the relationship between
urban population source-sink and urban land use intensity, and is there a spatial mismatch
between them? (3) How does the relationship between source-sink and land use intensity
change for different urban ring roads and different land use types, and is this change
affected by factors such as different periods, different dates, and different weather condi-
tions? With a new analytical framework, the dynamic urban population is closely related to
static land use. The dynamic population source and sink were obtained through mobile
signaling data, and the urban land use intensity was characterized by the floor area ratio
(FAR) and the building coverage rate (BCR). The correlation between population source
and sink and land use intensity was discussed to reveal the urban human-land spatial
mismatch. Meanwhile, the effects of different circles and different land use types on spatial
mismatch are discussed. Through the construction of this analysis framework, supported
by ICT, the urban human-land relationship can be recognized dynamically, realistically,
and with high accuracy, which provides favorable support for urban development and
efficient use of land.

2. Materials and Methods
2.1. Study Area and Data Source

Shenyang, the main city in northeast China and the capital of Liaoning province, was
chosen as the subject area for this study. In recent years, the built-up land in Shenyang
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has expanded rapidly and the phenomenon of urban sprawl has become prevalent. Con-
sequently, the conflict between cultivated land and built-up land has intensified, and the
problem of land use mismatch has become increasingly prominent [70–72]. Shenyang is a
typical microcosm of rapid urbanization in China. In this era of urbanization, developing
ways to harness the internal potential of urban land and improve the existing urban human-
land model has become an important direction in the field of land management. Previous
research on urban land use has been limited by its reliance primarily on long time series
and large-scale plots, and application of these tools and methods cannot fulfill the dynamic
and refined management needs of cities. With the rapid development of ICT, dynamic and
microscopic research on the urban population and land use has become possible.

This study was conducted by using ICT data. The main data used were mobile phone
signaling data, building data, urban road data, and land use data (Table 1). Mobile phone
signaling data provide information on user spatial positions through interactions between
users and base stations and can record the time and space trajectory of the population
flow. All signaling data used in this study were obtained with the cooperation of one
of the largest local mobile phone operators, and 500 × 500 m was the basic space unit
for signaling data. The mobile phone signaling data generated in Shenyang during the
four days of 15 May, 19 May, 14 August, and 18 August 2018 were used, as summarized
in Table 2. Building data often exhibit a certain lag, so 2019 AutoNavi map data were
used, including data on the basic outlines of buildings, the number of building floors, floor
areas, and spatial coordinates. Land use datasets were completed using ELUC-China in
2018, combined with FROM-GLC10 and ground verification. ELUC-China is compiled by
combining remote sensing, mobile phone positioning, POI, and other multi-source data,
and the accuracy of verified results is higher than that of pure POI data [73].

Table 1. Data sources and information.

Data Source and Description Time Spatial Resolution Usage

Mobile phone signaling data
China Unicom Smart Steps

(http://www.smartsteps.com/)
accessed on 13 December 2018

2018 500 m Calculate population
source-sink value

Building data/urban road data
AutoNavi map

(https://www.amap.com/)
accessed on 15 December 2020

2019 vector data Calculate FAR and BCR

Land use data
ELUC-China/FROM-GLC10

(http://data.ess.tsinghua.edu.cn/)
accessed on 1 March 2020

2018 10 m Land use types

Historical Weather Data
Envicloud

(http://www.envicloud.cn/)
accessed on 3 March 2021

2018 hourly/daily Weather

Table 2. Four-day basic information.

Date Day Weather Rainfall (mm) Temperature Average (◦C) Influence of Special Events

20180515 Tuesday No rain 0 20.55 No
20180519 Saturday No rain 0 21.45 No
20180814 Tuesday Moderate rain 17.80 24.01 No
20180818 Saturday Moderate rain 10.20 21.85 No

From the data for the Shenyang City area, the population source-sink was determined
to be concentrated in the city center, and the land use data and building data for this
area were relatively complete. The study area was selected to cover the main urban area
of Shenyang, with a rectangular area of 41.5 × 43 km, including the entire area of the
Fourth Ring Road in Shenyang and the airport (an important source-sink area), comprising
7126 basic units of 500 × 500 m (Figure 1).

http://www.smartsteps.com/)
https://www.amap.com/)
http://data.ess.tsinghua.edu.cn/)
http://www.envicloud.cn/)
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Figure 1. Research area.

2.2. Research Method
2.2.1. Source-Sink of Urban Population

The “source-sink” theory was originally developed to study population changes in
different habitats. The birth rate is greater than the death rate for the source patch, and the
opposite is true for the sink patch. In this study, the study area grid was divided into three
categories: source, sink, and balance. For the source, SSi < 0, for the sink, SSi > 0, and
the balance between the two is indicated by SSi = 0. Grids without population flow were
excluded from the analysis, which focused on source grids and sink grids. The population
source-sink formula (Formula (1)) is given below [60]:

SSi = Di − Oi (1)

In Formula (1), SSi is the source-sink flow of the ith grid during the study period, and
Di and Oi represent the inflow and outflow population of the grid, respectively.

2.2.2. Urban Land Use Intensity

This study measures urban land use intensity based on two indicators—the FAR and
the BCR [50]. FAR is an important measure of the use intensity of built-up land and is
defined as the ratio of the total building area in the grid to the land area of the grid. The BCR
is the ratio of the base area of buildings in a grid to the land area of the grid and reflects the
vacant land ratio and building density in the grid. Both are important indicators of urban
density and morphology. Building data include information such as spatial coordinates,
basic outlines, and floors.
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The FAR Formula (2) is given below:

FAR =
Fi · Bi

Gi
(2)

The BCR Formula (3) is given below:

BCR =
Bi
Gi

(3)

In these formulas, Bi represents the base area of the building in the grid, Gi represents
the land area of the grid, and Fi represents the floor of the building.

2.2.3. Bivariate Global Moran’s I and Bivariate LISA

In this study, bivariate Moran’s I and bivariate LISA were calculated using GeoDa.
Bivariate Moran’s I, which was used to measure the spatial agglomeration trend of the pop-
ulation source-sink and land use intensity [74,75], was calculated according to Formula (4):

I =
Σn

i=1Σn
j=1wij(xi − x)(yj − y)

S2Σn
i=1Σn

j=1wij
(4)

S2 is the variance of all samples, and wij is the spatial weight. The values of I fall
within the range [–1, 1]. I > 0 denotes a positive spatial correlation and I < 0 denotes
negative spatial correlation.

Bivariate LISA was used to measure the local interaction between urban population
source-sink and land use intensity [49] and thus detect the spatial mismatch between them.
The bivariate LISA is calculated using Formulas (5) and (6):

Ik,l
i = Zi,kΣn

j=1wij × zj,l (5)

zi,k =

(
Xi,k − Xk

)
σk

, zj,l =

(
Xi,l − Xl

)
σl

(6)

where Xi,k and Xi,l are the values of variables k and l, respectively, in unit i, Xk and Xl are
their respective average values, and σk and σl are their respective standard deviations.
Based on LISA statistics, source and sink results are each divided into five categories.
For the sink population (positive values), the categories are high population flow and
high land use intensity (SI-HH), high flow and low intensity (SI-HL), low flow and high
intensity (SI-LH), low flow and low intensity (SI-LL), and not significant (NS). Similarly,
for the source population (negative values), the categories are low flow and high intensity
(SO-HH), low flow and low intensity (SO-HL), high flow and high intensity (SO-LH), high
flow and low intensity (SO-LL), and NS.

2.2.4. Correspondence Analysis and Multiple Correspondence Analysis

SPSS version 23 was used for conducting correspondence analysis and multiple cor-
respondence analysis to explore the relationship and degree of correlation between LISA
results and various variables (the variables considered in the analysis and their assignments
are shown in Table 3). Correspondence analysis can express the contingency table as points
and reflect the relationship between two categorical variables in relative positions in the
dimensionally reduced space. The closer the scatter distance in the analysis graph is, the
more obvious the association tendency is. Multiple correspondence analysis is suitable
for use when there are many categorical variables [76]. Since the correspondence between
the categories of the contingency table is difficult to read, graphical contingency tables can
make the results more intuitive.



ISPRS Int. J. Geo-Inf. 2022, 11, 575 7 of 20

Table 3. Categorical variables and assignment in correspondence analysis/multiple correspondence analysis.

Variables Assignment

LISA 1 = HH, 2 = LL, 3 = LH, 4 = HL, 5 = NS
SI/SO 1 = Sink, 2 = Source

FAR/BCR 1 = FAR, 2 = BCR
Road 1 1 = R1, 2 = R2, 3 = R3, 4 = R4, 5 = R5

LU (Land use type)
1 = Residential, 2 = Commercial, 3 = Industrial,

4 = Transportation,
5 = Public management and service, 6 = Other

Weather 1 = No rain, 2 = Rain
Day 1 = Weekday, 2 = Weekend
Time 1 = Midnight, 2 = Morning Peak, 3 = Noon, 4 = Late Peak

1 R1 represents the first urban circle area, R2 represents the area between the first ring and the second ring, R3
represents the area between the second ring and the third ring, R4 represents the area between the third ring and
the fourth ring, R5 refers to the area outside the fourth ring.

3. Results and Analysis
3.1. Temporal and Spatial Patterns of Population Source-Sink

The 24 h population source-sink changes in the city (Figure 2) exhibit obvious regular-
ity, and there are two obvious peaks and relative valleys every day. The peaks and valleys
correspond to midnight (23:00–02:00), the morning peak (07:00–10:00), noon (11:00–14:00),
and the late peak (16:00–19:00), for four periods, representing typical life scenarios of urban
residents’ rest, work, lunch, and getting off work. The four days selected in the study were
an ordinary weekday, an ordinary weekend day, a rainy weekday, and a rainy weekend
day (Table 2). The trend for weekends was relatively flat compared to that of weekdays,
and the source-sink volume for rainy days was notably lower than that for non-rainy days.
Pearson’s correlation coefficients for the four-day population source-sink values and their
mean values in the study area were greater than 0.9, indicating that the urban population
shows regular daily fluctuations.
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The graphs for the different periods of the day in the city (Figure 3) indicate that
the magnitudes of the midnight source-sink values are obviously lower than those of the
other three periods. At midnight, the population in most areas of the city is in a static
state, and the only notable population flows are from the city center to the periphery. The
Taoxian Airport and Shenyang Railway Station, both important transportation hubs, were
population source areas at midnight. During the morning peak, numerous people gathered
in the urban center, and most grids were in a state of population outflow. Airports, railway
stations, and passenger terminals became important sink areas at this time, and industrial
parks and municipal governments on the outskirts of the city also exhibited small-scale
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population sinks. At noon, there is a population agglomeration in the business district,
and the central office area is the main source area. The late peak and the morning peak are
almost symmetrical, and the urban population flows from the city center to the periphery,
reflecting the tidal nature of the urban population source-sink. From the perspective of
different dates, compared to weekdays, the flow of the population at midnight on weekends
is larger, but the peaks in the morning and evening are relatively flat, and the concentration
of the population in the business district is higher at noon. Compared with non-rainy
days, rainy days are relatively unsuitable for travel, and urban residents travel less, but the
overall distribution of population source-sink still follows non-rainy days. The proportion
of regular urban trips is high and decisively affects changes in the urban source-sink.
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The population source-sink activity within the Third Ring Road in Shenyang is higher
than that outside the Third Ring Road, which also reflects the source-sink difference
between urban centers and suburbs. During the morning peak, the central urban area is the
sink area and the rest of the time it is primarily the source area. During a day in the city, the
population gathers in the central urban area in the morning and then gradually disperses
outward. The population continues to fluctuate in the city, like tides. Urban centers and
suburbs exhibit opposite regularities, with the tidal nature of the regularity always present,
whether it is a weekday or a weekend or whether it is raining.

3.2. Spatial Correlation Analysis of Urban Population Source-Sink and Land Use Intensity

The results for global Moran’s I are shown in Figure 4 and Table 4. All results satisfy
999 permutations with p = 0.001. There is a significant spatial correlation between popula-
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tion source-sink and land use intensity, and the two have similar local patterns. Specifically,
there is a significant positive spatial autocorrelation between population sources and land
use intensity and a significant negative spatial autocorrelation between population sinks
and land use intensity. The FAR and BCR results show similar trends. The results also show
that large population inflows and outflows are often accompanied by high-intensity land
use. Urban population source-sinks are significantly correlated with land use intensity, and
this correlation is dynamic. Specifically, for this correlation, the morning and late peaks are
higher than other periods, weekdays are higher than weekend days, and non-rainy days
are higher than rainy days. In addition, the correlation between the population source-sink
and FAR is higher than that between the population source-sink and BCR.
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the morning peak.

Using LISA to evaluate the local spatial relationship between population source-sink
and land use intensity helps us discover the urban human-land spatial mismatch and
accurately improve the efficiency of urban land use. According to the LISA statistics, all
grids are classified as HH, HL, LL, LH, or NS, according to the source and sink classes,
respectively. The bivariate LISA mapping between urban population source-sink and land
use intensity (FAR, BCR) is shown in Figure 5, and all results obtained are significant
(p ≤ 0.05). In the sink areas, HH is concentrated in the city center, LH is scattered around
HH, LL is mainly distributed outside the Fourth Ring Road, and HL is minuscule. The
source area LH is mainly concentrated in the city center, and HL is mainly distributed
in the periphery of the study area. Thus, the areas with high flow and high intensity are
concentrated in the city center, whereas the areas with low flow and low intensity are mainly
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distributed in the periphery of the city. We found a local spatial mismatch between urban
population flow and land use intensity in all LISA results. The local mismatch is dominated
by low-flow and high-intensity cases, and other mismatches are rare, with high-flow and
low-intensity cases. This shows that the human-land spatial mismatch is widespread in
cities and there may be problems of overdevelopment or lag in the development of urban
land, with overdevelopment being predominant.

Table 4. Bivariate global Moran’s I between population source-sink and urban land use intensity,
p-value = 0.001.

Types Midnight Morning Peak Noon Late Peak 24 h
FAR BCR FAR BCR FAR BCR FAR BCR FAR BCR

2018
0515

Sink 0.375 0.364 0.500 0.358 0.390 0.308 0.486 0.469 0.414 0.358
Source −0.344 −0.274 −0.462 −0.461 −0.345 −0.276 −0.463 −0.322 −0.352 −0.254

2018
0519

Sink 0.391 0.377 0.460 0.352 0.292 0.229 0.456 0.446 0.323 0.277
Source −0.425 −0.335 −0.457 −0.459 −0.351 −0.316 −0.395 −0.296 −0.268 −0.220

2018
0814

Sink 0.338 0.346 0.504 0.350 0.328 0.256 0.503 0.469 0.327 0.271
Source −0.320 −0.265 −0.482 −0.476 −0.336 −0.286 −0.467 −0.334 −0.372 −0.267

2018
0818

Sink 0.378 0.387 0.479 0.357 0.315 0.237 0.468 0.461 0.316 0.259
Source −0.402 −0.310 −0.464 −0.454 −0.381 −0.330 −0.400 −0.293 −0.251 −0.221
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3.3. Spatial Mismatch in Urban Circle Structure and Land Use Function
3.3.1. Differential Influence of Spatial Mismatch in Different Urban Ring Road Areas

During urban development, gradual outward expansion is normal, and Shenyang
City exhibits typical circular outward expansion. The city has gradually expanded from
the first and second rings to the current fourth ring, and each ring is in a different state of
urban development. For example, the first ring was formed early, and various functional
facilities within it are complete, whereas the fourth ring has only been under development
for a short time and is dominated by local development.

The correspondence analysis between the LISA results and the urban ring road was
developed. In the correspondence analysis, the source and sink were still calculated
separately, and both passed the chi-square test, indicating that the LISA results were closely
related to the urban ring road. The proportion of LISA results in each ring (Figure 6A)
and the correspondence analysis results (Figure 7A,B) reflect the quantitative structure
and degree of connection, respectively. There are obvious differences in the distribution of
the LISA results in the different urban ring road areas, and there are obviously different
characteristics within the Third Ring Road and outside the Third Ring Road. In the
population sink area (Figure 6A(SI) and Figure 7A), R1 and R2 are mainly HH, R3 is more
closely related to LH and NS, R4 is mainly NS, R5 is mainly LL, and HL is closely related to
R5. From the city center to the Third Ring Road, HH gradually decreases, and NS gradually
increases. Outward from the Third Ring Road, LL increases, and NS decreases. HH are
all distributed inside the Third Ring Road, and LL are all distributed outside the Third
Ring Road. LH and HL represent two states of mismatch between population and land
use intensity. LH is mainly distributed on the Third Ring Road, but the proportion is less
than 20%, whereas HL accounts for a small proportion, mainly in R5. This shows that the
intensity of urban land development in Shenyang is ahead for the demand for population
mobility. Most of the human-land mismatch is based on a small population flow but a high
intensity of land development. The source area of the population is expressed as a negative
value, so it differs from the positive value of the sink area. However, the relationship
between population flow and land use intensity reflects the same law as the sink area.
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(B) correspondence analysis between source LISA results and different ring road regions, (C) cor-
respondence analysis between sink LISA results and land use types, (D) correspondence analysis
between source LISA results and land use types, (E) multiple correspondence analysis of different
ring road regions, and (F) multiple correspondence analysis of land use types.

Multiple correspondence analysis was used to explore the effects of period, source
and sink, FAR/BCR, and day, and LISA results used in the correspondence analysis are in
units of one day, whereas the LISA results used in the multiple correspondence analysis
considering multiple categorical variables are in units of periods. Figure 7E,F are discrimi-
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native metric diagrams of multiple correspondence analysis, showing the information in
the variables in each dimension, which is usually used to eliminate variables to simplify the
model. The results show that day, weather, FAR/BCR, and period have little discrimination
(Figure 7E), which shows that these variables have little influence and that the urban ring
road area has a decisive influence on the relationship between urban population source-sink
and land use intensity.

From these results, we can see that the development state of Shenyang exhibits obvious
differences from the center to the suburbs and that the Third Ring Road has become
a dividing line in the urban development state, with obviously different development
laws inside and outside and the main development being mainly within the Third Ring
Road. From the urban center to the suburbs, there is a development process of high-value
human-land matching, human-land mismatching, and low-value human-land matching.
Transitional areas from the center to the suburbs are areas that need to be focused on
addressing urban sprawl. In these areas, the land has been highly developed, but the
population flow is relatively low. Attention should be paid to attract people to these areas
to avoid an unnecessary waste of resources caused by the continuous outward expansion
of the city and to promote efficient and reasonable use of urban land.

3.3.2. Differential Impact of Spatial Mismatch between Different Urban Land Use Types

Urban land use intensity can vary greatly due to different urban functions. When
discussing land use intensity, it is necessary to consider the impact of different land use
types. The correspondence analysis is developed between the LISA results and land use
types, and all passed the chi-square test, indicating that the LISA results were closely
related to land use types. The correspondence analysis results (Figure 7C) indicate that HH
and LH are closely related to residential and commercial land, other land use is mainly
in the LL state, and industrial land and public management and service land are closely
related to the NS state. Judging by the proportion of LISA results for each land use type
(Figure 6B), HH is dominated by residential land, with other land use types accounting for
less than 10%. LH is dominated by residential land, with the total proportion of other land
use types slightly higher than the HH state. LL is mainly other land, followed by industrial
and transportation land. NS is mainly residential, industrial, and public management
and service land, and the number of HL types is small, and the proportion is not stable.
Combining the correspondence analysis results (Figure 7C,D) and the proportion of each
land type in the LISA results (Figure 6B), regardless of the level of population flow, we
concluded that the intensity of high land use primarily corresponds to residential land and
commercial land, whereas the low flow and low intensity mainly correspond to other land
uses, and public management, service land, and industrial land are insignificant.

To explore the influence of different periods of the day and other factors on the results,
five additional variables—period, source and sink, FAR/BCR, day, and weather—were
considered in the multiple correspondence analysis. The model alpha coefficient was 80.2%,
and the result was credible. It can be seen from Figure 7F that FAR/BCR, day, and weather
are extremely close to the origin, the discrimination is tiny, the period is close to the origin
and coincides with LISA, and the impact is also smaller. Among these variables, land use
type has the greatest impact on the relationship between urban population source-sink and
land use intensity, which shows the regularity of urban operation.

The research results indicate that the land use intensity of residential and commercial
land is higher, which follows our understanding of the actual situation of the city. The
results of the correspondence analysis show that residential land is most closely related to
low flow and high intensity. Figure 6A shows that the proportion of HL is small, so most
of the human-land spatial mismatch appears on residential land. As a land use type with
a high incidence of mismatch, most of the spatial mismatch of residential land is caused
by the high-intensity land use and low-occupancy rate caused by large-scale commercial
housing construction, which urban managers must focus on.
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3.4. Urban Human-Land Spatial Mismatch from a Dynamic Perspective

There is a specific regularity in the urban human-land relationship, and the 24 h
“tidal” changes of population source-sink had no significant impact on this regularity. We
compared the dynamic changes in the relationship between the population source-sink and
FAR of the ordinary weekday 20180515 to explore the specific reasons for the phenomenon.

From the perspective of spatial mismatch distribution with low flow and high intensity,
the comparison of spatial mismatch grids in different periods shows that there are almost
no grids in the mismatch state continuously for four periods, but that mismatch grids in
different periods appear in adjacent areas one after another. There will always be spatial
mismatches around a mismatched grid in other periods, and these areas that appear in
patches are the areas we need to focus on in urban management. It can be seen from
Figure 8 that most areas with spatial mismatches are distributed in Hunnan, Yuhong, and
Dadong within the Third Ring Road, which are more peripheral municipal districts than the
central municipal districts of Heping, Shenhe, and Tiexi. In addition, there is a large-scale
enclave-style spatial mismatch in the Sujiatun District. The spatial mismatch between high
flow and low intensity is scattered in the outer periphery of the city. Taoxian Airport, in the
southeast of the city’s Fourth Ring Road, is a typical such area.
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The spatial mismatch state of this distribution suggests that the problem of urban
spatial mismatch is not a single grid problem from a static perspective, but a problem
within the urban area from a dynamic perspective. Therefore, when solving and improving
the problem of spatial mismatch, we cannot focus only on the place where the problem
occurs. The mismatched area is not isolated but is linked to the surrounding area, which
requires unified coordination and overall improvement. It is precisely because of this
concomitant distribution and constant change that the distribution and quantity of urban
spatial mismatch are roughly similar at any time, so they have less impact on the overall
urban mismatch. Furthermore, the distribution of the spatial mismatch of source-sink
throughout the day is the closest to that of the late peak, indicating that the overall spatial
mismatch is still dominated by the distribution of the residential population.
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4. Discussion
4.1. Regularity of Population Source-Sink and Spatial Mismatch Characteristics

The 24 h urban population source-sink changes are cyclical, and studies have veri-
fied that daily human activities follow a repeatable pattern from the perspective of the
city [77–79]. Population flow causes the urban “tide”, with the morning peak population
gathering in the urban center and then gradually dispersing outward, which follows the
opposite distribution in the source and sink areas of the city in the morning and evening in
a previous study [60], and the law of population being centripetal during the day and cen-
trifugal at night is consistent [52]. Rigid travel in this regular population flow determines
the daily regularity of the city, so whether there is precipitation in the city on weekdays
or weekends, there are similar overall laws. However, the morning and late peaks on
weekends are flatter [80], and rainfall reduces people’s travel volumes. Although travel is
affected by weather, daily travel is still representative [81,82].

There is a strong correlation between population source-sink and land use intensity,
and therefore, high flow and high intensity have similar distribution rules. Therefore, urban
human-land mismatch can be detected from a dynamic perspective using mobile phone
signaling data, which differs from conventional methods for obtaining population data that
are static, low in precision, and require long acquisition times. This study differed in some
respects from previous studies. Different periods, weekday versus weekend days, and rainy
weather on local spatial relationships were not found to affect the overall law, in contrast
to the finding in previous research that the local spatial relationship between population
activity and land use intensity differs from day to night [50]. The biggest influences on
spatial mismatch were the circle structure and land use type. Furthermore, the spatial
mismatch appearing adjacent to different periods is not reflected in the findings of studies
conducted from a static perspective.

There are large quantitative differences between the two states of human-land spatial
mismatch, i.e., low flow, high intensity and high flow, low intensity, in cities. The number
of high-flow and low-intensity states is minuscule, and when this state occurs in areas
such as airports and railway stations in transportation land, or in popular parks and green
spaces in public management and service land, high flow and low intensity are relatively
reasonable states. The main problem of human-land spatial mismatch in Shenyang City
is low population flow and high intensity. Some studies have pointed out that the high
housing vacancy rate and serious aging of Shenyang City are warning problems that need
to be addressed in urban development [83].

The authors should discuss the results and how they can be interpreted from the
perspective of previous studies and of the working hypotheses. The findings and their
implications should be discussed in the broadest possible context. Future research directions
may also be highlighted.

4.2. Policy Implications of Possible Spatial Mismatch Caused by Urban Sprawl

Urban human-land spatial mismatch is mostly directly reflected in overdevelopment
or lagging development of land relative to the urban population. Overdevelopment is
a type of idle land after high-intensity development, whereas lagging development is
a low-intensity land development that cannot meet population needs [84]. The human-
land spatial mismatch in Shenyang is basically caused by land overdevelopment, with
residential land being the most overdeveloped. The Second Ring Road in Shenyang
was completed in 1997, and the Third Ring Road was completed in 2013. This period
corresponds roughly to the period of the fastest urban expansion in China [85,86]. As a
typical representative of the urban “pie” development form, it is important to coordinate
the human-land mismatch caused by excessive urban expansion and high-density urban
sprawl and maximize the improvement of the existing urban state. The following are the
two main policy implications.

Multiple measures should be considered to improve the population flow in mis-
matched areas. The role of mixed use of land in enhancing the vitality of areas, promoting
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the balance and coordination of regional land functions, and meeting the different needs
of residents with multifunctionality are important. Urban public service resources should
be allocated rationally and the functions of urban centers should be eased [87], and more
investment is required in suburban culture, sports, education, and medical care, to attract
people with high-quality supporting resources. It is important to promote the coordinated
development of industry and urban construction, increased employment opportunities in
areas with serious mismatch, and to attach the spontaneous vitality of the communities
in these areas. Furthermore, restrictions on the household registration system should be
reduced, and external factors that affect the fairness of access to public goods [88] must be
addressed to help cities attract external populations and increase the overall population
flow in the city.

High-density urban sprawl should be curbed. The dependence on land finance should
be reduced and the unsustainable development method of using land finance to maintain
urban construction funds must be avoided [89]. The demand for high-density buildings
in Shenyang is much lower than the current construction volume provides, but real estate
companies, driven by the search for high profits, always choose a high FAR development
model, which makes the city continue to develop vertically. The crowding and environ-
mental deterioration caused by high FAR contradict the demands of urban residents for
a comfortable living environment [90]. It is urgent to strengthen the management and
control of real estate development. Planners and implementers should simultaneously
focus on the spatial layout guidelines of overall planning and urban design, appropriately
construct control planning indicators, and determine a reasonable FAR and BCR from the
city center to the suburbs as needed. They should strive to delineate and strictly follow
urban growth boundaries to avoid the continuous extension of sprawl, seek an efficient
and compact urban development model [91], improve urban resilience [10], and achieve
intelligent growth [92].

4.3. Limitations and Prospects

There are certain limitations to this study. Due to data availability limitations, only four
days of mobile phone signaling data were used to represent ordinary weekdays, ordinary
weekend days, rainy weekdays, and rainy weekend days, and there was no larger-scale
dataset available. However, numerous studies based on mobile phone signaling data
or other types of big data have found and verified the periodicity of urban population
mobility [48,78,93,94], which was also verified in this study. Mobile phone signaling data
also comprise a large amount of data. It was believed to be feasible and representative
to explore the relationship between urban population source-sink and land use intensity
using four days of data. If more abundant datasets were available, this study could be
further verified and improved.

In terms of the choice of methods, on the one hand, this study avoided the focus on the
natural, economic, and other factors in the macro urban human-land spatial relationship
research represented by land use efficiency and optimization, while ignoring the important
impact of human activities on land use. On the other hand, it avoids focusing on function
and ignoring land use in micro-accessibility research. Through the new analysis frame-
work, this research returns to the essence of human-land spatial relationship research, and
discusses the local human-land spatial mismatch in cities based on the 500 m grid data
of population source-sink and land use, which can show the urban human-land spatial
relationship more intuitively. However, although the existing bivariate model is suitable
for exploring the human-land relationship, it is difficult to reveal the inner complexity of
urban activities. Future research will accurately identify various urban activities and then
integrate and analyze them, not only to find the matching of human-land quantity but also
to explore the possibility of human-land balance with comprehensive functions.
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5. Conclusions

In this study, using ICT data, such as mobile phone signaling data and multiple
open data sources and an analysis approach based on the source-sink theory, the urban
human-land matching relationship was examined from a dynamic perspective. This study
demonstrated the spatial correlation and spatial mismatch between urban population
source-sink and land use intensity. This spatial mismatch has nothing to do with different
days, weather, or periods but is strongly correlated with different urban circles and different
land use types. The results show there was a 24 h periodic law in the urban population
source-sink. There was a significant spatial correlation between population source-sink
and land use intensity, and the local spatial mismatch between the two was mainly in the
state of low population flow and high intensity. The phenomenon of spatial mismatch
is different in different urban circles and is most closely related to residential land. The
adjacent occurrence of spatial mismatch in different periods reminds us to consider the
linkage with surrounding areas when improving the mismatch problem. For sustainable
development, it is necessary to strengthen the management and control of urban land
use intensity, manage existing mismatched areas, curb high-intensity urban sprawl, and
prevent cities from continuously generating new spatial mismatches. Furthermore, this
study was based on the overall urban population activity, but the massive urban population
activity data were contributed by the daily activities of residents such as work and leisure.
The following research will identify various daily activities of residents with the support of
ICT, explore the possibility of balancing various functions of urban land use, and provide
more support for solving the problem of urban human-land mismatch.
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