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Abstract: Cultural property includes immovable assets that are part of a nation’s cultural heritage and
reflect the cultural identity of a people. Hence, information about armed conflict’s impact on historical
buildings’ structures and heritage sites is extremely important. The study aims to demonstrate the
application of Earth observation (EO) synthetic aperture radar (SAR) technology, and in particular
Sentinel-1 SAR coherence time-series analysis, to monitor spatial and temporal changes related to
the recent Russian–Ukrainian war in the urban areas of Mariupol and Kharkiv, Ukraine. The study
considers key events during the siege of Mariupol and the battle of Kharkiv from February to May
2022. Built-up areas and cultural property were identified using freely available OpenStreetMap
(OSM) data. Semi-automated coherent change-detection technique (CCD) that utilize difference
analysis of pre- and co-conflict coherences were capable of highlighting areas of major impact on
the urban structures. The study applied a logistic regression model (LRM) for the discrimination
of damaged and undamaged buildings based on an estimated likelihood of damage occurrence.
A good agreement was observed with the reference data provided by the United Nations Satellite
Centre (UNOSAT) in terms of the overall extent of damage. Damage maps enable the localization of
buildings and cultural assets in areas with a high probability of damage and can serve as the basis for
a high-resolution follow-up investigation. The study reveals the benefits of Sentinel-1 SAR CCD in
the sense of unsupervised delineation of areas affected by armed conflict. However, limitations arise
in the detection of local and single-building damage compared to regions with large-scale destruction.
The proposed semi-automated multi-temporal Sentinel-1 data analysis using CCD methodology
shows its applicability for the timely investigation of damage to buildings and cultural heritage,
which can support the response to crises.

Keywords: Sentinel-1; synthetic aperture radar; coherence; change detection; logistic regression;
damage probability; cultural heritage; armed conflict; Ukraine

1. Introduction

The provisions of the 1954 Hague Convention for the Protection of Cultural Property
in the Event of Armed Conflict clearly state that cultural assets must not be the target of
hostilities [1]. Emphasizing that the humanitarian catastrophe because of an armed conflict
is much more serious, the protection of cultural heritage, historical monuments and arts is
of great importance, since they are part of a nation’s identity and represent the historical
development of a country. The ongoing armed conflict between Russia and Ukraine, which
started in February 2022, threatens some centuries-old cultural property. In addition to
seven (cultural) world heritage sites, Ukraine is home to a large number of historic city
centers and cultural treasures. Their exposure to damage makes it crucial to provide
evidence of the sites’ condition, to be ready for recovery, or to investigate allegations of
war crimes [2]. Earth observation (EO) imagery is particularly effective for monitoring
and assessing the state of cultural property in hostile situations where the locations are not
accessible and on-site inspection is inhibited [3].
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The United Nations Educational, Scientific and Cultural Organization (UNESCO)
is committed, among other tasks, to safeguarding and preserving humanity’s cultural
heritage. Since the beginning of the Ukrainian war, UNESCO has regularly published
figures on destroyed cultural property throughout the country [4]. Damages are recorded
by elaborately cross-referencing reported incidents with information from multiple sources.
The United Nations Satellite Centre (UNOSAT), as part of the United Nations Institute
for Training and Research (UNITAR), engaged in damage assessment based on EO data
by visual interpretation of very high resolution (VHR) optical imagery [5]. Although the
analysis of VHR optical data plays a fundamental role in the delineation of the impact
caused by armed conflict, manual damage mapping takes a considerable amount of time
and resources and may be limited in area. Furthermore, the availability of cloud-free
VHR optical data after an event can cause limitations for visual analysis. Support for this
vitally important task may arise from an effective change-detection (CD) methodology as
an additional component in damage assessment related to armed conflict. A combination
of CD with semi-automated data processing provides a pre-evaluation of the area of
interest, giving important clues as to where to complement the optical investigation. CD
methodology is particularly suited in the context of urban disaster monitoring, which could
help analysts prioritize their activities and empower damage assessment procedures from
optical imagery and the evaluation of incident reports.

CD with EO synthetic aperture radar (SAR) imagery has been investigated for rapid
damage assessment in urban environments caused by natural hazards or military con-
frontation [6–9]. The main objective of such applications is the comparison of imagery
collected over the same geographical location at different dates to discriminate changes to
the built-up area, indicating destruction. Since active SAR-based satellites operate indepen-
dently of weather conditions and time of day, they are advantageous over optical data in
disaster-related applications, when timely monitoring is required [10]. Both incoherent and
coherent methodologies using SAR data were described [11]. While incoherent methods
typically compare the SAR backscattering intensity (amplitude) to identify scene changes,
coherent change detection (CCD) utilizes both the amplitude and phase of the imagery.
Coherence describes the similarity of the reflection properties between two SAR scenes
acquired at different points in time [12]. Changes in, for example, surface conditions result
in a decorrelation between the images, which is expressed by a decrease in coherence
values [13]. Since coherent-based CD has the potential to identify even the smallest changes
in the land surface through time, the technique promises high usability for damage assess-
ment in urban areas affected by disastrous events. Some studies have successfully applied
the difference of coherence between pre- and post-event image acquisitions as an indicator
for delineating the areas affected by natural hazards [14,15] or found the level of coherence
decreased related to the severity of building damages [16].

SAR-based damage mapping in urban areas has predominantly relied on VHR imagery
with a spatial resolution to the sub-meter level [17–20]. Although such images enable a
fine-grained analysis of building features as the primary target of investigation, on-demand
high-resolution data usually comes at high costs and small area coverage, confining the
approaches to single pre- and post or only post-event data. The European Space Agency’s
(ESA) Copernicus Sentinel-1 mission provides freely accessible and timely available SAR
images in a considerable spatial and temporal frequency and coverage. Several studies have
showcased the benefits of using Sentinel-1 data over commercial VHR imagery to monitor
building damage caused by armed conflict due to their capacity to map on a regular, short
time interval [21–23]. The availability of a consistent and frequent time series of image
acquisitions offers an opportunity to apply multi-pair CD approaches for the systematic,
repeated monitoring of building structures and cultural assets. Temporal analysis could
visualize a chronological sequence of impact locations and provide evidence of whether
damage occurred within a specific time window [21].

However, damage detection from SAR data alone can be challenging, since limitations
arise due to, for example, the side-looking geometry of SAR sensors and seasonal changes
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or snow cover on the ground, which may produce a high degree of false positives in the
results [14]. Several authors have sought to achieve improvements in damage detection re-
lated to armed conflict by integrating Sentinel-1 data with Sentinel-2 optical sensors [24–26].
A promising approach was pursued by [27], who visualized the structural damage caused
by missile strikes by analyzing Sentinel-2 and the near-infrared (NIR) range of the spectrum.
Ref. [6] combined fire indices derived from the Sentinel-2 NIR band for mapping burnt
areas with the CCD of urban buildings. Despite the high revisit frequency of a single
Sentinel-2 satellite of 10 days and, with two satellites, the combined constellation of 5 days,
the optical images were compromised by dense cloud cover throughout the weeks after the
Russian invasion. This prevented a full investigation of the selected areas of interest and
the detection of potential damage related to the time windows chosen for this study. In
contrast, the availability of Sentinel-1 data with a temporal resolution of at least 12 days
allowed for analyzing changes based on a consistent time series of regular intervals both
pre- and co-conflict.

The aim of this study is to evaluate the applicability of medium-resolution Sentinel-1
SAR images to detect and assess the damage to buildings and cultural property in urban
areas during an ongoing armed conflict using CCD methodology. We investigate if multi-
temporal coherence change analysis can highlight significant impacts on building structures
and cultural assets and enable approximating overall damage. We address the question
of whether coherence change can serve as a proxy variable for building damage analysis.
We applied logistic regression as a widely used method for binary classification [28]. It
enables the evaluation of the functional relationship between explanatory variables and a
categorical outcome, such as “yes” versus “no” or “damaged” versus “undamaged” and
uses this relationship to estimate class probabilities [29]. We create a logistic regression
model (LRM) to determine the likelihood of damage or collapse of buildings and cultural
property as a function of the observed loss of coherence as an independent spatial proxy
variable. The damage observations to be used as a training dataset to fit the LRM were
obtained by visual inspection and manual tagging of building samples based on Google
satellite imagery with high spatial resolution showing the extent of damage on 9 May
2022. Although high spatial resolution imagery is essential for effectively detecting changes
on the building level in dense urban environments, the study aims to demonstrate the
capability, strengths, and limitations of medium spatial resolution Sentinel-1 SAR imagery
with broad spatial coverage (250 km swath) and high temporal resolution for keeping track
of dynamic changes caused by armed conflicts. To counter limitations from the spatial
resolution of the Sentinel-1 data and to increase the potential of urban area monitoring,
we include free OpenStreetMap (OSM) data to relate changes that occurred at different
points in time explicitly to buildings and heritage sites [13,24,30]. The estimated damages
are compared with independent damage assessment data published by UNOSAT and with
UNESCO-verified damaged cultural sites to assess the usability and reliability of Sentinel-1
SAR coherent time-series analysis to distinguish impact areas over time and approximate
total damage.

2. Materials and Methods
2.1. Study Sites

On 24 February 2022, Russia launched a large-scale military attack on the national
territory of Ukraine. The rapid advance of Russian ground troops and numerous air
strikes within a few weeks after the invasion caused significant damage to the physical
infrastructure of cities primarily in the east and south of Ukraine [31,32]. We have chosen
the cities of Mariupol and Kharkiv, which are important cultural centers in Ukraine, as
our study areas (Figure 1). The study considers the timeline of events during the first
three months of the conflict, including the capitulation of Mariupol and the temporary
withdrawal of Russian troops from Kharkiv city in mid-May 2022.

Mariupol is located in Donetsk Oblast along the shore of the Sea of Azov and was
an important port and university town with far more than 400,000 inhabitants until the
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Russian siege on 24 February 2022. As a result of continuous and heavy attacks, almost all
major public buildings, as well as the majority of residential buildings and several churches
in the city, were severely damaged or destroyed [33]. One of the most noticeable incidents
was the bombing of the drama theater on 16 March 2022.
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Kharkiv is the second largest city in Ukraine, with approximately 1.4 million inhabitants,
and is located in the northeastern part of the country. As a home to universities and many
cultural and religious sites, the city developed to become an important cultural, scientific,
and educational center. Kharkiv was part of the first Eastern Ukraine offensive and allegedly
suffered significant damage by the end of April 2022 [34]. Updated satellite imagery from
Google Earth captured on different dates between February and May 2022 has revealed the
extent of the damage in both cities. While Mariupol was showing destruction on a large scale
across the entire city area, Kharkiv seemed to be affected more locally, with damage mainly
on the single-building level. This preliminary assessment is supported by VHR optical image
analysis published by the UNOSAT program [35,36]. Therefore, the selected sites provide the
opportunity to compare the CCD methodology and the results of the present study in areas
that suffered impact to varying degrees by the fighting and bombing.

2.2. Sentinel-1 SAR Data

Sentinel-1 scenes were accessed through the Alaska Satellite Facility provided by
the NASA Earth Science Data and Information System (ESDIS) project [37]. Sentinel-1
carries a C-band (~5.6-centimeter wavelength) and consists of two polar-orbiting satellites,
Sentinel-1A (launched in 2014) and Sentinel-1B (launched in 2016 but suffering equipment
failure in 2021). Hence, only Sentinel-1A scenes were available for this study. All the
images were downloaded as single-look complex (SLC) products with VV (radar pulse
transmitted vertically and received vertically by the radar antenna) and VH (radar pulse
transmitted vertically and received horizontally by the antenna) and in the interferometric
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wide swath (IW) mode, which captures data with a 250 km swath and is comprised of
three sub-swath images using the terrain observation by progressive scans (TOPS) SAR
mode [38], at 5 m (in range) × 20 m (in azimuth) spatial resolution, and in the ascending
flight direction (satellites fly from south to north). The SLC products were selected, as it
preserves information related to the phase, which is necessary to produce coherent products.
All scenes were acquired with identical imaging geometries for each study area, such as
the same relative orbit and pass direction. Table 1 provides an overview of the imagery
used for this study, including the key acquisition parameters of each dataset.

Table 1. Acquisition parameters of Sentinel-1 datasets. IW = interferometric wide swath, SLC = single
look complex, VV = vertical–vertical polarization, VH = vertical–horizontal polarization.

Acquisition Platform Sensor Mode Polarization Path Product Direction

Mariupol

4 February 2022 (t1) Sentinel-1A C-SAR IW VV + VH 43 SLC Ascending

16 February 2022 (t2) Sentinel-1A C-SAR IW VV + VH 43 SLC Ascending

12 March 2022 (t3) Sentinel-1A C-SAR IW VV + VH 43 SLC Ascending

5 April 2022 (t4) Sentinel-1A C-SAR IW VV + VH 43 SLC Ascending

23 May 2022 (t5) Sentinel-1A C-SAR IW VV + VH 43 SLC Ascending

Kharkiv

9 February 2022 (t1) Sentinel-1A C-SAR IW VV + VH 116 SLC Ascending

21 February 2022 (t2) Sentinel-1A C-SAR IW VV + VH 116 SLC Ascending

17 March 2022 (t3) Sentinel-1A C-SAR IW VV + VH 116 SLC Ascending

10 April 2022 (t4) Sentinel-1A C-SAR IW VV + VH 116 SLC Ascending

28 May 2022 (t5) Sentinel-1A C-SAR IW VV + VH 116 SLC Ascending

We followed the processing steps suggested by [39] to obtain a coherence map from
each pair of Sentinel-1 SAR SLC datasets (Figure 2). Only VV polarization was used as the
input image for pre-processing, as it should provide clearer results when analyzing urban
features [40]. First, we created image stacks by applying standard processing steps, such
as the TOPSAR split function, to select only the sub-swath covering the area of interest,
correction of the orbit state vectors for each image to provide accurate satellite position
and velocity information, co-registration of two SAR images using the SRTM 1-Arcsecond
digital elevation model (DEM) [41] for back-geocoding and ensuring pixel alignments
within each two images [42], and the correction of the shift in the azimuthal direction using
the enhanced spectral diversity function [43]. Next, coherence estimation was conducted to
represent the absolute value of the cross-correlation index between each two SAR images
(cf. 3.1) followed by TOPSAR deburst correction to recombine the selected sub-swaths
and the multi-looking operation to reduce speckle noise by 8 range and 2 azimuth looks,
as recommended in the literature [39], to increase the signal-to-noise ratio. As a last step,
the images were topographically corrected using the SRTM 3-Arcsecond (~90 m) digital
elevation model. All the pre-processing steps were performed using the open-source ESA
Sentinel Applications Platform (SNAP) Version 9.0.0 for Windows and ESA Sentinel-1
Toolbox (S1TBX) Version 9.0.4 [44].

Coherence maps were produced for each consecutive pair of images in the time series
(image t1 and image t2, image t2 and image t3, . . ., image tn and image t(n+1)), starting
with the first pair consisting of two pre-conflict images and the second pair consisting of
the image right before the Russian invasion and the first co-conflict image. In total, four
coherence maps were created from the five selected images for each study area, with the
first coherence map representing the pre-conflict situation and three further coherence maps
revealing the surface changes throughout the armed conflict. An additional coherence map
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(Cohtot) was calculated from the second pre-conflict image t2 as a reference and the last
co-conflict scene t5 as a secondary image with a temporal baseline of 96 days spanning the
entire investigation period. Table 2 shows the image pairs’ configuration, the temporal
baseline between image acquisitions, and statistical parameters extracted for the built-up
area based on OSM building outlines. Following [30], the average coherence values for
the built-up area range between 0.5 and 0.7 in the pre-conflict time interval. Particularly
notable is the significant decline in the mean coherence Coh3 derived from Mariupol for
the third time window and the overall weak correlation for mean coherence Cohtot of
around 0.38. In contrast, the estimated mean coherences for the Kharkiv built-up area
show a moderate correlation independent from the time window. This allows for initial
conclusions regarding the extensive structural changes occurring in Mariupol, in addition
to the potential effects caused by seasonal changes or increased temporal baseline.
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Table 2. Coherence estimates and statistical parameters extracted for the built-up areas in Mariupol
and Kharkiv.

Coherence Reference Secondary Time-Lag [d] Mean Std 1st Qu 3rd Qu

Mariupol

Coh1 4 February 2022 16 February 2022 12 0.700 0.144 0.622 0.806

Coh2 16 February 2022 12 March 2022 24 0.612 0.152 0.518 0.721

Coh3 12 March 2022 5 April 2022 24 0.499 0.190 0.352 0.647

Coh4 5 April 2022 23 May 2022 48 0.505 0.189 0.365 0.650

Cohtot 16 February 2022 23 May 2022 96 0.387 0.175 0.244 0.513

Kharkiv

Coh1 9 February 2022 21 February 2022 12 0.514 0.171 0.391 0.633

Coh2 21 February 2022 17 March 2022 24 0.466 0.164 0.345 0.578

Coh3 17 March 2022 10 April 2022 24 0.461 0.166 0.338 0.576

Coh4 10 April 2022 28 May 2022 48 0.575 0.181 0.450 0.708

Cohtot 21 February 2022 28 May 2022 96 0.473 0.180 0.337 0.600
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2.3. Open GIS Data

To focus the analysis on the built-up area and individual cultural property features as
critical elements of monitoring and damage assessment, we used OSM, an online and crowd-
sourced database of geographic information, to derive building footprints and cultural property
locations within the study areas. A free repository was downloaded from [45], which contained
OSM data as of 28 December 2022. The subnational administrative boundaries of Mariupol
and Kharkiv were obtained from the Humanitarian Data Exchange (HDX) platform, with
contribution by the OCHA Field Information Services Section [46]. The extracted OSM building
outlines indicated at least 56,785 structures in Mariupol city and at least 86,871 structures in
Kharkiv. We performed, on a test basis, a visual examination which, in line with the studies of
other authors such as ([7,24]), revealed some gaps in the OSM layer compared to the building
stock visible in Google satellite imagery.

We conducted a damage assessment in line with the definition of cultural property
given in Article 1 of the 1954 Hague Convention [1]. Among others, this includes immovable
property, such as religious sites, monuments of historical, architectural, or artistic interest,
and memorials. Table 3 presents the counts of cultural assets located within the city areas of
Mariupol and Kharkiv, respectively. The locations of cultural assets were derived from the
GIS-ready OSM layers representing building outlines, places of worship, and points of interest
(POI), both mapped as point locations. The datasets were filtered according to the feature
types listed in Table 3. The filtered point features intersected with the building outlines to
separate cultural assets from the rest of the building structures. Cultural property like artwork,
monuments, and memorials were not necessarily included in the building outlines dataset
and were used in the analysis as point information. The identified cultural heritage sites were
assigned to three groups, namely religious sites, cultural sites, and educational sites. Although
educational sites, such as schools, colleges, and universities, are not explicitly mentioned in
the 1954 Hague Convention definition of cultural property, we included them as important
places of heritage education, as well as, buildings of potential historical interest.

Table 3. Cultural property sites were identified based on the OSM dataset.

Group Nr. Mariupol Nr. Kharkiv

Religious Sites
47 103(Type: Cathedral, Church, Temple)

Cultural Sites
135 392(Type: Archaeological, Arts Center, Library, Museum,

Theatre, Memorial, Monument, Artwork)

Educational Sites
124 336(Type: College, School, University)

Total 306 831

Based on the used OSM data, a total of 306 cultural property locations were identified
in Mariupol city and 831 cultural assets in the Kharkiv area. Since we did not perform
an in-depth quality check of the OSM data, the resulting dataset of heritage sites may be
considered incomplete or not entirely accurate.

3. Damage Detection Methodology

Figure 3 shows an overall workflow to perform a damage assessment based on CCD
combined with coherence difference calculation and damage probability estimation. First,
we created a time series of coherence maps that allowed for the analysis of the coherent
changes that occurred between several images acquired at the beginning of the armed
conflict. We then calculated the amount of coherence loss by stepwise subtracting two co-
herence maps representing successive time intervals. In the next step, we analyzed the
changes in the built-up areas by combining the different images with the OSM building
footprints and the cultural property locations. We show the relationship between loss of
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coherence and the occurrence of damage by performing a logistic regression and using the
results of the model to highlight the affected areas over time and estimate the total damage.
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3.1. SAR Coherence Estimation

Coherence is a measure of pixel-wise correlation and shows whether there is a strong
similarity between two time-lapsed SAR images serving as a reference and a secondary
image of the same geographic area [42]. It is expressed as the complex correlation coefficient
according to Equation (1) [13]:

γ =
E
〈
c1c*

2
〉√

E
〈
c1c*

1
〉
E
〈
c2c*

2
〉 (1)

where c1 and c2 are the corresponding complex pixel values of the reference and secondary
images, the notation * refers to the complex conjugate of c, and E indicates the expectation
value estimated from the data with a certain window size. The size of the averaging
window to calculate coherency affects the sensitivity of the results [13]. The coherence γ
ranges on a normalized scale, with values from 0 (completely uncorrelated) to 1 (completely
coherent). Areas of high stability such as built-up areas usually show a strong correlation
with a similar reflection of the radar signal through time (hence, the coherency is equal
to 1). A weak correlation is typical for vegetated areas undergoing seasonal changes, which
show poor coherence, i.e., considerable decorrelation, even on a short timescale.

Potential loss in coherence can be associated with three major factors [13,14,47]:

γ = γthermal ∗ γspatial ∗ γtemporal (2)

with thermal decorrelation γthermal caused by random noise added to the radar measure-
ment. However, the effect is neglectable when radar signals are acquired by the same
antenna [14]. Coherence loss due to spatial separation caused by deviating positions of



ISPRS Int. J. Geo-Inf. 2024, 13, 319 9 of 27

the SAR sensor during image acquisition γspatial can be (partially) eliminated by choos-
ing scenes from the same relative orbit. Temporal decorrelation γtemporal reflects surface
changes related to natural processes between two SAR image-acquisition dates that cannot
be avoided. In this context, coherence loss may be caused by seasonal effects, such as frost
periods or snow cover, but also vegetation changes.

Under the temporal aspect, decorrelation is also caused by the time lag between
two image acquisitions [48]. Usually, increasing temporal separation will lead to a decrease
in coherence. With our coherence maps spanning at least 24 days between the co-conflict
acquisitions, decorrelation will be related to additional effects, in addition to building
damages such as agriculture or vegetation growth in urban green areas. We seek to
improve our results by focusing further analysis on the building outlines derived from
OSM. This way, surface changes caused by natural processes affecting afforested areas,
agriculture, and green spaces unrelated to the urban structures shall be suppressed [13,24].

Figure 4 shows the pre-conflict coherence maps for Mariupol and Kharkiv city ar-
eas, which serve as a reference for the coherence variation prior to the armed conflict.
Sentinel-2A and Sentinel-2B optical images used to visualize the study areas’ structure
were downloaded through the Copernicus Open Access Hub [49]. For coherence, we chose
a color ramp with green to red colors showing a strong (green colors, ~0.75), moderate
(yellow colors ~0.5), and weak (red colors, ~0.25) correlation, i.e., the similarity between
two images [14]. Built-up areas of high stability (high-value coherence) are displayed in
green colors and are clearly distinguished from surrounding vegetated areas in red colors,
which changed significantly. However, comparing the results shows that the Kharkiv
built-up area has overall lower pre-conflict coherence values than Mariupol (Figure 4).
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3.2. Coherence Difference Calculation

In the present study, coherent change detection relies on the idea that the impact of
a military confrontation causes extensive damage to the building structure and results in
a temporal decorrelation of coherence for a specified location. Subsequently, the pixel-
wise comparison of the pre- and co-conflict coherence maps, expressed as the coherence
difference ∆γ, enables the detection of destruction areas. The coherence difference was
calculated in a classic way, as given in Equation (3):

∆γ = γ1 − γ2 (3)

where γ1 represents the coherence obtained from a pre-conflict image pair or a preceding
time interval (t1 and t2), and γ2 represents the coherence obtained from a co-conflict image
pair or subsequent time interval (t2 and t3). The coherence difference values cover a range
between −1 (i.e., coherence gain) to +1 (i.e., coherence loss).

Changes associated with structural damage caused by the armed conflict manifest in
positive difference values when the coherence of the second image pair is lower compared
to the coherence of the preceding image pair [16]. We applied this principle to the time
series of four respective coherence maps calculated from the collected pre- and co-conflict
Sentinel-1 imagery given in Table 2 and obtained three difference images per study area. An
additional difference image was calculated from the first. Hence, the pre-conflict coherence
Coh1 and the overall coherence Cohtot spanning the entire investigated timeframe from
February to May 2022 were applied for the parameterization of a logistic model used for
damage discrimination.

4. Logistic Regression Analysis

In the present study, a key assumption is that the presence or absence of building dam-
age is related to the amount of coherence loss. The choice of data analysis technique should
allow for finding the relationship between these two data factors. The aforementioned
logistic regression is a common method used to estimate class probabilities on a binary
range from zero to one. It is used to determine the likelihood of buildings being damaged
or undamaged, providing meaningful and interpretable analysis outputs.

Several authors, like [50,51], successfully used LRM to assess the damage vulnerability
of urban structures towards natural hazards. Ref. [52] predicted the level of heritage build-
ing decay depending on various building properties. The principle of logistic regression
is to model a binary target variable y ∈ {0, 1}, where y can only take the values of 0 or
1 as the two possible states (e.g., 0: “undamaged” and 1: “damaged”) [53]. A logistic
model is based on the logistic regression function. We are interested in the probability P
of an outcome being true y = 1 given a set of independent variables xi, expressed as in
Equations (4) and (5):

P(y = 1) =
1

1 + e−z (4)

z = β0 + β1 ∗ x1 + β2 ∗ x2 + . . . + βn ∗ xn + ε (5)

where P is the damage probability, z is the so-called logit, which represents a linear regres-
sion model with xn as the independent variables, βn as the regression beta coefficients, and
ε as the error value. A positive βn indicates that increasing the value of xn is associated
with an increasing probability of γ = 1. With logistic regression, an s-shaped function
curve is fit to the data, following a sigmoid function and running asymptotically towards
y = 0 and y = 1. The values of the logistic function are interpreted as the likelihood that a
building was damaged or destroyed.

4.1. Sample Data

Fitting an LRM requires training data and spatially independent test data to evaluate
model performance. Figure 5 shows the workflow for the logistic regression analysis. Figure 5
left shows the overlay of the OSM building outlines and the pixel-wise coherence difference
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∆Cohtot (16 February 2022 to 23 May 2022) to derive the mean coherence difference per
building as an independent variable of the LRM. The light-to-dark red color indicates an
increasing coherence difference and, thus, a loss of coherence. Figure 5 right shows the
locations of the manually tagged building samples. Points in red color represent buildings
categorized as damaged. Points in black color represent buildings categorized as undamaged.
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building samples. Points in red color: damaged (Y). Points in black color: undamaged (N).

We used an updated Google satellite image available for the Mariupol area to generate
our own set of damage reference data as input for model development. Since the mentioned
satellite images depict the extent of damage on 9 May 2022 according to Google Earth, we
used coherence difference ∆Cohtot calculated from Mariupol pre-conflict coherence Coh1
and co-conflict coherence map Cohtot for model training. We created a random sample
of 1000 buildings spread across the entire city area of Mariupol by overlaying the OSM
building outlines with the Google satellite imagery. After the visual inspection, we mapped
the damaged or undamaged state of the sampled buildings. The damage to the buildings
was determined on the basis of debris around the building; partial collapse of the roof,
indicated by dark spots on the rooftops; or complete collapse, i.e., the building structure
was no longer recognizable (Figure 6a–c). We categorized buildings as undamaged if
they appeared to be structurally intact, e.g., if the roof appeared intact and no debris was
visible (Figure 6d). However, the buildings may have suffered damage that could not be
recognized on vertical satellite imagery. The sample dataset contained 396 points classified
as damaged and 604 points classified as undamaged buildings. Slightly degraded optical
images due to light clouds or other limiting factors could have influenced the visual damage
assessment. As a result, the reference data may not be as accurate as the damage data
obtained from on-site inspection. To determine the reference damage data associated with
the estimated coherence loss, we performed zonal statistics in QGIS software version 3.10.8-
A Coruña to calculate the average coherence difference for each building footprint. For
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cultural assets that were only carried as point locations, the average coherence difference
was calculated with a 25 m buffer area, considering Sentinel-1 SLC pixel size.
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Figure 6. Image examples interpreted during the visual damage survey. (a–c) Building samples
classified as damaged; (d) Building sample classified as undamaged based on visual interpretation of
the satellite imagery provided by © 2024 Google. OSM data: Geofabrik GmbH.

4.2. Model Calibration

The statistical analysis was carried out in RStudio version 2022.02.3+492. We parti-
tioned the reference dataset, choosing a split ratio of 70:30, meaning we randomly sampled
70% of the dataset for training and 30% for testing purposes, respectively. Logistic regres-
sion is a specific form of the generalized linear model (GLM), which can accommodate for
a wide range of distributions, such as binomial, and is implemented in the R package Stats
as a glm() function [53–55] as follows:

glm(response ~ predictor,family = binomial(link = “logit”),data) (6)

where the response variable is the binary target variable (damaged = 1, undamaged = 0),
and the so-called predictor is the independent variable (mean coherence difference). In
the present case, we built the logistic model with a single predictor (explanatory variable).
Table 4 presents the model summary output, including the confidence levels for the esti-
mated model parameters. The positive sign of the predictor’s coefficient, as well as the
magnitude, implies a strong positive correlation, meaning that the likelihood of observing
damage significantly increases with an increase in coherence loss.
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Table 4. Logistic model summary and regression parameters.

Confidence Interval

Estimate SE z p 2.5% 97.5%

Intercept −3.389 0.267 −12.69 <2 × 10−16 −3.913 −2.866
∆Cohtot 8.747 0.741 11.80 <2 × 10−16 7.295 10.199

The model was applied to the test dataset to estimate the probability that a building is
damaged at a given difference in coherence and, hence, coherence loss. Figure 7 visualizes
the results as predictions across the range of coherence difference values derived from the
test dataset. The observations of undamaged or damaged buildings are shown along the
y = 0 and y = 1 lines. The grey lines identify the pointwise 95% confidence interval.
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4.3. Model Performance Evaluation

The predictive performance of the model was evaluated by the area under the receiver
operating characteristic curve (AUC) using the R package pROC [56]. We chose AUC
as a standard measure because it is independent of a previously selected classification
threshold and summarizes overall model performance over all possible thresholds [57].
AUC values range on a scale of 0 to 1, with a value of 0.8 or higher attributing a generally
good performance, whilst a value of 0.5 is considered a classifier worse than a random
estimate. A comparison of AUC for the training and test datasets showed the logistic model
achieved a value of 0.80 for the training dataset and slightly decreased for the test dataset,
to 0.78, which seems an overall acceptable discrimination of the data. We classified the
predicted values based on an optimal 0.49 cut point, which produced the highest AUC for
the test dataset.

We then produced a confusion matrix using R package caret [58], computing several
performance metrics. The overall classification accuracy achieved about 76%. Among
the buildings that appeared to have remained undamaged, 150 out of a total of 171 were
predicted correctly, which corresponds to a specificity of about 88%. This results in a
low false-positive rate of about 12%, representing the proportion of buildings incorrectly
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classified as damaged although they seemed intact. For the buildings where damage
was recorded, 77 out of a total of 129 were correctly classified, which corresponds to
about 60% correct predictions, i.e., sensitivity. It is worth mentioning that, in the context
of damage detection and monitoring of potential threats to buildings and, in particular,
cultural properties, we may be more concerned with improved sensitivity, hence, a higher
true positive rate, to miss out on less damage. Therefore, we suggest considering a lower
probability threshold, hence, accepting a higher rate of false alarms rather than overlooking
potentially damaged buildings and not taking any further action.

4.4. Evaluation Based on UNOSAT Data

We calculated the model output for all OSM building structures identified in Mari-
upol and Kharkiv and applied the binary threshold classification to distinguish between
undamaged and damaged locations. The predicted damage sites were plotted with UN-
OSAT reference data to assess the overall plausibility and compare the spatial distribution
patterns [21]. We identified a mismatch between the UNOSAT points and the building foot-
prints in all cases, which complicated the comparison of the results. We filtered UNOSAT
damage locations by excluding points outside the study areas and only points representing
“destroyed”, “severely damaged”, “moderately damaged”, and “possibly damaged” struc-
tures were used. Each reference dataset represents the combined damages derived from
repeated visual inspection carried out by UNOSAT between 14 March 2022 to 12 May 2022
in Mariupol and 24 April 2022 to 15 June 2022 in Kharkiv, respectively. Whereas UNOSAT
damage assessment for Kharkiv covered the entire city area (Figure 8), the analysis for
Mariupol was limited to two residential areas, Livoberezhnyi and Zhovtnevyi district,
including the city center (Figure 9). We, therefore, extracted the OSM building data and
model outputs based on the given district boundaries.

The OSM dataset indicates at least 86,871 structures in the Kharkiv area and 17,161 struc-
tures in the two selected city districts of Mariupol. Based on the building stock, UNOSAT
reported that less than 1%, or 748, of the buildings in Kharkiv were affected, whereas in
Mariupol about 32%, or 5647, of the structures sustained visible damage. This compares
with our predicted damage rate of about 0.7% (610 buildings) for Kharkiv and about 39%
(6974 buildings) for the two Mariupol districts over the same time period. For the entire
city area of Mariupol, we classified 17,742 structures as damaged out of a total of 56,785,
which represents about 31% of the built-up area.
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A visual inspection of the major discrepancies between the results in Mariupol revealed
our predictions to be consistent with the building destruction that is clearly visible in the
corresponding Google satellite imagery. These deviations are probably due to the time
intervals selected by UNOSAT to illustrate damage mapping, where parts of the data only
represent the results from an earlier analysis dated 14 March 2022. For the Kharkiv area,
our findings quite agree with UNOSAT about the overall extent of the damage, although
the results indicate an underestimation compared to the manually tagged damages. The
damage is predominantly identified in residential areas towards the northeastern outskirts
of the city. The settlement structure in this area is reflected by small buildings lined up along
roads and embedded in agricultural and afforested areas. This could influence the results
in terms of Sentinel-1 spatial resolution, which makes damage detection at the individual
building level more difficult and seems more aimed at delineating affected neighborhoods.
However, both analyses detected hotspots throughout the city center, particularly in the
vicinity of Freedom Square.
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5. Damage Mapping Results

The output of the LRM is an estimated probability for damage at a location ranging
on a continuous scale from zero to one, i.e., 0% to 100% probability. Instead of applying the
single threshold cut point of 0.49, splitting buildings into fixed categories of damaged and
undamaged, our method enables the full likelihood information that enables main users to
individually evaluate the damage risk and prioritize affected sites for further investigation.

5.1. Overall Building Damage and Impact on Cultural Property

In Mariupol, the siege led to widespread destruction in entire districts, such as the
city center, the Livoberezhnyi residential district, the Azovstal industrial site, the Southern
Prymorskyi residential district, and the Mariupol port area. Table 5 summarizes the estimated
damage probabilities for building structures and cultural heritage sites that were affected by
23 May 2022. The OSM dataset indicates at least 56,785 buildings. Considering a predicted
damage probability greater than 40%, about 22,667 buildings have most likely suffered
partial or full damage. This represents about 39.9% of the structures. Three hundred and
six locations were extracted from the OSM dataset, reflecting the given cultural property
definition, including buildings, as well as point features such as memorials, monuments, or
locations labeled as artwork. Based on the estimated damage probability, 125 of these sites
were afflicted with a veritable risk for structural damage or destruction between February and
May 2022. This represents about 40.8% of the identified heritage sites.

Table 5. Damage probabilities estimated for buildings and cultural property, Mariupol. Estimates are
based on the coherent change detection between 16 February 2022 and 23 May 2022.

Estimated Damage Probability

N per Group <20% 20–40% 40–60% 60–80% >80%

Buildings 18,110 16,008 10,116 7651 4900 N = 56,785

39.9% of total buildings

Heritage Sites 1 102 79 48 45 32 N = 306

40.8% of total heritage sites
1 Including sites of culture, religion, and education, as well as point locations such as memorials and monuments.

Figure 10 shows the extent of the building damage throughout the Mariupol city area,
highlighting areas with large-scale destruction. The estimated damage probabilities per
building are visualized as points based on the building centroids. The color variation
from light red to dark red indicates increasing coherence loss and, related to the building
structures, an increasing probability of damage. The overlying randomly numbered labels
represent the locations of cultural heritage sites in the city area with a damage probability
higher than 20%. The damage predictions were derived based on the pixel-wise coherence
difference calculated from pre-conflict coherence Coh1 and co-conflict coherence Cohtot,
which is displayed as background color. The pixel-based coherence change shows large
areas of coherence decrease outside the built-up area, which is related to, for example,
vegetation change. We therefore included the OSM data to alleviate such effects.

Compared to the large-scale damage in Mariupol, the city of Kharkiv appears to have
been less affected in the first months of the armed conflict, as shown by the results of CCD
and damage probability estimation. Table 6 presents the estimated damage probabilities
for building structures and cultural heritage sites. The OSM dataset indicates at least
86,871 structures for the Kharkiv study area. Here, about 1243 buildings are associated with
a considerable likelihood of damage > 40%. This represents about 1.4% of the structures. A
total of 831 cultural, religious, and educational sites were extracted from the OSM dataset.
A small portion of eight heritage sites, which correspond to less than 1% of the cultural
assets in the city area, were predicted to have a damage probability of >40%.
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Table 6. Damage probabilities estimated for buildings and cultural property, Kharkiv. Estimates are
based on the coherent change detection between 21 February 2022 and 28 May 2022.

Estimated Damage Probability

N per Group <20% 20–40% 40–60% 60–80% >80%

Buildings 79,949 5679 973 217 53 N = 86,871

1.4% of total buildings

Heritage Sites 1 795 28 6 - 2 N = 831

0.7% of total heritage sites
1 Including sites of culture, religion, and education as well, as point locations such as memorials and monuments.



ISPRS Int. J. Geo-Inf. 2024, 13, 319 18 of 27

Figure 11 shows the corresponding damage map. In Kharkiv, the damage is seen to be
predominantly detected in residential areas towards the northeastern outskirts of the city, as
well as several hotspots throughout the city center, such as in the vicinity of Freedom Square.
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5.2. Changes along Time Series and Selected Heritage Sites

The Ukrainian war involves a large number and variety of destructive incidents, affecting
different areas at different times. We demonstrate the potential of the time-series analysis of
SAR coherent changes to reveal spatio-temporal dynamics during an ongoing armed conflict.
For this, we analyzed the characteristics of Sentinel-1 coherence change over time and ran the
logistic model with each coherence difference obtained by subtracting the subsequent pairs of
coherence maps. The time-series analysis shall identify the locations of damages and allow for
conclusions regarding the time period when the damages occurred. We confirmed the results
by comparing detected changes aligned with increased coherence loss and, hence, damage
probability from both study areas, with historical images provided through Google Earth Pro
version 7.3.6, where they were available. We considered damaged cultural property verified
by UNESCO with a status of publication from 8 June 2022 [4]. Based on the description given
by UNESCO, we assigned the listed assets to the respective study area. However, not all sites
could be identified in the OSM dataset, since they were missing specific information, which is
why we used only selected sites for exemplary evaluation.
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Figure 12 shows the analysis of coherence loss and damage probability for different time
intervals and urban neighborhoods in Mariupol, revealing the spatial and temporal patterns
of damage within the city area. Significant changes happened between 16 February 2022
and 12 March 2022, when a distinct decrease in coherence was observed for the Azov State
Technical University (Figure 12a), including multiple educational buildings as well as the
Christian Chapel of the Holy Martyr Tetiana [No. 160]. Pre-conflict Google Earth images
recorded on 12 June 2021 show the intact complex, whereas most of the buildings were either
partly damaged or fully destroyed by 9 May 2022. Significant coherence loss and high damage
probability were detected in the same time span for the Orthodox Cathedral of St. Michael
the Archangel [No. 83] located in Eastern Mariupol (Figure 12b). This is consistent with a
corresponding satellite image taken on 13 March 2022, showing heavy damage to the church
and its surrounding area. Next to the church stands a Monument to Metropolitan Ignatius of
Mariupol [No. 286]. Although the monument is listed as damaged by UNESCO and Google
satellite imagery reveals a large amount of debris, only minor coherence loss, and hence,
damage probability, was estimated. The surrounding vegetation and the relatively small size
of the object in combination with Sentinel-1 spatial resolution could be influencing factors,
leading to misdetection [24,59]. Figure 12c shows parts of the old town, where there are
numerous historical buildings and cultural assets such as the Museum of Folk Life [No. 147],
the Kuindzhi Art Museum [No. 146], and the Mariupol Drama Theater [No. 179] (upper left
corner), which was reportedly bombed on 16 March 2022. A significant change in coherence
indicates that the entire area was strongly affected between 12 March 2022 and 5 April 2022.
Google Earth images dated 14 March 2022 and 26 March 2022 confirm severe damage or
destruction to most of the buildings in the area within the investigated time interval.

Figure 13 shows samples of the time-series-based damage assessment in the Kharkiv
urban area. Areas with significant coherence loss, hence, a high probability of damage occur-
rence, were mainly detected between 21 February 2022 and 17 March 2022. As demonstrated
in Figure 13a, our results indicate damage to important cultural sites in the city center, such
as the Former Palace of Labour and Former Lux Store, representing a building ensemble
of Constitution Square. Google Earth images depicting the situation prior to and after the
respective analysis period confirm heavy damage to the building’s façade and roof. The
results also show evidence of damage to the Nikolskyi Shopping Mall located in the upper-
right part of the image detail, which Internet media reported as damaged on 10 March 2022
after air strikes [60]. Although reported by UNESCO, our results showed that no significant
changes were detectable to the Assumption Cathedral [No. 264] and the State Puppet Theater
[No. 387], which show generally low coherence difference values and damage probability.
Such misdetection could be explained by the moderate spatial resolution of Sentinel-1 data
combined with limitations to capturing more subtle damage to the buildings’ features [21,24].
This assumption is supported by available Google Earth imagery which did not allow for
clear visual identification of severe structural damage. In Figure 13b, the results show high
coherence loss near the central Freedom Square, indicating damage to the Economics Faculty
of Karazin National University [No. 397] and the National State Academic Opera [No. 92]
between 21 February 2022 and 17 March 2022. Damage to the Temple of Myrrh-Bearing
Women [No. 452] was verified by UNESCO but could not be confirmed either by coherence
difference analysis or visual inspection. Within the same period, a clear decline in coherence
was detected at Kharkiv Air Force University (Figure 13c). The corresponding Google Earth
image showed that several buildings on campus were destroyed, although the historic military
aircraft, which are recorded as memorial point features in the OSM dataset, seemed unscathed.
However, since optical images of sufficiently good quality were only available from 5 May
2022, the timing of the identified damages can only be confirmed to a limited extent. While
coherence difference analysis proved to be suitable for detecting hotspots of coherence loss
and high damage probability in the built-up area, the exemplary results show inaccuracies
when it comes to individual building damage detection. Furthermore, by comparing with the
optical images, the extent of coherence loss only seems to allow for limited conclusions to be
drawn about the severity of the damage, as postulated by the literature [16].
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6. Discussion

Our study investigated the applicability of Sentinel-1 SAR multi-temporal CCD for
damage assessment in the cities of Kharkiv and Mariupol as targets of the Russian military
offensive in Ukraine. SAR images are weather-independent, which makes them highly
suitable to complement optical observation for continuous monitoring and damage assess-
ment of urban neighborhoods and embedded cultural assets. Such approaches are often
based on very high-resolution SAR sensors that provide on-demand imagery and fine-scale
mapping [17,20]. However, they are costly and might cover a small area. Therefore, freely
available Sentinel-1 data can compensate due to the high temporal and spatial coverage.
Since we aimed to identify hotspots of coherent changes, indicating potential impact and
correspondingly increased damage risk on cultural assets, Sentinel-1 spatial resolution
seems adequate at the required level of detail of preliminary damage maps.

We exploited the difference between two subsequent coherence image pairs as the
parameter for discriminating between damaged and undamaged areas. Refs. [15,61,62]
proposed normalized coherence difference, as calculated by Equation (6), as an improved
indicator for coherent changes showing higher sensitivity in the discrimination of building
damage in disasters:

∆γ =
γ1 − γ2

γ1 + γ2
(7)

The performance of both parameters was examined based on statistical metrics of the
predictive outcome of the logistic model, including cross-tabulation between predicted and
observed values, overall model accuracy, and ROC computation. However, the normalized
difference could not improve building damage discrimination regarding the statistic criteria.
We, therefore, found a traditional coherence difference calculation in the form of simple
image subtraction to be a sufficient and straightforward method.

We tackled the issue of classification, i.e., finding reasonable discrimination thresholds
by applying logistic regression as an approach for estimating building damage probability
in relation to coherence loss between two time periods. Since the independent input
variable was binary, this implies the back-transformation of the model output into a
binary form. A building is then either damaged or undamaged. Our intention is to use
the full information of the predicted probabilities providing preliminary damage maps
that visualize areas with a high likelihood for damage occurrence. We suggest this is an
adequate way for users to individually interpret the probability output in a map based on
their specific application context. Further work is intended to establish multiple scenarios
of building damage probability utilizing the upper and lower confidence intervals of the
prediction. Presumably due to the general lack of sufficient reference data, particularly
in disaster areas, the applicability of logistic regression analysis for damage classification
and vulnerability mapping has been explored by only a few studies, such as [50–52,63].
Our statistical analysis showed a strong correlation between coherence loss and observed
building damage. Therefore, the individual coherence difference images could already be
used to quickly identify potentially affected areas and be considered as a basis for detailed
follow-up investigation.

The qualitative evaluation with the UNOSAT reference data showed a good agreement
in the distribution of building damage. For both study sites, Sentinel-1 SAR damage
detection identified structural damages that remained undetected in the reference dataset.
Here lies the advantage of a semi-automated approach that can detect areas of change more
effectively within a broader area in a timely manner. Whereas manual image interpretation
of events is subject to experts’ knowledge, and it is time-consuming. However, the results
of the semi-automated approach using freely available data can support visual inspection,
especially when time is an issue. In addition, the spatial coverage of Sentinel-1 makes
it possible to process an entire city area at once, meaning that the change analysis does
not have to be limited to smaller sections. However, for the Kharkiv area, the evaluation
revealed a potential weakness of Sentinel-1 in terms of spatial resolution compared to
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VHR visual analysis, which makes damage detection at the individual building level more
difficult and is more aimed at delineating affected neighborhoods.

It has already been pointed out in earlier studies that it is preferable to include addi-
tional GIS data such as building outlines to mask out coherence variation caused by other
effects [13,24,59]. The visual comparison of satellite data, including derived image products
and open GIS datasets, showed some limitations with regard to completeness, positioning,
and accuracy of fit, especially in the available OSM building footprint. Buffering of building
outlines to accommodate different observation conditions and data sources could improve
detecting trends of coherence loss on the building level, resulting in an improved model
parameterization and performance [19]. Due to the spatial resolution of Sentinel-1 data,
coherence estimation will still be affected by the backscattering intensity of other objects in
a target pixel, which increases the degree of uncertainty regarding the damage detection of
small buildings, buildings enclosed by dense vegetation [6,59], or single damaged objects
located within rather unaffected neighborhoods.

The time-series analysis enabled the detection of hotspots of coherent changes and
narrowed the time range within which the damages occurred. However, apparent con-
trasts were found between the severe condition of individual buildings observed in the
VHR optical images and the estimated amount of coherence loss and damage probability,
where no or only moderate changes seemed to have occurred. The selected locations in
Kharkiv presented in Figure 13 are good examples to demonstrate the difficulties of damage
assessment on the single building level. While the inspection of pixel-based coherence
difference indicated even the partial damage of larger buildings, the aggregation at the
building level (average coherence loss per building outline) might have resulted in less
significant coherence difference and, hence, a lower estimated damage probability.

The aim of the developed logistic model is the spatial and temporal transferability of
its application to provide accurate predictions in another target area. A model’s capacity
for prediction can decline when transferred to another region or time period other than that
upon which it is trained. One reason lies within the observed variation of coherence and its
contribution to the predictive relation for damage probability estimation on the different
sites. Coherence characteristics vary between the training data, that is, the coherence
difference data used for model calibration and the data used for model prediction.

We obtained pre-conflict coherence based on two Sentinel-1 SAR scenes acquired as
closely as possible before the start of the armed conflict as a representation of the normal
coherence distribution without any damage-causing event. By comparing the results
obtained from the pre-conflict image pairs for both the Mariupol and Kharkiv built-up
areas, it is apparent that Kharkiv is showing lower coherence values than Mariupol (Table 2,
Figure 4). This is despite the fact that both image pairs have been obtained over the same
12-day temporal interval and similar acquisition dates. The selection of images with a
minimum time lag should result in low temporal decorrelation and produce consistent
coherence maps [64]. However, different regions are subject to different rates of change in
surface properties that influence coherence variability and the definition of thresholds for
differentiation between natural and damage-related coherence loss [48].

Where decorrelation of the pre-conflict coherence map (reference) caused by the
background environment, such as meteorological influences (snow coverage) or urban
green spaces, becomes dominant, it decreases the expected stability in coherence over the
built-up area prior to changes related to the armed conflict. Damage is assessed by detecting
changes, i.e., estimating the difference between corresponding coherence maps. Overall
low coherence in the reference image results in less significant coherence loss between
the pre-conflict and co-conflict coherence maps in areas affected by changes related to the
armed conflict. In consequence, lower coherence difference values may result in a lower
estimated damage probability, leading to an increase in the false-negative rate.

Thus, a procedure is required to correct the input data for model calibration to improve
the predictive performance of our model and to ensure transferability to another target
area and different timeframes.
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Possible approaches are shown by studies that explored a series of pre-event coher-
ences calculated at regular intervals for the preceding year [14,23,65]. The intention is to
identify trends in pre-event coherence for an individual area by calculating the sequential
mean and standard deviation per pixel to be used as a baseline. The statistical values are
then considered as a threshold to distinguish significant disaster-induced coherence loss.
Ref. [48] trained a deep-learning algorithm based on observed pre-event coherence behavior
to forecast normal coherence distribution expected without damage events. However, the
workflows were developed for comparison with a single post-event SAR image. Further
investigation is needed on whether and how to apply the methodology on a time series of
coherences calculated for adjacent image pairs.

Mariupol shows a substantial loss of coherence over the whole investigated time period
(Cohtot, Table 2). The extent of coherence decrease could be attributed to the temporal
baseline of 96 days between the pre- and co-conflict image acquisitions [64]. In addition,
the pre- and co-conflict coherence maps used for calculating coherence loss as input for the
model calibration compare winter and early summer images from February and May 2022,
representing a relatively wide temperature and precipitation range. Thus, the coherence
images could be affected by natural changes in surface properties or seasonal effects in
terms of the overall average value that might increase false alarms. Further investigations
include a coherence difference analysis based on coherence maps calculated from image
acquisitions of the corresponding pre-year period as a reference to derive a baseline for
coherent change caused by seasons, not disastrous events. However, this effect would also
have to be observed in the Kharkiv study region, which shows a higher similarity in terms
of average coherence in the built-up area. From this, it can be concluded that the detected
changes, i.e., coherence loss in Mariupol, can be related to the armed conflict and are an
indication of the widespread extent of the damage.

7. Conclusions

SAR Sentinel-1 coherent-based change detection highlighted areas of major destruction
over time. We provided building damage estimates based on a coherence difference analysis
of subsequent pre- and co-event coherence maps and logistic regression. Coherence loss
proved to be sufficient as a proxy measure for building damages related to armed conflict,
with the drop level indicating the level of damage probability. Given the probability output,
users can determine to which degree damage is likely to occur and prioritize further
investigations based on individual requirements.

The damage probability maps should be used as guidance, giving a first, timely initial
evaluation of potentially damaged areas. The free availability, regular acquisition dates, and
weather independence of Sentinel-1 SAR imagery serve for the production of a stringent
time series of preliminary damage maps and the detection of major changes with sufficient
spatial and temporal accuracy. A semi-automated workflow to extract areas of change, as
applied in this study, takes considerably less time and can support further detailed visual
inspections using VHR data.

Our analysis complements visual damage verification and supports repeated mon-
itoring that extends over larger areas and allows users to focus on detailed follow-up
surveys. However, the analysis is less reliable over vegetated or agricultural areas, leading
to false positives. Since we expected the detected changes to be related to the destruction of
buildings caused by armed conflict, the results should only be interpreted for the built-up
areas. We included additional GIS data to increase accuracy, with a focus on the building
stock and heritage sites, along with enhanced usability of the damage assessment at a
user-relevant information level.

The presented CCD methodology is sensitive to changes induced by armed conflict
and applicable in areas with large-scale destruction. However, small-scale change or
moderate structural damage may not be detected due to Sentinel-1’s spatial resolution.
Modeling techniques and training data determine the transferability of the developed LRM
and could be improved by integrating additional reference data from different areas and
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timeframes for training and prediction. However, the sampling procedure was limited by
the availability of additional VHR optical satellite imagery for damage assessment.
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43. Lazecký, M.; Hlaváčová, I.; Martinovič, J.; Ruiz-Armenteros, A.M. Accuracy of Sentinel-1 Interferometry Monitoring System
based on Topography-free Phase Images. Procedia Comput. Sci. 2018, 138, 310–317. [CrossRef]

https://doi.org/10.5270/Fringe2015.pp149
https://doi.org/10.5194/isprs-archives-XLII-3-39-2018
https://doi.org/10.20965/jdr.2019.p0456
https://doi.org/10.3390/rs11111326
https://doi.org/10.1553/giscience2018_01_s228
https://doi.org/10.3390/ijgi10030140
https://doi.org/10.1016/j.isprsjprs.2021.01.001
https://doi.org/10.3390/rs14246239
https://doi.org/10.1016/j.rsase.2021.100505
https://doi.org/10.3390/rs13061195
https://medium.com/geekculture/2021-gaza-damage-assessment-using-earth-observation-data-8e6c9c66b808
https://medium.com/geekculture/2021-gaza-damage-assessment-using-earth-observation-data-8e6c9c66b808
https://doi.org/10.1007/s12665-022-10513-7
https://doi.org/10.1007/978-1-59745-530-5_14
https://doi.org/10.3390/rs10071026
https://www.theguardian.com/world/2023/apr/28/mariupol-before-and-after-updated-google-maps-reveal-destruction-in-ukraine-city
https://www.theguardian.com/world/2023/apr/28/mariupol-before-and-after-updated-google-maps-reveal-destruction-in-ukraine-city
https://bbc.com/news/world-europe-60567162
https://www.ohchr.org/en/statements/2022/06/high-commissioner-updates-human-rights-council-mariupol-ukraine
https://www.ohchr.org/en/statements/2022/06/high-commissioner-updates-human-rights-council-mariupol-ukraine
https://www.theguardian.com/world/2022/apr/29/russia-carries-out-airstrike-on-kyiv-during-un-chief-visit-ukraine-antonio-guterres
https://www.theguardian.com/world/2022/apr/29/russia-carries-out-airstrike-on-kyiv-during-un-chief-visit-ukraine-antonio-guterres
https://unosat.org/products/3300
https://unosat.org/products/3300
https://unosat.org/products/3455
https://search.asf.alaska.edu/
https://doi.org/10.1109/TGRS.2015.2497902
https://eo4society.esa.int/wp-content/uploads/2022/01/HAZA08_Lebanon-Damage-Assessment.pdf
https://eo4society.esa.int/wp-content/uploads/2022/01/HAZA08_Lebanon-Damage-Assessment.pdf
https://doi.org/10.5194/isprs-archives-XLII-5-735-2018
https://step.esa.int/docs/tutorials/S1TBX%20TOPSAR%20Interferometry%20with%20Sentinel-1%20Tutorial_v2.pdf
https://step.esa.int/docs/tutorials/S1TBX%20TOPSAR%20Interferometry%20with%20Sentinel-1%20Tutorial_v2.pdf
https://doi.org/10.1016/j.procs.2018.10.044


ISPRS Int. J. Geo-Inf. 2024, 13, 319 27 of 27

44. ESA. Scientific Toolbox Exploitation Platform. Available online: http://step.esa.int/ (accessed on 2 June 2024).
45. Geofabrik GmbH. Ukraine (with Crimea). Available online: https://download.geofabrik.de/europe/ukraine.html (accessed on 2

June 2024).
46. OCHA. Humanitarian Data Exchange: Ukraine—Subnational Administrative Boundaries. Available online: https://data.

humdata.org/dataset/cod-ab-ukr? (accessed on 2 June 2024).
47. Scheuchl, B.; Ullmann, T.; Koudogbo, F. Change Detection Using High Resolution Terrasar-X Data: Preliminary Results. Int. Arch.

Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, 1–47.
48. Stephenson, O.L.; Kohne, T.; Zhan, E.; Cahill, B.E.; Yun, S.-H.; Ross, Z.E.; Simons, M. Deep Learning-Based Damage Mapping

With InSAR Coherence Time Series. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5207917. [CrossRef]
49. ESA. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 8 January 2024).
50. Saputra, A.; Rahardianto, T.; Revindo, M.D.; Delikostidis, I.; Hadmoko, D.S.; Sartohadi, J.; Gomez, C. Seismic vulnerability

assessment of residential buildings using logistic regression and geographic information system (GIS) in Pleret Sub District
(Yogyakarta, Indonesia). Geoenviron. Disasters 2017, 4, 11. [CrossRef]

51. Han, J.; Park, S.; Kim, S.; Son, S.; Lee, S.; Kim, J. Performance of Logistic Regression and Support Vector Machines for Seismic
Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea.
Sustainability 2019, 11, 7038. [CrossRef]

52. Chen, S.; Chen, J.; Yu, J.; Wang, T.; Xu, J. Prediction of Deterioration Level of Heritage Buildings Using a Logistic Regression
Model. Buildings 2023, 13, 1006. [CrossRef]

53. Dobson, A.; Barnett, A. An Introduction to Generalized Linear Models; Chapman and Hall/CRC: New York, NY, USA, 2008.
[CrossRef]

54. McCullagh, P.; Nelder, J.A. Generalized Linear Models; Monographs on Statistics and Applied Probability; Champman and Hall/CRC:
New York, NY, USA, 2001.

55. Hastie, T.J.; Pregibon, D. Generalized linear models. In Statistical Models in S; Routledge: London, UK, 2017; pp. 195–247.
56. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+

to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [CrossRef]
57. Melo, F. Area under the ROC Curve. In Encyclopedia of Systems Biology; Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H.,

Eds.; Springer: New York, NY, USA, 2013; pp. 38–39. [CrossRef]
58. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [CrossRef]
59. Putri, A.F.S.; Wirastuti, W.; Umarhadi, D.A. Sentinel-1 and Sentinel-2 data fusion to distinguish building damage level of the 2018

Lombok Earthquake. Remote Sens. Appl. Soc. Environ. 2022, 26, 100724. [CrossRef]
60. Liveuamap. Photos of Damage Nikolsky Mall in Kharkiv after Russian Army Shelling. Available online: https://liveuamap.

com/en/2022/10-march-photos-of-damage-nikolsky-mall-in-kharkiv-after (accessed on 9 March 2024).
61. Watanabe, M.; Thapa, R.B.; Ohsumi, T.; Fujiwara, H.; Yonezawa, C.; Tomii, N.; Suzuki, S. Detection of damaged urban areas using

interferometric SAR coherence change with PALSAR-2. Earth Planets Space 2016, 68, 131. [CrossRef]
62. Ge, P.; Gokon, H.; Meguro, K. A review on synthetic aperture radar-based building damage assessment in disasters. Remote Sens.

Environ. 2020, 240, 111693. [CrossRef]
63. Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote

sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [CrossRef]
64. Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [CrossRef]
65. Garzo, P.A.; Fernández-Montblanc, T. Land Use/Land Cover Optimized SAR Coherence Analysis for Rapid Coastal Disaster

Monitoring: The Impact of the Emma Storm in Southern Spain. Remote Sens. 2023, 15, 3233. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://step.esa.int/
https://download.geofabrik.de/europe/ukraine.html
https://data.humdata.org/dataset/cod-ab-ukr?
https://data.humdata.org/dataset/cod-ab-ukr?
https://doi.org/10.1109/TGRS.2021.3084209
https://scihub.copernicus.eu/
https://doi.org/10.1186/s40677-017-0075-z
https://doi.org/10.3390/su11247038
https://doi.org/10.3390/buildings13041006
https://doi.org/10.1201/9780367807849
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1007/978-1-4419-9863-7_209
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1016/j.rsase.2022.100724
https://liveuamap.com/en/2022/10-march-photos-of-damage-nikolsky-mall-in-kharkiv-after
https://liveuamap.com/en/2022/10-march-photos-of-damage-nikolsky-mall-in-kharkiv-after
https://doi.org/10.1186/s40623-016-0513-2
https://doi.org/10.1016/j.rse.2020.111693
https://doi.org/10.1080/01431160412331331012
https://doi.org/10.1109/36.175330
https://doi.org/10.3390/rs15133233

	Introduction 
	Materials and Methods 
	Study Sites 
	Sentinel-1 SAR Data 
	Open GIS Data 

	Damage Detection Methodology 
	SAR Coherence Estimation 
	Coherence Difference Calculation 

	Logistic Regression Analysis 
	Sample Data 
	Model Calibration 
	Model Performance Evaluation 
	Evaluation Based on UNOSAT Data 

	Damage Mapping Results 
	Overall Building Damage and Impact on Cultural Property 
	Changes along Time Series and Selected Heritage Sites 

	Discussion 
	Conclusions 
	References

