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Abstract: Accurately mapping urban built-up areas is critical for monitoring urbanization and
development. Previous studies have shown that Night light (NTL) data is effective in characterizing
the extent of human activity. But its inherently low spatial resolution and saturation effect limit its
application in the construction of urban built-up extraction. In this study, we developed a new index
called VNRT (Vegetation, Nighttime Light, Road, and Temperature) to address these challenges and
improve the accuracy of built-up area extraction. The VNRT index is the first to fuse the Normalized
Difference Vegetation Index (NDVI), NPP-VIIRS Nighttime NTL data, road density data, and land
surface temperature (LST) through factor multiplication. To verify the good performance of VNRT in
extracting built-up areas, the built-up area ranges of four national central cities in China (Chengdu,
Wuhan, Xi’an, and Zhengzhou) in 2019 are extracted by the local optimum thresholding method
and compared with the actual validation points. The results show that the spatial distribution of
VNRT is highly consistent with the actual built-up area. THE VNRT increases the variability between
urban built-up areas and non-built-up areas, and can effectively distinguish some types of land
cover that are easily ignored in previous urban indices, such as urban parks and water bodies. The
VNRT index had the highest Accuracy (0.97), F1-score (0.94), Kappa coefficient (0.80), and overall
accuracy (92%) compared to the two proposed urban indices. Therefore, the VNRT index could
improve the identification of urban built-up areas and be an effective tool for long-term monitoring
of regional-scale urbanization.

Keywords: urban built-up area; NPP-VIIRS nighttime light data; land surface temperature; road
network density; comprehensive urban built-up area extraction index

1. Introduction

Cities represent an inevitable consequence of human social development and serve
as important indicators of human civilization’s progress [1]. Although urban areas only
comprise a small fraction of the Earth’s surface, they have a substantial impact on climate,
biogeochemical cycles, ecosystems, air quality, and other regional or global factors [2–5].
Urban built-up areas, as defined by areas with essential municipal and public facilities
within urban administrative boundaries [6], are the most densely populated and con-
centrated regions within a city. They reflect a city’s form and structure, delineating the
distribution of urban functions, and are thus vital indicators for monitoring the urbaniza-
tion process [7]. As urbanization continues to progress, the exploration of methods capable
of rapidly and accurately acquiring spatial distribution information of urban built-up areas
at both regional and global scales holds significant importance for future urban dynamic
development management, planning, and land resource utilization [8,9].

A more efficient method for mapping urban built-up areas, compared to census data,
is provided by remote sensing data [10]. Initially, the extraction of urban built-up areas
heavily relied on traditional visible light remote sensing imagery as the primary data source.

ISPRS Int. J. Geo-Inf. 2024, 13, 21. https://doi.org/10.3390/ijgi13010021 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13010021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://doi.org/10.3390/ijgi13010021
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13010021?type=check_update&version=1


ISPRS Int. J. Geo-Inf. 2024, 13, 21 2 of 19

This involved employing supervised classification or index construction methods. The
combination of an index with the threshold method is widely used for extracting built-up
areas [11]. This approach utilizes statistical data and indices to establish thresholds and
accurately define the spatial extent of urban built-up areas. The introduction of the Normal-
ized Difference Built-up Index (NDBI) [12,13] has facilitated the development of various
indices for extracting impervious surfaces. These indices enable the gathering of built-up
area data for specific locations [14,15]. It is important to consider that not all impervious
surfaces qualify as urban built-up areas in practical scenarios, as they may include features
such as vacant construction land or residential buildings in small towns. This consideration
is crucial to avoid misclassifications when categorically identifying them as urban built-up
areas [16]. The emergence of NTL data has opened up a novel technological avenue for
obtaining spatial distribution information in urban areas. While NTL data does not directly
measure land use, it is commonly utilized as an indicator for urban built-up area extraction
due to its strong correlations with economic and population density [17,18]. Numerous
studies have demonstrated that NTL data is suitable for large-scale urban extent extraction
and dynamic monitoring of urbanization processes, as the NTL information emitted by
urban areas can be distinctly different from non-urban regions [19,20].

Currently, the most widely used datasets for studying urban expansion are the Defense
Meteorological Satellite Program Operational Linescan System (DMSP-OLS) and the Suomi
National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS)
data. While DMSP-OLS data has inherent limitations such as low spatial resolution and
saturation effects [21]. It only provides a continuous time series from 1992 to 2013, and
its limited spatial and temporal resolution restricts its applicability in urban development
studies. NPP-VIIRS data, with a spatial resolution of approximately 500 m, has been
continuously updated since 2012 [22]. NPP-VIIRS data offers higher suitability for spatial
and temporal analyses of urban built-up areas and land use compared to DMSP-OLS
data. Its regularly updated long-term time series data hold significant practical value in
studying urban development and transformation. Although NPP-VIIRS data mitigate
saturation effects compared to DMSP-OLS data, they do not entirely solve the problem
and still contains background noise, such as fire gas flares, that can affect the extraction of
built-up areas [23]. Therefore, relying solely on NTL data for extracting built-up areas has
limitations. To address these issues, many scholars have employed various remote sensing
data sources in combination with NTL data.

The most commonly used approach involves leveraging the negative correlation
between urban built-up areas and vegetation abundance and incorporating vegetation
information to correct NTL data overflow. The Human Settlements Index (HSI) was
developed based on this concept. It achieves built-up area extraction by combining DMSP-
OLS data and MODIS NDVI data in regional and global settlement mapping [24]. The
relationship between HSI and NDVI can lead to erroneous estimations of built-up area
extents in regions with less vegetation. Building upon this, the Vegetation Adjusted NTL
Urban Index (VANUI) is proposed as a means to simplify the complex algorithm of HSI
and effectively alleviate the spillover effect of NTL data [25]. Although HSI and VANUI
are commonly used among numerous urban indices, they possess inherent limitations.
Integrating a single NDVI factor into both HSI and VANUI results in increased variability
among land cover types within a certain range. For example, non-vegetated land cover
types like bare soil and urban built-up areas can exhibit similar NDVI values, challenging
the distinction of built-up areas from other land cover types. Furthermore, in cities where
urban expansion is approaching saturation, vegetation coverage often remains relatively
stable, and the expansion of built-up areas involves the extension of suburbs and urban
villages into existing built-up areas. In such cases, urban built-up area information may
not be effectively represented by a single NDVI datum. Therefore, the inclusion of datasets
that have been verified to provide valuable built-up area information is being considered
in urban built-up area extraction studies.
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Previous research has indicated that urban regions generally exhibit higher land
surface temperatures compared to non-urban areas, and land surface temperature (LST)
demonstrates a close correlation with different land cover types [26,27]. The expansion of
urban built-up areas leads to an increase in sensible heat flux and a decrease in latent heat
flux, resulting in higher surface and air temperatures when built-up areas replace undevel-
oped surfaces [28–30]. Several models, such as the Point of Interest (POI) and LST-adjusted
NTL Urban Index (PLANUI) [31], the Vegetation Temperature Light Index (VTLI) [32],
and the Vegetation, Building, and LST-Adjusted NTL Urban Index (VBTANUI) [33], have
shown promising results in validation. These models assume a direct relationship between
temperature and urban built-up areas to characterize them. Although incorporating LST
data can provide additional information about urban areas, its coarse spatial resolution
may still result in the blooming effect of nighttime lights data, making it lower extraction
accuracy in small areas. Furthermore, LST data is influenced by a range of complex factors,
including building shapes, materials, and underlying surface properties. Even with the
inclusion of LST, these built-up area indices fail to capture certain socioeconomic and geo-
graphical information inherent to urban built-up areas [32]. Therefore, including LST data
as a valuable segment in the calculation of the index necessitates incorporating additional
information containing socio-economic factors, for instance, data on road network density.
The increasing availability of road data from authoritative mapping organizations has led
to a growing interest in utilizing road network data for delineating built-up areas [34–36].
Given the influence of road networks on human activities and their reflection of urban
expansion trends, integrating this data holds significant potential for accurately depicting
urban built-up areas. Previous studies have successfully demonstrated the feasibility of
extracting urban built-up areas through road density computation, further emphasizing
the utility of road network data in delineating built-up areas [34,37]. Relatively limited
research has been conducted on the use of road network data as Geographic Information
System (GIS) data for extracting urban built-up areas [38]. This study aims to address this
gap by considering road density data as a crucial factor to be incorporated into the model
alongside remote sensing data for accurate built-up area extraction.

The main objective of this study was to introduce a novel urban index named the
Vegetation, Road Network, and Temperature Common Adjusted Nighttime Light Urban
Index (VNRT). This index was developed by integrating NTL, NDVI, LST, and Road
Density data, with the aim of enhancing the accuracy of identifying urban built-up areas.
The proposed index is then applied in four central cities in China including Chengdu,
Wuhan, Xian, and Zhengzhou, respectively. Our method proves to be a more favorable tool
for the extraction of urban built-up areas.

2. Materials and Methods
2.1. Study Areas

National central cities represent the highest level of development within a country
and serve as hubs with aggregating, radiating, and driving functions [39]. This designation
originated from the “National Urban System Planning (2010–2020)” issued by the Ministry
of Housing and Urban-Rural Development in 2010, which initially identified five national
central cities (Beijing, Tianjin, Shanghai, Guangzhou, and Chongqing). Subsequently, from
2016 to 2018, the National Development and Reform Commission and the Ministry of
Housing and Urban-Rural Development successively issued support letters to Chengdu,
Wuhan, Zhengzhou, and Xi’an, recognizing their rapid development and great potential
as national central cities. These four cities are located in different regions in the central
part of China (Figure 1) and serve as significant representatives of the urbanization process
during a certain period. Taking these four national central cities as examples, studying the
extraction of their internal built-up areas holds important value for evaluating the speed
and rationality of land use in the urban development process.
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2.2. Data and Preprocessing
2.2.1. Nighttime Light Data

The NPP-VIIRS data, provided by the National Oceanic and Atmospheric Adminis-
tration (NOAA) of the United States, are primarily used for environmental monitoring.
Within this dataset, the Visible Infrared Imaging Radiometer’s Day-Night Band (DNB) is
utilized to monitor global nighttime light brightness. The NPP-VIIRS NTL data, initially
released in April 2012, are available in yearly, monthly, and daily formats. In this study,
we selected the monthly data from the cloud-free version of the VIIRS Corrected Monthly
Composites (VCM) in 2019. This version effectively eliminates stray light interference,
lightning, moonlight, and cloud cover, while preserving transient light sources like at-
mospheric flares, auroras, oil and gas flares, fires, and other background noise [40,41].
To further eliminate these irrelevant noises and ensure the data quality, we applied an
outlier detection method based on spatial relationships and radiance attributes, using a
sliding window of 3*3 size for spatial outlier detection and removal. By integrating the
outlier identification and removal methods, we finally generated the 2019 annual night
light dataset with a spatial resolution of 500 m, which significantly improved the reliability
of the NTL data. By using the NPP-VIIRS data with outliers removed, the calculation of the
VNRT index can effectively mitigate the interference caused by high DN values of pixels
far from urban areas [42].

2.2.2. Normalized Difference Vegetation Index

The Terra MODIS NDVI data used in this study were the MOD13A2 products, which
are provided every 16 days. This product has been continually updated since February
2000, with a spatial resolution of 1 km. It provides normalized vegetation index values after
atmospheric correction [43]. Leveraging this dataset, we used the Google Earth Engine
(GEE) platform to compute and generate annual maximum NDVI dataset for each city. The
use of annual maximum NDVI data helps reduce interference from vegetation information
when extracting urban built-up areas. This method ensures that vegetation’s impact is
minimized during the extraction process.

2.2.3. Land Surface Temperature Data

In this study, the land surface temperature data required to calculate the VNRT index
were obtained from the MODIS LST product with a spatial resolution of 1000 m. The
MOD11A2 product was derived from Terra MODIS imagery acquired at either 10:30
(daytime) or 22:30 (nighttime) local time and was based on an 8-day mean LST generated
by a radiation correction, cloud removal, atmospheric water vapor, and temperature-
corrected split-window algorithm to produce daily LSTs that provide 8-day mean LST [44].
By using the GEE platform, we calculated and generated 2019 mean LST datasets with a
spatial resolution of 1000 m within each study area.



ISPRS Int. J. Geo-Inf. 2024, 13, 21 5 of 19

2.2.4. Road Network Density Data

Open Street Map (OSM) is a widely adopted platform that provides users with freely
accessible digital map resources, making it one of the most popular forms of Volunteered
Geographic Information (VGI) [45]. OSM offers accurate positioning and topological rela-
tionships for its road network, including vital spatial details like latitude and longitude, as
well as attributes such as road names, types, maximum speeds, and one-way designations.
The official Open Street Map website allows users to download this data [45]. The study
utilized road data from the 2019 OSM dataset to perform a kernel density estimation using
the default search radius algorithm in ArcGIS. It shows the density of the road network in
2019 with a spatial resolution of 1 km.

Given the intricate artificial impacts of the COVID-19 pandemic on the pace and char-
acteristics of urban expansion, as well as the influence of diverse policy factors on nighttime
light brightness during the pandemic, this study aims to emphasize the correlation between
built-up areas and nighttime light brightness under natural conditions. Consequently, all
calculations and validations conducted in this study are based on data from the year 2019,
prior to the outbreak of the pandemic. To ensure that data format discrepancies do not
affect subsequent analyses, we performed preprocessing on all data sources. This included
projecting all datasets to the same coordinate system, resampling to a consistent resolution
using nearest-neighbor resampling, and clipping to the same vector extent.

2.3. The VNRT

NPP-VIIRS data serves as a valuable resource for extracting built-up areas as it ob-
jectively reflects the characteristics of human activities and societal expansion within a
region [23]. Its continuously updated long-term time series adds to its significance. Chal-
lenges arise from the inherent overflow effects and resolution issues in the NTL data,
making it difficult to solely rely on this data for extracting built-up areas [39]. To address
this limitation, we consider the integration of additional data sources. The NDVI and LST
are two important land cover variables [27]. NDVI exhibit a strong negative correlation
between vegetation abundance and built-up areas, making them commonly used factors
in index construction. Furthermore, LST data is gradually being employed to assist in
mapping the distribution of impervious surfaces due to the urban heat island effect, which
leads to increased surface temperatures in urban areas [46]. For more accurate extraction of
city parks or built-up areas with weak street lighting, We consider road network density
data that has been shown to be closely related to urban development but is rarely used to
extract built-up areas. Unlike the previous two types of remote sensing data, which possess
natural attributes, road network data represents GIS data with socio-economic attributes.
In recent years, acquiring road network data has become increasingly convenient, offering
high accuracy and flexibility [34].

Based on this, we can infer that urban built-up areas may exhibit distinct characteristics
compared to other land cover types in the spatial distribution of NTL-NDVI-LST-ROAD.
For instance, urban built-up areas typically display high NTL values, low NDVI values,
high road network density values, and high LST values. Conversely, non-built-up areas
such as forests and agricultural land demonstrate contrasting trends. In the case of atypical
built-up areas, such as well developed municipal parks within cities, which are classified as
built-up areas by definition, they are often categorized as non-built-up areas in traditional
urban indices due to their high NDVI values. In VNRT, they can be more appropriately
classified as urban built-up areas based on their higher road network density values and
surface temperature values, which are characteristic of urban centers. Another significant
land cover type in urban delineation is water bodies. In HSI and VANUI, the reflectance of
water bodies is amplified, sometimes exceeding that of built-up areas, which affects water
body extraction, especially at the boundaries of built-up areas [31,47,48]. Based on the
structure of VANUI, we utilize the same factor multiplication approach to create a modified
urban index, VNRT, by incorporating multi-angle urban information. The objective is to
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enhance consistency among factors while preserving their differences, with the ultimate
goal of improving the precision of built-up area extraction (Equation (1)).

VNRT = NTL ∗ (1 − NDVI) ∗ LST ∗ ROAD (1)

where NTL is annual nighttime light data from NPP-VIIRS, NDVI is the annual maximum
NDVI value from MODIS. LST stands for annual average LST value from MODIS, and
ROAD represents the road network density value calculated after kernel density estimation.
To ensure a more even distribution of results, the four variables are normalized to a range
of 0 to 1.0 in the VNRT calculations and then multiplied together.

2.4. Validation of the VNRT Index

To validate the effectiveness of the proposed index, three methods were employed
for analysis.

Firstly, Visual comparison was conducted to evaluate the spatial distribution of VNRT
within the central urban areas of four cities and assess its consistency with the actual
distribution of built-up areas. The reference for the actual built-up area extent was based
on the 2019 global urban built-up area dataset at a 1 km resolution [48], generated through
signal clustering analysis of multi-temporal nighttime light data. Qualitative analysis
enabled a direct comparison of the index’s effectiveness in reducing blooming effects in
NTL data [32].

Then, four cities were selected, and using a transect sampling approach, VNRT and
two commonly used urban indices, HSI (Equation (2)) and VANUI (Equation (3)), were
extracted for representative land cover types near these surfaces. By comparing the sim-
ilarities and differences among the three indices for different land cover types, further
evaluation of VNRT’s performance in urban information extraction was conducted.

At last, the Local Optimum Threshold (LOT) method, which is both accurate and
easy to implement, was employed. This method involved comparing the index image
with official statistical data to calculate specific thresholds for each city, optimizing the
possible match, and determining the spatial extent of built-up areas in the region [25,49].
Three validation indicators, Accuracy, F1-score, kappa coefficient, and overall accuracy
(OA) of the confusion matrix, are used to assess the effectiveness of VNRT’s extraction
of urban built-up areas in comparison to two other proposed urban indices, based on
the attributes of actual sample points obtained from higher resolution Sentinel-2 imagery.
The F1 score is a value between 0 and 1, calculated as the harmonic average of recall and
precision. A higher value indicates higher precision. Quantitative analysis facilitated a
scientific evaluation of the extraction capabilities of each index for urban built-up areas [32].
The kappa coefficient, accuracy and F1-score are calculated as follows:

kappa =
p0 − pe
1 − pe

(2)

where p0 is the proportion of correctly classified pixels and pe is the expected probability
of agreement when the classifier labels classes at random.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

F1 − score = 2 × precision × recall
precision + recall

(4)

where precision is the accuracy of positive class predictions, which can be calculated as the
ratio of True Positive Predictions (TP) to the sum of all positive results (including TP and
False Positive FP). The recall of relevant samples, which can be calculated by dividing the
number of true positives (TP) by the total number of relevant samples (true positives plus
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false negatives FN). In addition, TN is the number of true negative results. The flow chart
of this approach is shown in Figure 2.
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3. Results
3.1. Spatial Distribution

In order to visually analyze and compare the urban information extraction capabil-
ities of the VNRT, as well as the differences and similarities between the VNRT and the
distribution of built-up areas, a preliminary visual assessment of the spatial distribution
of the VNRT values from a global perspective was conducted with reference to the global
1 km resolution built-up area boundaries provided by Zhao [48]. Figure 3 shows the spatial
distribution of VNRT index within the central urban areas of four major cities in China. The
boundaries of the reference built-up areas are represented by black dashed lines. Due to the
special geographic location of Xi’an, a part of the high VNRT distribution in the southwest
of its central urban area belongs to an adjacent city within its administrative boundaries,
and this part is not compared to the reference built-up area boundaries here.

It can be observed that VNRT value shows significant gradient changes, with high
values concentrated in the urban built-up areas and low values in the non-built-up areas.
The spatial distribution range of the high values in the VNRT has a very similar consis-
tency with the boundaries of the reference urban built-up area, although in some areas of
Zhengzhou and Wuhan, some of the high values in the VNRT are distributed in a slightly
smaller area than the reference urban built-up area. In addition, the high values of the
VNRT are homogeneously distributed in the center of the city, with fewer low-value pixels
within the urban center and few fragmented high-value pixels outside the boundary of
the referenced built-up area. The distribution pattern of the VNRT is clear, showing a
noticeable decrease from the interior of the built-up areas to the edges and further to the
non-built-up areas.

Figure 4 shows the corresponding NPP-VIIRS NTL imagery of the four national central
cities. The NTL data can not only reflect the human activities and internal structure of the
city, but also be used to identify the city center and urban pattern [50,51]. By comparing
the distribution of the NTL data with that of the VNRT, we initially found that the spatial
distribution of the VNRT index matches well with the actual distribution of the built-up
areas of the cities, which indicates that the VNRT index has the potential to effectively
capture and represent urban information.
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3.2. Transect Comparison in Typical Land Cover

To further analyze the changes in the distribution of VNRT on different feature types
at the regional scale, we selected three representative land cover types that are easily
misclassified when extracting urban built-up areas, including airports, city parks, and
water bodies. The transect sampling approach was employed to analyze the variations of
urban indices on these land cover surfaces and their surroundings. In addition to VNRT
index, two commonly used urban indices, HSI and VANUI, were included in this analysis
to compare their differences and similarities. By employing this approach, the differences
and similarities among the three indices could be comprehensively assessed, providing
insights into their performance in capturing urban information across various land cover
types within the selected cities.

3.2.1. Airport

The Airport, as an important part of the urban built-up area, has a very high level
of NTL, which means a high level of human activity and urbanization. However, due
to its typical distribution in areas that are often far from the urban center, it is prone to
being overlooked during the process of built-up area extraction. The variation curves
of the three indices nearby Shuangliu Airport in Chengdu were extracted to analyze
their properties.

Figure 5 depicts the results of the transect analysis conducted in the vicinity of
Chengdu Shuangliu Airport. Overall, the three urban indices show a consistent trend
across different land cover types, with higher values observed in urban built-up areas and
lower values in non-built-up areas. Furthermore, different functional zones within the
built-up area exhibit distinct characteristics, with the airport area showing higher values
compared to residential areas. Comparing the three urban indices, VANUI has the highest
value in the airport area, followed by VNRT. In the residential area to the right of the airport,
VNRT index has a slightly higher value than the other two indices, and in the undeveloped,
non-built-up area to the left of the airport, VNRT index has the lowest value, which is close
to 0. Although the three indices display a consistent trend around Shuangliu Airport, it is
important to note that VNRT demonstrates greater variance within both the built-up and
non-built-up areas. This is particularly evident in the airport area and the non-built-up
area to the left of the airport, due to the minimization of non-urban information by factor
multiplication in the calculation of the VNRT index.
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3.2.2. City Park

City parks, as an important part of urban built-up areas, are often incorrectly identified
as non-built-up areas in HSI and VANUI due to their low NTL and high NDVI. The Daming
Palace Park, situated in the city center of Xi’an and with a relatively high vegetation cover,
is a representative city park with frequent human activities. We take it as an example to
study the changes of the three indices’ performance in city parks.

Figure 6 illustrates the transect variations of urban indices near the Daming Palace
Park in Xi’an. In the vicinity of Daming Palace Park, the curves of the three urban indices
demonstrate consistent trends. The values at Daming Palace Park are lower compared to
the built-up areas, with VANUI exhibiting the lowest value and VNRT showing the highest
value among them. During the process of extracting the built-up area using the local optimal
thresholding method, VNRT index successfully extracted the built-up area attributes of
Daming Palace Park by combining the road network data. This was a challenging task
for HSI and VANUI Although the city park is part of the built-up area in this example, it
is different from the commercial and residential areas in the level of development, so the
three urban indices show obvious fluctuations in Figure 6. The non-built-up area and the
city park in the index images of HSI and VANUI have similar index values, slightly lower
than the built-up area. The VNRT, with its much lower value close to 0 in the non-built-up
area, can effectively identify city parks as a built-up area.
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3.2.3. Water

Water bodies are another important type of landscape characteristic that can be con-
fused with built-up areas in the HSI and VANUI. Wuhan is a city with plenty of water
bodies, its urban built-up area is distributed on both sides of the Yangtze River, and it is
necessary to differentiate the built-up area of Wuhan from the neighboring Yangtze River
when extracting the built-up area of Wuhan. Taking this transect in Wuhan as an example,
the values of the three urban indices were extracted, spanning a considerable geographical
range and various land cover types. To reduce curve fluctuations, a Savitzky-Golay (S-G)
filter was applied to smooth the curves, and the 2019 global 1 km built-up area dataset was
included as a reference [48].

Figure 7 illustrates the results of the transect analysis conducted along both sides
of the Yangtze River in Wuhan. From Figure 7, it can be observed that all three indices
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exhibit higher values in the built-up area portion. VANUI and VNRT show a more similar
trend, displaying distinct high values in the built-up area compared to the non-built-up
area. The HSI curve, on the other hand, exhibits more fluctuations that do not entirely
align with the distribution pattern of the built-up area, and overall, its index values are
higher than the other two indices. In Wuhan, in the vicinity of the Yangtze River, the HSI
curves show a higher peak than the built-up areas due to the complex algorithms of the
HSI and its lower NDVI [32,33]. Therefore, it is more likely to be classified as a built-up
area. However, the VNRT index performs better in this regard, as its low values at water
bodies can be distinguished from built-up features. It is worth noting that in the transition
from built-up to non-built-up areas, VNRT declines the fastest of the three indices, reaching
relatively stable values more quickly. The same pattern is observed in the transition from
the non-built-up area to the built-up area. Figure 7 shows that VNRT is not only sensitive
to water bodies, but also shows better convergence at the boundary of urbanized areas
and more variability between urbanized areas and other feature types, highlighting the
information of the urban boundary.
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Longhu is a small water body within the administrative area of Zhengzhou City,
located in the suburbs of Zhengzhou City. According to the built-up area structure map
published by the Zhengzhou Municipal Government, part of the area surrounding Longhu
belongs to the built-up area and the other part belongs to the unbuilt area, which is not
fully developed.

Figure 8 presents the results of the transect analysis near Longhu Lake in Zhengzhou
City. Unlike the Yangtze River in Figure 8, it typically occupies a smaller land area, making
it more challenging to identify during the extraction of the built-up area. In the built-up
area on the left side of Longhu Lake, all three indices exhibit relatively high values, with
VNRT demonstrating the highest value. In the vicinity of Longhu Lake, however, the
values of the three indices are relatively low, with VANUI exhibiting the lowest value. It
is worth noting that during the transition from the built-up area to the water body, both
VANUI and VNRT show low values in the water body region. However, VNRT exhibits the
greatest variation between the built-up area and the water body, which is advantageous for
reducing misclassification of the water body during the process of built-up area extraction
using the local threshold method.
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3.3. Urban Area Extracting Results
3.3.1. Local Threshold Method

The local optimum threshold method, in combination with the VNRT index imagery
and statistical data, was employed to determine the spatial extent of the urban built-up area.
The statistical data used in this study were obtained from the “2019 Statistical Yearbook of
Urban Construction” provided by the Ministry of Housing and Urban-Rural Development
of the People’s Republic of China, which includes the actual built-up area of each city. We
extracted the portion of the index imagery with brightness values greater than the threshold
“q” to closely match the actual built-up area of each city in the specific index imagery. In
this process, the “q” value for extracting the built-up area of each city under the respective
index imagery was determined using the R programming language. The official statistical
data on the built-up area and the specific thresholds extracted are presented in Table 1.

Table 1. Extracted thresholds HSI, VANUI and VNRT for built-up areas in four central cities.

City Statistical Data
(km2)

Extraction Threshold (q)
HSI VANUI VNRT

Chengdu 1111.59 0.14 0.09 0.05
Wuhan 812.39 0.18 0.06 0.06
Xi’an 700.69 0.14 0.11 0.07

Zhengzhou 750.86 0.12 0.05 0.05

3.3.2. Extracting Results from Local–Optimal Threshold Method

The spatial distribution of urban built-up areas extracted using the local optimum
threshold method under three different indices is illustrated in Figure 9. From the extraction
results of the HSI, it is evident that many pixels are distributed in areas far from the center
of the built-up area, and the extracted boundaries of the built-up area are blurry due to
the excessive saturation correction near the urban core, leading to the loss of valuable data
at the boundaries [25]. VANUI and VNRT exhibit better performance in this regard as
they address the complexity of the HSI algorithm. VANUI delineates the boundaries of
the built-up area more clearly with fewer fragmented pixels in non-built-up areas while
it suffers from numerous gaps within the built-up area, particularly prominent in Wuhan
City. VANUI solely considering the spatial distribution of vegetation within the urban area,
while neglecting other factors that influence the evolution of the internal structure of the
urban region. In addition, in the built-up area extracted using the HSI and VANUI indices
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in Xi’an City, there is a large gap that corresponds to the presence of the Daming Palace
Park. This gap can be attributed to the high NDVI values associated with the park, which
attenuate the brightness values that typically represent built-up areas in these two indices.
By comparison, VNRT extracts the boundaries of the built-up area in Xi’an more sharply,
with a more complete internal structure and fewer scattered patches outside the built-up
area. The same performance was shown in three other cities.
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Figure 9. Urban built-up area spatial extent extracted using local–optimum thresholding method.

3.3.3. Accuracy Assessment

To quantitatively evaluate the effectiveness of the VNRT index in extracting built-
up areas, we created a buffer zone for each city that simultaneously encompassed the
extraction results of the three urban indices. Using the “Create Random Points” tool in
ArcGIS, we generated 1000 random points within each buffer zone. These random points
were visually interpreted based on higher-resolution Sentinel-2 imagery to classify them
into built-up and non-built-up categories. The main criteria for classification were primarily
based on the actual attributes of constructed buildings, while considering the presence of
undeveloped wasteland and clearly visible farmland within a 1 km radius. The resulting
classified validation points were then compared with the built-up area extraction results
using three validation metrics: Accuracy, F1-score, Kappa coefficient and overall accuracy
from confusion matrix validation. The validation results are presented in Table 2.

In each of the four selected cities, the VNRT index demonstrated superior verification
results in terms of accuracy, F1-score, Kappa coefficient and OA, surpassing the other
two proposed urban indices. The average accuracy of HSI for extracting urban built-up
areas was 0.87, while VANUI reached 0.93. VNRT index achieved the highest average
accuracy of 0.97. This trend was consistently present in the results of the four cities, with
a particularly notable difference in Wuhan. In Wuhan, VNRT exhibited a precision that
was 0.17 higher than HSI and 0.05 higher than VANUI. In the four national center cities,
VNRT index achieved an average F1-score of 0.94, which is about 0.23 higher than HSI, and
VANUI exhibited an average F1-score that is approximately 0.14 higher than HSI.
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Table 2. Comparative validation of built-up area extraction accuracy for HSI, VANUI, and VNRT.

City Index Accuracy F1-Score Kappa OA (%)

Chengdu
HSI 0.89 0.80 0.66 85.70

VANUI 0.93 0.87 0.76 90.02
VNRT 0.97 0.95 0.86 94.24

Wuhan
HSI 0.79 0.48 0.42 74.26

VANUI 0.91 0.78 0.63 86.67
VNRT 0.96 0.89 0.75 90.95

Xi’an
HSI 0.90 0.86 0.72 86.97

VANUI 0.93 0.89 0.78 86.41
VNRT 0.97 0.96 0.87 93.96

Zhengzhou
HSI 0.88 0.70 0.45 78.24

VANUI 0.94 0.84 0.60 84.35
VNRT 0.98 0.94 0.70 88.29

Table 2 also illustrates the kappa coefficient and OA. In Wuhan, VNRT index exhibited
a Kappa coefficient of 0.75, which is 0.42 higher than HSI and around 0.12 higher than
VANUI. This indicates that VNRT index showed the most significant improvement in
performance among the four cities. In Xi’an, VNRT index reached a Kappa coefficient
of 0.87 for the extraction of built-up areas, which was only 0.09 higher than VANUI and
0.15 higher than HSI. In all four cities, HSI had the lowest average Kappa coefficient of
0.56, indicating the lowest accuracy. VANUI had an average Kappa coefficient of 0.70,
while VNRT index increased it to 0.80. It is suggested that VNRT index is more effective
than HSI and VANUI in extracting built-up areas in urban areas. Among the four cities,
Chengdu and Xi’an exhibited higher extraction results, with OA value above 85% for all
three urban indices. Wuhan and Zhengzhou had relatively lower extraction performance.
Figure 10 displays the final urban built-up area boundaries extracted using the VNRT index
in the four selected cities. The yellow dots represent validation points classified as urban
built-up areas.
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4. Discussion

Nighttime light data is extensively employed in studies pertaining to urban built-up
areas, with a plethora of urban indices relying on its utilization [52]. Among the commonly
used indices, such as HSI [24] and VANUI [25], both are derived from a combination of
NTL and NDVI to accurately extract urban information. Numerous studies have shown
that using vegetation indices alone to correct nighttime light data for urban information
extraction has limitations [11,33,37]. This study proposes a new urban built-up area index,
VNRT, based on NTL, NDVI and LST data, and for the first time includes road density data,
which is highly correlated with urban distribution. NTL and road density data provide
information on urban social attributes, while NDVI and LST data provide information on
urban natural attributes. The results indicate a high degree of consistency between the
spatial distribution of the VNRT index and the reference built-up area dataset. The spatial
distribution image of the VNRT index (Figure 3) shows a gradual decrease in the value of
the VNRT index from the urban built-up area to the non-built-up area. In the center of the
urban built-up area, VNRT index has high values approximately greater than 0.8 or even
close to 1. At the boundary of the built-up area, VNRT index value decreases to around 0.5
and tends to be lower in the non-built-up area. The VNRT index successfully distinguishes
the values inside the urban built-up area, making it easier to differentiate between the urban
built-up area and the non-built-up area using the local optimum threshold method. Both
the HSI and VANUI indices usually present challenges in distinguishing between water
bodies and built-up areas [47,53], whereas the VNRT index showed superior performance
in this regard (Figure 5). This may be due to the use of the LST factor, with water bodies
presenting significantly lower surface temperature values compared to urban areas [54],
resulting in a smaller VNRT index value for the water body than for normal built-up areas
during the calculation. In addition, the urban built-up areas extracted by VNRT provide a
more complete coverage and successfully extract some atypical urban built-up areas, such
as urban green zones and urban parks, thus reducing the unnecessary internal vacancies
that appear in the results of the proposed urban index extraction (Figure 9). By comparing
the details with the real imagery, we find that the pixel vacancies covered by VNRT are
mainly some street lights with weak NTL brightness and urban parks that are difficult to
detect, and these features have similar characteristics to the non-built-up areas in terms of
NTL and NDVI information [55], which are easily neglected in the previously proposed
built-up area indices. However, these features, as part of the urban built-up area, have high
road network density values, and the VNRT index compensates for this shortcoming in the
extracted results of other urban indices by including the road network density factor.

Although the results of this study demonstrate the effectiveness of applying the VNRT
index over the proposed urban built-up indices in the specific four national center cities of
China, we find that the extraction accuracy of Wuhan and Zhengzhou is relatively lower
than that of the other two cities when comparing the results of the four cities (Table 2).
We consider that this is related to the city scale and geographical location of Wuhan and
Zhengzhou. Considering that the urban heat island intensity is affected by the city scale
and geographic location [56,57], the urban heat island effect is significantly mitigated in
areas near water bodies, and their urban surface temperatures are relatively lower [58–60].
In this study, the extraction accuracy of Xi’an and Chengdu, which have an administrative
area of more than 10,000 square kilometers, is better than that of Wuhan and Zhengzhou,
which have an administrative area of less than 10,000 square kilometers. The reason may
be due to the fact that Wuhan and Zhengzhou are located near the Yangtze River and the
Yellow River, respectively, and are close to large water bodies, which mitigates the urban
heat island effect, leading to the weakening of the effect of LST in the extraction process.
Although the overall accuracy of the VNRT index for extraction of built-up areas is higher
than the other two proposed indices, further research on its stability and applicability in
areas with different city scales and geographical locations is still needed in the future.

By analyzing the impact of each factor individually on the results in VNRT, we try
to remove a factor from Eq.1 and calculate the impact of the remaining three factors on
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the extraction accuracy. First, it was found that when LST, road density, and NDVI were
removed from the VNRT equations, the kappa coefficients obtained were 0.66, 0.58, and
0.61, respectively, which were lower than the accuracy of the four factors interacting with
each other. It is worth noting that although the four factors together have the best extraction
performance, it is evident that they do not influence the results to the same extent. Each
of these four factors represents a different attribute in the urban information, and the
improvement of VNRT accuracy is not only attributed to the integration of additional
data information, but how each of them affects the extraction of built-up area and the
magnitude of their respective influence is still the goal of our further research in the future.
Alternative methods other than equal-weight factor multiplication can be considered to
explore the degree of influence on the results under different factors by assigning different
combinations of weights to them, which may be a valuable direction to further improve the
accuracy of VNRT.

5. Conclusions

Accurately and timely delineation of urban built-up areas is crucial for monitoring the
urbanization process and development. Previous studies mostly focus on the extraction
of built-up areas by using NTL data and NDVI data, but these proposed urban built-up
area indices are still deficient in local feature extraction and overall accuracy. We proposed
a new urban built-up area index, VNRT, to extract the spatial distribution information
of urban built-up areas by combining NPP-VIIRS NTL, MODIS NDVI, LST, and OSM
road network data. The results are compared with two proposed urban indices (HSI and
VANUI), and the performance is evaluated by taking four central cities in China in 2019
as an example. The results demonstrate that the spatial distribution of the VNRT index is
in good correspondence with the reference urban built-up area spatial distribution, and
can effectively provide information on urban built-up areas. Furthermore, the VNRT
index effectively increases the variability between built-up and non-built-up areas by
raising the index value within the built-up areas and lowering the index value in non-
built-up areas. This can be verified by the profile analysis of local typical features. VNRT
also demonstrated good extraction performance for water bodies, city parks, and weakly
illuminated paths at night, which are typical features that are easily misclassified in the
current built-up area indices. The spatial extent of the built-up area was extracted using
the optimal threshold method in combination with official statistics, and the accuracy was
verified with reference to the actual sampling points. The verification results indicate that
the VNRT index achieved an average accuracy, F1 score, and kappa coefficient of 0.97,
0.94, and 0.80, respectively, for the extracted built-up areas, which are higher than those
of the two proposed urban indices, HSI and VANUI. In conclusion, the VNRT index can
effectively be used to extract the area of urban built-up areas by combining multi-source
data based on NPP-VIIRS to realize the acquisition of long time-series urban built-up area
information on a large scale. Although the method may still be influenced by potential
urban spatial patterns, it provides a low-cost, high-precision, intuitive, and easy-to-use
approach for quickly and accurately delineating the urban built-up area within a region.
This can be used as a basis for urban development planning and dynamic monitoring.
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