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Abstract: To promote the development of deep learning for feature matching, image registration, 
and three-dimensional reconstruction, we propose a method of constructing a deep learning bench-
mark dataset for affine-invariant feature matching. Existing images often have large viewpoint dif-
ferences and areas with weak texture, which may cause difficulties for image matching, with respect 
to few matches, uneven distribution, and single matching texture. To solve this problem, we de-
signed an algorithm for the automatic production of a benchmark dataset for affine-invariant fea-
ture matching. It combined two complementary algorithms, ASIFT (Affine-SIFT) and LoFTR (Local 
Feature Transformer), to significantly increase the types of matching patches and the number of 
matching features and generate quasi-dense matches. Optimized matches with uniform spatial dis-
tribution were obtained by the hybrid constraints of the neighborhood distance threshold and max-
imum information entropy. We applied this algorithm to the automatic construction of a dataset 
containing 20,000 images: 10,000 ground-based close-range images, 6000 satellite images, and 4000 aerial 
images. Each image had a resolution of 1024 × 1024 pixels and was composed of 128 pairs of corre-
sponding patches, each with 64 × 64 pixels. Finally, we trained and tested the affine-invariant deep 
learning model, AffNet, separately on our dataset and the Brown dataset. The experimental results 
showed that the AffNet trained on our dataset had advantages, with respect to the number of match-
ing points, match correct rate, and matching spatial distribution on stereo images with large view-
point differences and weak texture. The results verified the effectiveness of the proposed algorithm 
and the superiority of our dataset. In the future, our dataset will continue to expand, and it is in-
tended to become the most widely used benchmark dataset internationally for the deep learning of 
wide-baseline image matching. 

Keywords: affine invariance; feature matching; corresponding image patches; deep learning; bench-
mark dataset 
 

1. Introduction 
In recent years, because of advances in technologies such as ground-moving wide-

baseline photography, unmanned aerial vehicle (UAV) oblique photography, and cross-
directional observation by multiple satellites, the large number of images produced (in 
the form of big data) cover the sky and the earth. Stereo images formed by these new data 
have large differences in viewpoint. Therefore, the scale, orientation, surface brightness, 
and neighborhood information of the same spatial target in the stereo images may be 
missing or distorted in a complex manner. This poses a severe challenge to image match-
ing. Deep learning, a data-driven method for high-level feature representation based on 
a neural network architecture, has been applied in the field of image matching [1]. How-
ever, at the present time, existing affine-invariant deep learning models still have diffi-
culty matching stereo images with large viewpoint differences [2]. One reason for this 
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problem is that existing, publicly available benchmark datasets for affine-invariant feature 
matching are small in scale and contain only a single texture type; the other reason is that 
existing methods for constructing affine-invariant feature-matching datasets often rely on 
the manual measurement of the corresponding features [3–6]. 

The training samples for affine-invariant feature matching contained in the Brown 
dataset [7] are derived from ground-based, close-range images that are dominated by ar-
tificial statues and natural landscapes. Most of the corresponding patches in the Brown 
dataset were manually selected; this manual selection may be time-consuming and labo-
rious. In addition, it is limited by the scale and breadth of the dataset. Consequently, the 
trained model is not sufficiently generalizable to wide-baseline images captured from aer-
ial or satellite platforms. The key to the production of training datasets for image matching 
is the quantity and quality of the corresponding features extracted. Handcrafted methods, 
represented by the scale-invariant feature transform (SIFT) [8] algorithm, employ a three-
step strategy to automatically extract the corresponding features. First, scale-invariant fea-
tures are detected, then the gradient descriptors are generated, and finally, matches are 
obtained using the nearest/next distance ratio (NNDR) metric and the random sampling 
consensus (RANSAC) strategy [9]. The SIFT algorithm cannot adapt to affine-distorted 
images with large viewpoint differences, although it has good scale invariance. Yang et 
al. [10] first used SIFT to obtain the initial matches and then used the normalized cross-
correlation strategy with affine correction to generate more matches. Zhang et al. [11] ex-
tracted the feature points within the normalized regions using filter decomposition and 
phase consistency and used the Gaussian mixture model to determine the transformation 
matrix across the corresponding points of the stereo images, thereby improving the posi-
tioning accuracy of features within the affine-invariant regions. Xiao et al. proposed an 
affine-invariant method for oblique image matching. This calculates the initial affine ma-
trix from the image orientation parameters, then corrects the oblique image according to 
the affine matrix, and finally applies the SIFT algorithm to the corrected images to perform 
oblique image matching [12,13]. Jiang et al. used external orientation elements to perform 
a global geometric correction of oblique images and then applied the SIFT algorithm to 
perform extraction and matching of image features; however, the practicability of this 
method is very limited because it requires known camera pose parameters [14]. Affine-
SIFT (ASIFT) [15] first simulates the attitude angles of photography in three-dimensional 
space; it then generates numerous rectified image sequences by projection transformation; 
finally, it applies the SIFT algorithm to extract the corresponding features from these sim-
ulated images. This method has good affine invariance, but it has difficulty obtaining the 
corresponding features from image regions with poor texture. 

Deep learning algorithms, based on convolutional neural networks (CNNs), consti-
tute new methods for affine-invariant feature matching [16]. Compared with handcrafted 
methods, designers of deep learning algorithms for image matching do not need to artifi-
cially design an intuitive calculation model and its empirical parameters; instead, they 
need to construct a CNN and its loss function. The CNN iteratively learns the optimal 
convolutional representation of target features from a large number of matching labels. 
Current deep learning methods for image matching are divided into dense matching and 
sparse matching methods. The former methods directly compute the pixel-by-pixel dense 
correspondence of overlapping regions by estimating a stereo disparity map; the latter 
methods perform stage-wise training and optimization on feature extraction, description, 
and correlation and demonstrate better matching reliability in practice [17]. The most typ-
ical representative of sparse matching methods is L2-Net [18], which trains the Euclidean 
distance between matching descriptors as closely as possible using loop iterations of a 
Siamese network. HardNet [19] is based on L2-Net but adds the distance learning of non-
matching descriptors to significantly improve the discrimination between descriptors. 
Mishkin et al. employed the multi-scale Hessian operator to detect initial feature points 
and estimated the affine-invariant neighborhood using the triplet network, AffNet [20]. 
This method combines traditional feature detection with deep learning invariant regions 
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and significantly improves the efficiency and reliability of feature extraction. Inspired by 
the SuperGlue [21] model, Sun et al. introduced the position encoding and attention mech-
anism in the transformer [22] network and constructed a model named the local feature 
transformer (LoFTR) [23] with a texture enhancement function; this method significantly 
improves the matching performance in regions with weak texture. 

In summary, the main existing problems can be listed as follows: (1) It lacks an effi-
cient automatic production method for affine-invariant feature-matching deep learning 
datasets; (2) the existing datasets are too homogeneous in terms of data types; and (3) the 
existing evaluation criteria for the spatial distribution of the matches are not precise 
enough. 

The ASIFT algorithm is adaptable to wide-baseline oblique images, which often have 
large affine distortions, and the LoFTR method can extract the corresponding features 
from regions with weak texture. Therefore, the complementary fusion of the two methods can 
effectively obtain more corresponding features distributed across regions of different types. 
The number of panoramic images released by Baidu Maps has already exceeded 2 billion, and 
they cover more than 95% of the urban street scenes in China. In addition, the open-source 
satellite images of Google Maps cover more than 95% of the world, with a maximum res-
olution of 0.25 m. These open-source images provide an extensive source of image data 
for the production of a benchmark dataset. For this reason, this paper proposes a novel 
method for constructing a benchmark dataset for deep learning. First, the complementary 
ASIFT and LoFTR algorithms are integrated to significantly increase the types of matching 
regions and the number of corresponding features. Next, matching points with uniform 
spatial distributions are selected according to the hybrid constraint of the neighborhood 
distance threshold and maximum information entropy, and then a high-quality matching 
benchmark is produced. Using our algorithm, a rich affine-invariant deep learning bench-
mark dataset, named SJRS, is automatically constructed. This dataset is intended to pro-
mote the application of deep learning to intelligent image matching. 

Differing from HPatches [24] and MegaDepth [25] datasets, our dataset (SJRS) con-
sists of 1024 × 1024 bitmap (.bmp) images, each of which contain an array of 16 × 16 image 
patches, and each patch is sampled as a 64 × 64 grey scale with a normalized region and 
orientation. SJRS is of a similar type to the Brown dataset [7], but it contains more image 
types from ground-based close-range, aerial, and satellite platforms and is larger in scale 
than Brown. The contributions of this paper are as follows. 
 An effective algorithm for the production of a deep learning dataset for affine-invar-

iant feature matching. 
 The most extensive deep learning benchmark dataset to date for affine-invariant fea-

ture matching. 
 A distribution evaluation model that considers both global and local image contents 

to accurately evaluate the spatial distribution quality for matching points. 

2. Data and Methods 
Figure 1 shows the strategy for the automatic construction of a dataset for affine-

invariant feature matching. The key steps of this method are as follows. First, the comple-
mentary algorithms, ASIFT [15] and LoFTR [23], are integrated to extract quasi-dense cor-
responding features across wide-baseline oblique stereo images (Yellow part of Figure 1). 
Second, spatially uniform corresponding features are selected from the quasi-dense 
matches (Orangered part of Figure 1). Third, the stitching dataset is generated from the 
generated corresponding patches with various texture types (Light blue part of Figure 1). 
The method is rigorous, easy to implement, and can be executed in parallel. This section 
describes the main method, including the dataset of wide-baseline oblique images, extrac-
tion of quasi-dense complementary corresponding features, optimization for uniform 
matches, and automatic stitching of the dataset. 
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Figure 1. Flowchart for the automatic production of an affine-invariant feature-matching dataset. 

2.1. Wide-Baseline Oblique Image Library 
We collected 8668 pairs of wide-baseline oblique stereo images from various photog-

raphy platforms: a ground-based mobile survey vehicle, an aircraft, and a satellite.  
The ground-based close-range images (3879 pairs) and satellite images (3000 pairs) 

were obtained from Baidu and Google Maps, respectively, and aerial images (1789 pairs) 
were freely provided by the China Academy of Surveying and Mapping. The ground-
based close-range images mostly covered various outdoor scenes, such as building walls, 
cement roads, dirt roads, trees, hillsides, ponds, ditches, and sandy land; the aerial images 
mostly covered the tops and sides of buildings, woodlands, grasslands, cultivated lands, 
ports, docks, lakes, rivers, wastelands, and other surface scenes of small areas; the satellite 
images mostly covered large-scale surface scenes, such as urban areas, suburbs, snow-
fields, grasslands, forests, and mountainous areas. There were notable differences in field 
depth, local occlusion, and grayscale between the ground-based close-range and aerial 
stereo images, and radiation distortion and local object differences appeared in the satel-
lite stereo images; in addition, all stereo images had significant viewpoint differences. Fig-
ure 2 shows some randomly selected images from the dataset. 
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Figure 2. Thumbnail of partial, wide-baseline oblique stereo images from ground close-range (a), 
airborne (b), and space platforms (c). 

2.2. Extraction of Quasi-Dense Conjugate Points Using Complementary Features 
The strategy for complementary feature extraction for quasi-dense matches is illus-

trated in Figure 3, in which the red and green points represent the type-I (ASIFT) and 
type-II (LoFTR) matches, respectively. The figure shows that they have good complemen-
tarity. The method of extracting the two types of features is briefly described below. 
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Figure 3. Illustration of quasi-dense matching using complementary features. The type-I (ASIFT) 
and type-II (LoFTR) matches are represented by red and green points, respectively. 

The extraction of type-I matches was based on ASIFT [15]. First, the scale variation, 
rotation difference, and viewpoint difference between stereo images were simulated and 
resampled. Second, the simulated stereo image sequences were matched by SIFT. Third, 
coordinate transformation was performed for the corresponding features in each simu-
lated image, and then the corresponding points were output in the original image coordi-
nate system. For wide-baseline oblique stereo images from the aerial, satellite, and 
ground-based close-range platforms, the ASIFT algorithm was applied to obtain a large 
number of corresponding features (named type-I features). Most of these features were 
distributed across regions with rich texture information. However, ASIFT had difficulty 
recognizing features in regions with poor or weak texture. 

The extraction of type-II matches was performed by LoFTR [23] with projection trans-
formation. The LoFTR method could effectively extract the corresponding features from 
regions with weak texture, but it was sensitive to affine deformation between images; 
therefore, it was difficult to apply it directly to wide-baseline oblique image matching. For 
this purpose, the RANSAC algorithm was first used to estimate the projection transfor-
mation matrix H from the type-I matches using Equation (1). 

⎩
⎨

′ݔ⎧ =
ℎଵଵݔ + ℎଵଶݕ + ℎଵଷ

ℎଷଵݔ + ℎଷଶݕ + ℎଷଷ

′ݕ =
ℎଶଵݔ + ℎଶଶݕ + ℎଶଷ

ℎଷଵݔ + ℎଷଶݕ + ℎଷଷ

 (1)

where (x, y) and (x′, y′) denote the type-I matching points in the left and right images, 
respectively, and ℎଵଵ, ℎଵଶ … , ℎଷଷ are the nine projection coefficients in matrix H. The right 
image can then be corrected by 


′′ݔ
′′ݕ
1

൩ = 
ℎଵଵ
ℎଶଵ
ℎଷଵ

ℎଵଶ
ℎଶଶ
ℎଷଶ

ℎଵଷ
ℎଶଷ
ℎଷଷ

൩ 
′ݔ
′ݕ
1

൩ (2)

where (x′, y′) and (x″, y″) denote the pixel coordinates before and after the geometric cor-
rection of the right image, respectively. After the right image was corrected by projection 
transformation, the affine distortion of the corresponding regions was greatly reduced. 
The LoFTR method with this transformation was used for image matching. The LoFTR 
algorithm, illustrated in Figure 4, contains four key steps, as follows. 
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Figure 4. Architecture of the local feature transformer (LoFTR) model. 

(1) One image pair, IA and IB, was input into the CNN for feature extraction. The coarse 
(1/8) feature maps of the two images were denoted by ࡲ෩and ࡲ෩, respectively, and 
the fine (1/2) feature maps were denoted by ࡲ and ࡲ, respectively. 

෩ࡲ (2)  and ࡲ෩  were flattened to one-dimensional vectors, and positional encodings 
were produced for them. The vectors with positional encoding were then processed 
by the LoFTR module, which had two self-attention layers and two cross-attention 
layers. Finally, two texture- and feature-enhanced maps, ࡲ෩௧

  and ࡲ෩௧
 , with high dis-

crimination, were output. 
(3) The differential matching layer was used to match the high-discrimination feature 

maps, ࡲ෩௧
  and ࡲ෩௧

 , to obtain a confidence matrix Pc . The matches in Pc were then 
determined according to the confidence threshold (0.2 in our experiment) and the 
mutual nearest neighbor criterion, and the coarse-level matching prediction Mc was 
obtained. 

(4) For each coarse-level matching prediction (i, j) in Mc , local corresponding windows 
with a size of 5 × 5 pixels were captured around ࡲ and ࡲ. Similarly, all coarse 
matches were refined according to fine-level local windows, and then the final sub-
pixel matching prediction Mf was output. 
It should be noted that all the matching points in the right image needed to be con-

verted to the original image coordinate system by Equation (2) to obtain the type-II match-
ing features. The type-I and type-II matches were then combined, and the quasi-dense 
complementary matching points were output. 

2.3. Generation of Uniform Matching Points 
The quasi-dense corresponding features obtained, as explained in the previous sec-

tion, had good spatial complementarity, but there were also many adjacent, dense 
matches. Capturing the corresponding patches would inevitably generate many duplicate 
datasets, thereby reducing the performance of the datasets and the training efficiency of 
the model. Therefore, the quasi-dense matches needed to be optimized by sparsification. 
Figure 5 shows the optimization strategy for generating uniform matching points by hy-
brid constraints: the matching point statistics were calculated for every s-pixel (s = 32 in 
our experiment) neighborhood, and the information entropy was calculated for each 
matching point in the neighborhood according to the following equation: 

ܧ = −  ܲ logଶ ܲ



ୀଵ

 (3)

where m denotes the number of gray values in the r-pixel (r = 7 in our experiment) neigh-
borhood of the current matching point, and Pj is the probability of the j-th gray value in 
the neighborhood appearing in the whole image; the matching point with the highest in-
formation entropy in the s-pixel neighborhood was retained. All matching neighborhoods 
of the stereo images were processed similarly to perform matching optimization. The red 
and green points in Figure 5 represent the type-I and type-II matching points, respectively. 
It can be observed that the results of sparse optimization had good spatial complementa-
rity and a uniform distribution. These results provided the foundation for the subsequent 
generation of a high-quality dataset. 
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Figure 5. Illustration of the optimal selection of uniform matching points. 

2.4. Automatic Production of Dataset 
The algorithm for automatically generating a dataset is illustrated in Figure 6. First, 

image patches with a size of 64 × 64 pixels were extracted from the corresponding neigh-
borhoods, which were centered at matching points, and numerous corresponding patches 
were generated. Second, a blank image with a size of 1024 × 1024 pixels was constructed, 
and the corresponding patches were placed in the blank image in sequence by column 
and row. In this image, each row included eight pairs of corresponding patches, resulting 
in 16 image blocks in each row and column. This process was repeated for each image in 
the dataset. Finally, the number of channels and file name of each dataset image was se-
quentially formatted and converted to the normal form required by the target deep learn-
ing network. By executing this process in parallel, we efficiently constructed the SJRS da-
taset with 20,000 images: 10,000 ground-based close-range images, 6000 satellite images, 
and 4000 aerial images from UAVs. It is publicly available at https://github.com/Zhang-
jin0357/SJRS (accessed on 5 July 2022). 

 
Figure 6. Algorithm for the automatic production of the dataset. 
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3. Results and Discussion 
3.1. Model Training 

The experimental environment was a computer with an NVIDIA GeForce RTX 2080 
Ti GPU, Intel Core i99-9900K CPU, 64 GB memory, and the Ubuntu 18.04 operating sys-
tem. The AffNet network was reconstructed using the Python programming language and 
the PyTorch framework. The AffNet model was trained on the Brown dataset [7] and our 
SJRS dataset, and the trained models were named Brown-AffNet and SJRS-AffNet, respec-
tively. The training parameters were uniformly set as follows. The batch size was 1024, 
the number of iterations was 30, the learning rate was 0.005, the momentum hyperparam-
eter was 0.9, the weight decay value was 0.0001, and the stochastic gradient descent was 
used as the optimizer. 

3.2. Test Methods 
To verify the superiority of the SJRS dataset and the trained model proposed in this 

paper, three methods were used to perform affine-invariant feature extraction: (1) ASIFT; 
(2) Brown-AffNet; and (3) SJRS-AffNet. Methods (2) and (3) employed HardNet to gener-
ate feature descriptors with 128 dimensions and obtained feature matches using the 
NNDR metric (with the threshold set to 0.8). They all adopted the RANSAC algorithm to 
eliminate possible outliers. To objectively evaluate the matching performance of the three 
methods, nine pairs of wide-baseline oblique images (shown in Figure 7) were selected as 
representative test data; each pair of images had significant geometric and radiation dis-
tortions. There were three sets of image pairs: JJ1–3 were ground-based close-range im-
ages, covering areas with little texture, such as walls, ground, and glass surfaces, and con-
taining some regions that had parallax discontinuity; HK1–3 were aerial images, covering 
areas lacking texture, such as bare ground, stadiums, and residential areas, and containing 
terrain undulations in local areas; WX1–3 were satellite images, covering areas with little 
texture, such as suburbs, parks, and airports, and including the difference of ground ob-
jects between images. 

 
Figure 7. Thumbnails of test data images. 

3.3. Evaluation Metrics 
(1) Number of correct matching points ݇ఌబ . Fifteen pairs of uniformly distributed corre-

sponding points were manually selected from stereo image pairs, the fundamental ma-
trix F0 was estimated by least-squares adjustment, and this was regarded as the ground 
truth [26–28]. The known fundamental matrix, F0, was used to calculate the error of 
each matching point according to Equation (4), and a threshold, ߝ (set to 2.0), was 
imposed for the error. If the error was less than ߝ, the pair of points was a correct 
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pair of matching points and was included in the count of correct matching points 
݇ఌబ . 

ߝ = ට(ݔ′்ࡲݔ)ଶ/((ࡲݔ)ଵ
ଶ + ଶ(ݔࡲ)

ଶ (4)

where ݔ and ݔ′ denote any pair of corresponding points. 
(2) Match correct rate α. This was defined by α = ݇ఌబ ݇⁄ , where k denotes the total number 

of matching points. 
(3) Matching root-mean-square error ߝோெௌா (pixel). This was calculated according to the 

following equation: 

ோெௌாߝ = ඩ
1
݇

 ߝ
ଶ



ୀଵ

 (5)

(4) Matching spatial distribution quality ܦ. Zhu et al. generated a Delaunay triangula-
tion [29] from the matching points and then evaluated the quality of the spatial dis-
tribution of the matching points according to the area and shape of each triangle, as 
shown in Equation (6): 

ܦ = ܦ × ௌܦ = ඨ∑ ൫(ܣ ⁄ܣ̅ ) − 1൯
ୀଵ

݊ − 1
× ඨ∑ ( ܵ − 1)

ୀଵ

݊ − 1
, ܣ̅ =

∑ ܣ

ୀଵ

݊
, 

ܵ =
(ܬ) ݔ3݉ܽ

ߨ
 

(6)

where n denotes the total number of generated triangles, Ai and max(Ji) denote the area 
and maximum radian of the i-th triangle, respectively, and ̅ܣ denotes the average area of 
the triangles. DA evaluates the uniformity of the areas of the triangles, DS evaluates the 
uniformity of the internal angles of the triangles, and D (calculated from these two param-
eters) evaluates the uniformity of the matching point distribution; a lower value of D corre-
sponds to a higher geometric uniformity among the local triangles. However, Equation (6) 
does not consider the global distribution of the triangulation generated by the matching 
points in the image; therefore, we constructed a matching spatial distribution quality 
model that took into account the global and local distribution of images by comprehen-
sively considering the global and local distribution of the triangulation network, as shown 
in Equation (7): 

ܦ = ܦ) × ீܦ ,ீܦ/(ௌܦ = (∑ ܣ

ୀଵ ூ  (7)ܣ/(

where AI denotes the area of the image, and DG denotes the global coverage of matching 
points in the image; a higher value of DG corresponds to a wider spatial distribution of 
matching points in the image. The resulting model can more fully reflect the quality of the 
matching spatial distribution; a lower value of ܦ corresponds to a higher matching spa-
tial distribution quality. 

3.4. Results and Analysis 
Figure 8 shows the matching results of the three methods on the ground-based close-

range stereo images JJ1–3. Figure 9 shows the results of the methods trained on the aerial 
stereo images HK1–3. Figure 10 shows the results of the methods trained on the satellite 
stereo images WX1–3. The green points in the figures represent the final matching results 
of each method. To clearly compare the matching performances of the methods, the 
matching results of some local areas of each image were selected with red boxes and dis-
played at an enlarged scale. In addition, to determine the matching distribution quality of 
the methods, a Delaunay triangulation was automatically generated from the matching 
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results of each method, as shown in Figures 11–13. Finally, Table 1 presents the quantita-
tive experimental results of the three methods tested on the aerial, satellite, and ground-
based close-range test data. Here, ݇ఌబ  and α denote the number of correct matching points 
and match correct rate, respectively, and ߝோெௌா and ܦ denote the match correct rate and 
matching spatial distribution quality, respectively. The best value of the metric for each 
group of data in the table is highlighted in bold. 

 
Figure 8. Matching results of the three methods tested on ground-based close-range stereo images JJ1–3. 
(a,d,g) tested on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 

 
Figure 9. Matching results of the three methods tested on aerial stereo images HK1–3. (a,d,g) tested 
on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 
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Figure 10. Matching results of the three methods tested on satellite stereo images WX1–3. (a,d,g) 
tested on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 

 
Figure 11. Delaunay triangulation network of matches from ground-based close-range stereo im-
ages JJ1–3. (a,d,g) tested on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 
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Figure 12. Delaunay triangulation network of matches from aerial stereo images HK1–3. (a,d,g) 
tested on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 

 
Figure 13. Delaunay triangulation network of matches from satellite stereo images WX1–3. (a,d,g) 
tested on ASIFT. (b,e,h) tested on Brown-AffNet. (c,f,i) tested on SJRS-AffNet. 
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Table 1. Comparison of the test results of three methods using ground-based, aerial, and satellite 
images. The best values are highlighted in bold. 

Test 
Data 

ASIFT Brown-AffNet SJRS-AffNet 
 ࢿ

(Pair) 
α 

(%) 
 ࡱࡿࡹࡾࢿ
(Pixel) ࡰ  

 ࢿ
(Pair) 

α 
(%) 

 ࡱࡿࡹࡾࢿ
(Pixel) ࡰ  

 ࢿ
(Pair) 

α 
(%) 

 ࡱࡿࡹࡾࢿ
(Pixel) ࡰ  

JJ1 582 51.5 1.08 186.00 639 65.2 0.88 51.76 793 81.1 0.86 50.6 
JJ2 1394 42.7 0.82 132.79 1094 76.1 0.98 85.27 1160 80.5 0.89 90.13 
JJ3 735 22.2 0.66 109.62 1711 43.4 0.78 77.00 2922 71.1 0.65 72.06 

HK1 649 27.2 0.68 51.77 357 27.6 1.35 28.74 418 28.9 1.02 27.61 
HK2 97 86.6 0.56 32.72 116 33.6 3.60 22.78 123 31.3 0.97 38.63 
HK3 4541 55.3 0.87 125.53 1684 52.2 0.61 50.25 2051 62.8 0.65 47.86 
WX1 59 70.2 1.29 64.26 49 21.1 1.17 20.18 70 33.1 1.35 22.68 
WX2 4664 84.2 0.94 120.36 1318 62.5 0.90 57.57 1438 65.7 1.11 48.48 
WX3 11 73.3 0.31 19.61 38 34.8 1.39 16.19 39 27.0 1.14 10.74 

(1) The SJRS-AffNet method had advantages, with respect to the number of correct 
matching points and the match correct rate. There was a significant increase in the 
number of matching points in JJ1–2 in Figure 8; HK1 and HK3 in Figure 9; and WX1–
2 in Figure 10. Figures 8–10 show that SJRS-AffNet could obtain more matching point 
pairs for most test data. Table 1 also reveals that SJRS-AffNet was oriented toward 
wide-baseline weak-texture stereo images and could obtain more matching point 
pairs in most cases and achieve a higher match correct rate. Compared with Brown-
AffNet, SJRS-AffNet had significant advantages because the SJRS dataset had a 
greater quantity and breadth than the Brown dataset. In particular, the images in the 
SJRS dataset came from different platforms (aerial, satellite, and ground-based close-
range platforms), whereas the images in the Brown dataset were only ground-based 
close-range images, mainly of artificial statues and natural landscapes. Therefore, the 
trained SJRS-AffNet was more generalizable than Brown-AffNet. 

(2) Table 1 also shows that SJRS-AffNet had advantages with respect to match correct 
rate when tested on ground-based close-range image data. The reason is that rela-
tively few types of scene texture, such as walls, bare ground, and green space, occur 
in ground-based close-range images. Therefore, the model trained on this dataset can 
achieve a higher match correct rate on ground-based close-range images. In contrast, 
the aerial and satellite photography platforms have larger fields of view, so more 
types of texture appear in the images in HK1–3 and WX1–3. To improve the match 
correct rate of such images in the future, it will be necessary to further increase the 
types and the quantity of textures covered by the SJRS dataset. 

(3) SJRS-AffNet had obvious advantages with respect to matching spatial distribution 
quality. Table 1 shows that SJRS-AffNet can achieve high matching spatial distribution 
quality for most aerial, satellite, and ground-based close-range images. In Figure 11, es-
pecially for JJ1–2, the distribution area in the Delaunay triangulation network was 
significantly improved; in Figure 12, only the distribution area of the HK1 Delaunay 
triangulation network was improved more significantly; in Figure 13, the distribu-
tion areas of WX1–3 triangular networks were all significantly improved. This result 
is consistent with the visual global and local matching results shown in Figures 8–13. 
This shows the effectiveness of the matching spatial distribution quality model that 
considers both global and local images and verifies the superiority of SJRS. 

(4) Figures 8–13 and Table 1 reveal that there is no method that can adapt to image data 
from all types of platforms and to images of all terrain textures. The size of the train-
ing dataset directly affected the image matching performance of the deep learning 
model. Although SJRS-AffNet could achieve better matching results for most of the 
test data, it was not as good as the ASIFT algorithm for individual test images and 
evaluation metrics. Figures 10 and 13 show that, given the WX3 stereo pair, none of 
the three methods tested could obtain a large number of matches. The reason is that 
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there are many obvious ground feature differences in the corresponding regions of 
WX3. Due to the low similarity between the corresponding areas, many correspond-
ing features were eliminated as false matches. 

4. Conclusions 
This paper proposed an algorithm for the automatic production of a benchmark da-

taset for affine-invariant feature matching. The algorithm effectively integrated two types 
of complementary corresponding features, from ASIFT and the deep learning model 
LoFTR, and generated quasi-dense matches. Matching points with uniform spatial distri-
bution were then selected using the dual constraints of the neighborhood distance thresh-
old and maximum information entropy. Next, the neighborhoods of matching points were 
automatically extracted, and the corresponding patches were output in batches. The algo-
rithm was used to automatically construct a large-scale SJRS dataset containing images 
from ground-based close-range, aerial, and satellite sources. Finally, the SJRS and Brown 
datasets were applied separately to the affine-invariant model AffNet for training. Com-
prehensive test results showed that SJRS-AffNet had an advantage with respect to the 
number of matching points and the correct matching rate; moreover, SJRS-AffNet was 
able to achieve a high matching spatial distribution quality for most of the aerial, satellite, 
and ground-based close-range images, and SJRS-AffNet could achieve superior perfor-
mance when matching stereo images with large viewpoint differences and regions with 
weak texture. 

The main contributions of this paper are as follows: (1) an effective algorithm for the 
production of a deep learning dataset for affine-invariant feature matching; (2) the most 
extensive deep learning benchmark dataset to date for affine-invariant feature matching; 
and (3) a distribution evaluation model that considers both global and local image con-
tents to accurately evaluate the spatial distribution quality for matching points. Due to the 
multi-scale, multi-view, and multi-spectral characteristics of new remote sensing images, 
it is necessary in future works to construct a very-large-scale benchmark dataset that co-
vers more spectral features and texture types. Another topic for future works is the inte-
gration of the self-attention and cross-attention mechanisms into AffNet to improve the 
universality of the existing matching model for different imaging mechanisms and texture 
types. Additionally, the current approach has some limitations, such as too few matching 
points for significant parallax changes and complex 3D scenes; we hope to overcome this 
insufficiency in the future. 

Author Contributions: Conceptualization, Jianya Gong and Guobiao Yao; methodology, Guobiao 
Yao and Jianya Gong; software, Guobiao Yao and Jin Zhang; data curation, Jin Zhang and Guobiao 
Yao; validation, Guobiao Yao, Jin Zhang, and Fengxiang Jin; formal analysis, Guobiao Yao and 
Jianya Gong; writing—original draft preparation, Guobiao Yao; writing—review and editing, Jianya 
Gong and Fengxiang Jin; supervision, Jianya Gong and Fengxiang Jin. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This work was supported by the National Natural Science Foundation of China with Pro-
ject No. 42171435, the Shandong Provincial Natural Science Foundation with Project No. 
ZR2021MD006, the Postgraduate Education and Teaching Reform Foundation of Shandong Prov-
ince with Project No. SDYJG19115, and the Undergraduate Education and Teaching Reform Foun-
dation of Shandong Province with Project No. Z2021014. This work was also funded by the high 
quality graduate course of Shandong Province with Project No. SDYKC2022151. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Informed consent was obtained from all subjects involved in the 
study. 

Data Availability Statement: The case data can be downloaded from GitHub 
https://github.com/Zhangjin0357/SJRS (accessed on 5 July 2022) 



ISPRS Int. J. Geo-Inf. 2023, 12, 33 16 of 17 
 

 

Acknowledgments: The authors would like to thank Jean-Michel Morel, Jiaming Sun, and Dmy-
tro Mishkin for providing their key algorithms. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Wierzbicki, D.; Nienaltowski, M. Accuracy analysis of a 3D model of excavation, created from images acquired with an action 

camera from low altitudes. ISPRS Int. J. Geo-Inf. 2019, 8, 83. https://doi.org/10.3390/ijgi8020083. 
2. Yao, G.B.; Yilmaz, A.; Meng, F.; Zhang, L. Review of wide-baseline stereo image matching based on deep learning. Remote Sens. 

2021, 13, 3247. https://doi.org/10.3390/rs13163247. 
3. Lin, C.; Heipke, C. Deep learning feature representation for image matching under large viewpoint and viewing direction 

change. ISPRS J. Photogramm. Remote Sens. 2022, 190, 94–112. https://doi.org/10.1016/j.isprsjprs.2022.06.003. 
4. Sofie, H.; Bart, K.; Revesz, P.Z. Affine-invariant triangulation of spatio-temporal data with an application to image retrieval. Int. 

J. Geo-Inf. 2017, 6, 100. https://doi.org/10.3390/ijgi6040100. 
5. Ma, J.; Sun, Q.; Zhou, Z.; Wen, B.; Li, S. A Multi-scale residential areas matching method considering spatial neighborhood 

features. ISPRS Int. J. Geo-Inf. 2022, 11, 331. https://doi.org/10.3390/ijgi11060331. 
6. Kızılkaya, S.; Alganci, U.; Sertel, E. VHRShips: An extensive benchmark dataset for scalable deep learning-based ship detection 

applications. ISPRS Int. J. Geo-Inf. 2022, 11, 445. https://doi.org/10.3390/ijgi11080445. 
7. Brown, M.; Hua, G.; Winder, S. Discriminative learning of local image descriptors. IEEE Trans. Pattern. Anal. Mach. Intell. 2011, 

33, 43–57. https://doi.org/10.1109/TPAMI.2010.54. 
8. David, G.L. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision. 2004, 60, 91–110. 

https://doi.org/10.1023/B:VISI.0000029664.99615.94. 
9. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and 

automated cartography. Commun. ACM 1981, 24, 381–395. https://doi.org/10.1145/358669.358692. 
10. Yang, H.; Zhang, S.; Wang, L. Robust and precise registration of oblique images based on scale-invariant feature transformation 

algorithm. IEEE Geosci. Remote Sens. Lett. 2012, 9, 783–787. https://doi.org/10.1109/LGRS.2011.2181485. 
11. Zhang, Q.; Wang, Y.; Wang, L. Registration of images with affine geometric distortion based on maximally stable extremal 

regions and phase congruency. Image Vis. Comput. 2015, 36, 23–39. https://doi.org/10.1016/j.imavis.2015.01.008. 
12. Xiao, X.W.; Guo, B.X.; Li, D.R.; Zhao, X.A. Quick and affine invariance matching method for oblique images. Acta Geod. Et 

Cartogr. Sin. 2015, 44, 414–442. https://doi.org/10.11947/j.AGCS.2015.20140048. 
13. Xiao, X.W.; Li, D.R.; Guo, B.X.; Jiang, W.T. A robust and rapid viewpoint-invariant matching method for oblique images. Geomat. 

Inf. Sci. Wuhan Univ. 2016, 41, 1151–1159. https://doi.org/10.13203/j.whugis20140405. 
14. Jiang, S.; Xu, Z.H.; Zhang, F.; Liao, R.C.; Jiang, W.S. Solution for efficient SfM reconstruction of oblique UAV images. Geomat. 

Inf. Sci. Wuhan Univ. 2019, 44, 1153–1161. https://doi.org/10.13203/j.whugis20180030. 
15. Morel, J.-M.; Yu, G. Asift: A new framework for fully affine invariant image comparison. SIAM J. Imaging Sci. 2009, 2, 438–469 

https://doi.org/10.1137/080732730.  
16. Yao, G.B.; Yilmaz, A.; Zhang, L.; Meng, F.; Ai, H.B.; Jin, F.X. Matching large baseline oblique stereo images using an end-to-end 

convolutional neural network. Remote Sens. 2021,13, 274. https://doi.org/10.3390/rs13020274. 
17. Liu, J.; Ji, S.P. Deep learning based dense matching for aerial remote sensing images. Acta Geod. Et Cartogr. Sin. 2019, 48, 1141–

1150. https://doi.org/10.11947/j.AGCS.2019.20180247. 
18. Tian, Y.R.; Fan, B.; Wu, F.C. L2-net: Deep learning of discriminative patch descriptor in euclidean space. In Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 661–669. 
https://doi.org/10.1109/CVPR.2017.649. 

19. Mishchuk, A.; Mishkin, D.; Radenovic, F. Working hard to know your neighbor’s margins: Local descriptor learning loss. Adv. 
Neural Inf. Process. Syst. 2017, 1, 4826–4837. https://doi.org/10.48550/arXiv.1705.10872. 

20. Mishkin, D.; Radenovic, F.; Matas, J. Repeatability is not enough: learning affine regions via discriminability. In Proceedings of 
the 2018 Computer Vision, Munich, Germany, 8–14 September 2018; pp. 287–304. https://doi.org/10.48550/arXiv.1711.06704. 

21. Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning feature matching with graph neural networks. In 
Proceedings of the IEEE 2020 Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 
2020. https://doi.org/10.1109/CVPR42600.2020.00499. 

22. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. 
arXiv 2017, arXiv:1706.03762. https://doi.org/10.48550/arXiv.1706.03762. 

23. Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-free local feature matching with transformers. arXiv 2021, 
arXiv:2104.00680. https://doi.org/10.48550/arXiv.2104.00680. 

24. Balntas, V.; Lenc, K.; Vedaldi, A.; Mikolajczyk, K. HPatches: A benchmark and evaluation of handcrafted and learned local 
descriptors. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 
USA, 21–26 July 2017; pp. 3852–3861. 



ISPRS Int. J. Geo-Inf. 2023, 12, 33 17 of 17 
 

 

25. Li, Z.; Snavely, N. MegaDepth: Learning single-view depth prediction from internet photos. In Proceedings of the Computer 
Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. 

26. Yao, G.B.; Deng, K.Z.; Zhang, L. An automated registration method with high accuracy for oblique stereo images based on 
complementary affine invariant features. Acta Geod. Et Cartogr. Sin. 2013, 42, 869–876. 

27. Li, X.; Yang, Y.H.; Yang, B.; Yin, F.A. Multi-source remote sensing image matching method using directional phase feature. 
Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 488–494. https://doi.org/10.13203/j.whugis20180445. 

28. Yuan, X.X.; Yuan, W.; Chen, S.Y. An automatic detection method of mismatching points in remote sensing images based on 
graph theory. Geomat. Inf. Sci. Wuhan Univ 2018, 43, 1854–1860. https://doi.org/10.13203/j.whugis20180154. 

29. Zhu, Q.; Wu, B.; Xu, Z.X. Seed point selection method for triangle constrained image matching propagation. IEEE Geosci. Remote 
Sens. Lett. 2006, 3, 207–211. https://doi.org/10.1109/LGRS.2005.861735. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


