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Abstract: Urban waterlogging is one of the major “diseases” faced by cities, posing a great challenge 
to the healthy and sustainable development of cities. The traditional geographic knowledge graph 
struggles to capture dynamic changes in urban waterlogging over time. Therefore, the objective of 
this study is to analyze the time, events, properties, geographic objects, and activities associated 
with urban waterlogging emergency responses from the geographic spatial and temporal processes 
perspective and to construct an urban waterlogging emergency knowledge graph by combining top-
down and boĴom-up approaches. We propose a conceptual model of urban waterlogging emer-
gency response ontology based on spatiotemporal processes by analyzing the basic laws and influ-
encing factors of urban waterlogging occurrence and development. Secondly, we describe the con-
struction process of the urban waterlogging emergency response knowledge graph from knowledge 
extraction, knowledge fusion, and knowledge storage. Finally, the knowledge graph was visualized 
using 159 urban waterlogging events in China from 2020–2022, with a quality assessment indicating 
81% correctness, 65.5% completeness, and 95% data conciseness. The results show that this method 
can effectively express the spatiotemporal process of an urban waterlogging emergency response 
and can provide a reference for the spatiotemporal modeling of the knowledge graph. 

Keywords: urban waterlogging; emergency response; knowledge graph; spatiotemporal processes; 
ontology 
 

1. Introduction 
Urban waterlogging is a water hazard where surface runoff exceeds drainage capac-

ity during heavy precipitation [1], leading to economic losses, transportation issues, water 
pollution, and social and environmental problems [2]. It is a significant challenge for 
healthy and sustainable urban development in cities. 

Research on urban waterlogging has expanded with advancements in science and 
technology. Various spatial and temporal data sources, including geographic, statistical, 
and social media data, offer valuable resources for disaster emergency management [3]. 
However, the development of data application technology has been slow, and only a small 
portion of these data have been applied, resulting in a low proportion of data transformed 
into knowledge [4]. 

In order to beĴer analyze geographic spatiotemporal data, obtain key knowledge 
from the data, analyze the relationships between geographic entities, and identify hidden 
geographic relationships, relevant researchers have proposed geographic knowledge 

Citation: Mao, W.; Shen, J.; Su, Q.; 

Liu, S.; Pirasteh, S.; Ishii, K. A 

Method for Constructing an Urban  

Waterlogging Emergency 

Knowledge Graph Based on  

Spatiotemporal Processes. ISPRS Int. 

J. Geo-Inf. 2024, 13, 349. 

hĴps://doi.org/10.3390/ijgi13100349 

Academic Editors: Sisi Zlatanova 

and Wolfgang Kainz 

Received: 27 August 2024 

Revised: 30 September 2024 

Accepted: 2 October 2024 

Published: 3 October 2024 

 

Copyright: © 2024 by the authors. 

Published by MDPI on behalf of the 

International Society for 

Photogrammetry and Remote 

Sensing. Licensee MDPI, Basel, 

Swiĵerland. This article is an open 

access article distributed under the 

terms and conditions of the Creative 

Commons AĴribution (CC BY) 

license 

(hĴps://creativecommons.org/license

s/by/4.0/). 



ISPRS Int. J. Geo-Inf. 2024, 13, 349 2 of 24 
 

 

graphs [5,6]. The geographic knowledge graph is a way to organize knowledge in the field 
of geography into a graph, which can structure and semantically express the information 
of geographic information, geographic entities, geographic relationships, and geographic 
phenomena to realize the intelligent processing and application of geographic knowledge 
[7,8]. However, traditional geographic knowledge graphs mainly describe static facts and 
struggle to represent changes [9]. Current research mainly focuses on the construction of 
geographic entities and relationships, but the representation of geographic spatiotem-
poral process knowledge is neglected, which greatly limits its application in disaster emer-
gency spatiotemporal processes. How to represent and analyze the spatiotemporal pro-
cess knowledge of urban waterlogging emergency is an urgent problem, which is the key 
to spatiotemporal data processing and its intelligent application. Meanwhile, what is dif-
ferent from the current research on geographic knowledge graph is that the field of urban 
waterlogging emergency response has its own characteristic conceptual system and spa-
tial knowledge rules, in addition to its general characteristics as a geospatial object. There-
fore, it is the focus of our research to consider the influencing factors and property char-
acteristics of an urban waterlogging emergency in the process of constructing the 
knowledge graph. 

This paper investigates the construction method of an urban waterlogging emer-
gency knowledge graph based on spatiotemporal processes. Beginning with existing 
knowledge pertaining to urban waterlogging and emergency management systems, we 
propose a conceptual model of urban waterlogging emergency ontology rooted in spatio-
temporal processes. This involves defining the conceptual hierarchy of the ontology and 
establishing aĴribute relationships, spatiotemporal relationships, and semantic relation-
ships among entities. We then explore the construction of a knowledge graph for urban 
waterlogging emergencies, encompassing key technologies such as knowledge extraction, 
fusion, and storage. Subsequently, we undertake a quality assessment of the urban water-
logging emergency knowledge graph to enable query and visualization, event association 
analysis, and event evolution analysis. These applications aim to bolster urban waterlog-
ging emergency response intelligence and provide essential support for effective decision-
making in such scenarios. 

The remaining parts of this paper include related works presented in Section 2. Sec-
tion 3 describes the methodology in detail, including the overall framework, the timeline-
based representation of the urban waterlogging emergency response process, the pro-
posed ontology conceptual model, and the construction method of the knowledge graph. 
Experiments and results are analyzed in Section 4. Section 5 presents the discussion. Fi-
nally, conclusions and future directions are presented in Section 6. 

2. Related Works 
2.1. Geographic Knowledge Graph and Construction Methods 
2.1.1. Geographic Knowledge Graph 

The geographic knowledge graph (GeoKG) can be understood as the application of 
knowledge graph technology in the field of geography; it is a multidimensional, cross-
domain data representation model covering geographic entities, aĴributes, and relation-
ships [5]. It centers on providing a comprehensive framework for geographic information 
through the combination of semantic networks and spatial relationships. The GeoKG in-
cludes not only the spatial location and geometry of entities, but also the temporal dimen-
sion, semantic information, and spatial and logical relationships between entities [9,10]. 
In recent years, geographic knowledge graphs were constructed around application tasks 
such as intelligent remote sensing image interpretation [11], epidemic disease monitoring 
and trend prediction [12,13], disaster emergency response and mitigation [14], urban flow 
analysis [15], and geographic data correlation and recommended reasoning [16,17]. For 
example, researchers constructed a knowledge graph of landslide disaster scenarios ori-
ented to the needs of multiple types of users, realizing the accurate definition and clear 
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description of multiple types of users and scenario objects as well as the efficient manage-
ment of complex semantic relationships [18]. Based on a knowledge graph, the water qual-
ity dataset of the Bogota River Basin has been characterized [19]. A knowledge graph of 
landslide disasters has also been constructed by analyzing the elemental characteristics 
and association relations of landslide disasters [20]. 

2.1.2. Construction Methods for Geographic Knowledge Graph 
The construction of the GeoKG involves multiple steps, aiming to combine the geo-

graphic information system (GIS) with knowledge graph technology in order to achieve 
the semantic, structured, and intelligent processing of geographic data. Currently, pro-
gress has been made in geographic entity extraction [21,22], relationship extraction [23], 
geographic knowledge fusion [24,25], and geographic knowledge representation and 
complementation [9,26]. For example, researchers have constructed a neural network 
place name recognition model for linguistic irregularities for location extraction from so-
cial media messages [27]. Ontology and rule-based approaches utilize geographic ontol-
ogy libraries and predefined semantic rules to construct knowledge graphs [28,29], and 
such a construction process not only improves the intelligence level of knowledge graphs 
but also promotes cross-domain information sharing. When exploring the application of 
machine learning methods in entity and relationship extraction, CRF and its variants are 
indispensable techniques. Meanwhile, CNN and RNN structures based on deep learning, 
such as BERT–BiLSTM–AĴention–CRF models [30], Transformer models [31], and 
DeBERTa models [32], have become classic and cuĴing-edge designs in this field. An en-
tity alignment method between knowledge graphs using aĴribute embedding has helped 
to align entities from different knowledge graphs, thus enabling the integration of multi-
ple knowledge graphs [33]. In addition, researchers have proposed a holistic approach to 
align geospatial data with multidimensional similarity measures in response to the need 
for effective similarity-matching methods for the semantic alignment of heterogeneous 
geospatial datasets from multiple sources [34]. Most current studies rely on predefined 
ontologies and rules, which may limit the flexibility and scalability of the resulting 
knowledge graphs, especially when dealing with dynamic geographic data. In contrast, 
advanced machine learning techniques, including deep learning models, are used to learn 
dynamically and extract semantic paĴerns from unstructured data, thereby improving the 
adaptability and accuracy of GeoKG. 

2.2. Representation of Geographic Spatiotemporal Process Knowledge 
The traditional geographical spatiotemporal process offers a diverse range of static 

data representations. To beĴer capture the evolving relationships of geographical entities 
and reflect spatiotemporal processes, researchers have introduced object-oriented spatio-
temporal data models [35], i.e., spatiotemporal models of events and geographical process 
models. In the era of big data, various spatiotemporal data models have emerged, includ-
ing dynamic object storage models [36], graph-based data models [37,38], and spatiotem-
poral data models in the cloud environment [39], all of which play pivotal roles across 
various industries. However, despite their abundance, the current landscape of spatiotem-
poral data models lacks a universal framework, making it challenging to address the com-
plexities of urban waterlogging scenarios adequately. 

Urban waterlogging emergency response necessitates not only the depiction of entity 
states and their transformation processes but also the intricate interrelationships between 
entities and events. Consequently, harnessing the power of knowledge graphs to extract 
the rich semantics embedded within spatiotemporal data becomes imperative. This ap-
proach enables the construction of a semantic operational data model that unifies the rep-
resentation of time, space, aĴributes, relationships, and change processes. Such a model 
effectively expresses the interconnectedness between entity objects, events, and their evo-
lutionary trajectories, thereby catering to the unique demands of urban waterlogging 
management. 
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2.3. Structured Representation of Urban Waterlogging Knowledge 
Structured representations of waterlogged elements, which provide the basis for in-

telligent computation, reasoning, and prediction, can be categorized into ontology-based 
representations and graph-structure-based representations [9]. 

Ontology-based representation: Gruber’s definition of ontology [40], which states 
that an ontology is “an explicit specification of a conceptualization,” serves as a funda-
mental cornerstone for understanding the organization and representation of domain 
knowledge. This definition has been widely adopted and applied in various fields, provid-
ing a framework for constructing, sharing, and reusing domain knowledge structures. 
Ontologies have been utilized in many urban waterlogging studies, such as hazard mon-
itoring [41], risk assessment [42], and disaster management [43]. Constructing a flood on-
tology demonstrates a conceptual framework of flooding, showing the relationship be-
tween the causes of flooding and the different actions taken to minimize its consequences 
[44]. The framework based on the ontology calculates the impact index of the factors af-
fecting flood hazards, thus identifying the factors that have the greatest impact on flood 
hazards [45]. 

Representation based on graph structure: Knowledge graphs are semantic networks 
that structurally represent concepts, property, and the relationships between them and 
are used to reveal complex connections and deep knowledge in the real world. Geographic 
entities have spatiotemporal characteristics, and knowledge graphs are gradually being 
used to model changes [9]. Disaster events have typical timeline characteristics, e.g., re-
searchers identified disaster timelines during storms and floods in the UK through TwiĴer 
contextual information [46]. A timeline disaster prevention plan has been constructed for 
underground flood protection measures through field investigations [47]. The “My Time-
line” planning program has been developed to equip residents with the information 
needed for urban flood evacuation for crisis management [48]. 

In conclusion, more and more researchers have participated in academic and applied 
technology research on urban inland inundation emergencies and have achieved signifi-
cant research results. However, the current research still has the following problems: (1) 
Most of the current research on geographic ontologies and knowledge graphs starts from 
the overall characteristics of geographic elements, while less consideration is given to the 
spatial characteristics specific to different domains. However, the urban waterlogging dis-
aster emergency response field has its characteristic conceptual system and spatial 
knowledge rules, in addition to its generic characteristics as a geospatial object. Therefore, 
to construct a knowledge graph with the characteristics of urban waterlogging disaster 
and emergency response domain, it is necessary to combine the knowledge of the influ-
encing factors and aĴribute characteristics of urban waterlogging and emergency re-
sponse. (2) The current research on geographic knowledge graphs and the construction of 
knowledge graphs in the disaster domain mainly focuses on the geographic entities or 
events. It describes the aĴributes and relationships between the geographic entities or 
events, and the knowledge service is limited to the static facts, with less aĴention paid to 
the representation of the spatiotemporal process knowledge. How to represent and ana-
lyze the spatiotemporal process knowledge of urban waterlogging emergency is an urgent 
problem, which is the key to spatiotemporal data processing and its intelligent applica-
tion. 

3. Methodology 
3.1. Overall Framework 

The construction methods of the knowledge graphs are mainly divided into top-
down construction and boĴom-up construction [49]. In this paper, we use the combination 
of top-down and boĴom-up construction to construct a knowledge graph of urban water-
logging emergency response, as shown in Figure 1. First, top-down construction con-
structs the ontology of the knowledge graph and describes the concepts, aĴributes, and 
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relationships of urban waterlogging emergency response domain in a unified way. Then, 
the data of the urban waterlogging emergency response domain are extracted from the 
boĴom up, and the mapping from the data layer to the schema layer is realized through 
knowledge extraction, knowledge fusion, and designing an appropriate knowledge stor-
age schema. 

 
Figure 1. The overall process of constructing the urban waterlogging emergency knowledge 
graph. 

3.2. Timeline-Based Representation of Urban Waterlogging Emergency Response Process 
Extreme events such as urban waterlogging are inherently dynamic; i.e., they evolve 

over time, as shown in Figure 2. Therefore, spatiotemporal analysis of such catastrophic 
events is very important. Disaster events such as waterlogging are dynamic and evolve 
during the duration of flooding, and various factors such as topography, urban drainage 
systems, and rainfall intensity during the period of waterlogging can have an impact on 
this dynamically evolving behavior. 

The timeline-based representation of the urban waterlogging emergency process is 
an effective method by of helping urban emergency management, rescue agencies, and 
other related departments develop waterlogging emergency plans and response strategies 
to deal with waterlogging events. The timeline-based urban waterlogging emergency pro-
cess representation method mainly includes the following steps: 

(1) Identify key events and stages in the internal flooding emergency response pro-
cess, such as warning, response, rescue, and recovery. These phases are the activities and 
tasks that must be performed during the emergency response process. 

(2) Create a timeline and place the key events and phases of the inland flooding emer-
gency response process on the timeline. The timeline can help to clarify the sequence of 
the phases in the inland flooding emergency response process and to analyze and evaluate 
the time constraints and limitations in the inland flooding emergency response process. 

(3) Detailed descriptions and analyses of each critical event and phase, including the 
start time and end time of the event, the event characteristics, the scope of the impacts, 
and the emergency response activities and tasks. 

(4) Conduct relationship analysis between key events and phases in the internal 
flooding emergency response process, especially analyzing and evaluating the causal and 
interactive relationships between events. 

It is important to establish a disaster preparedness action plan with a timeline for 
disaster events such as urban waterlogging. By planning, organizing, and allocating re-
sources and action plans in advance and by developing timelines through the cooperation 
of all parties, timely emergency responses can be made when flooding events occur. The 
timeline-based representation of the emergency response process for urban waterlogging 
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helps to analyze the evolutionary trajectory and dynamics of waterlogging disaster events 
for the beĴer planning and implementation of disaster prevention action plans. 

 
Figure 2. Schematic diagram of urban waterlogging disaster chain process. 

3.3. An Ontology Construction Method Based on Spatiotemporal Process 
3.3.1. Proposed Conceptual Model 

According to the characteristics of the elements in the spatiotemporal process of ur-
ban waterlogging emergency response, an ontology conceptual model is constructed, 
which contains five core elements: time, event, property, geographic object, and emer-
gency response activity. Specifically, the model is capable of dynamically capturing and 
storing spatiotemporal changes and supports the querying of the relationships between 
entities at any time node or time period. Compared with traditional static knowledge 
graph ontology models, the model is able to flexibly retrieve and analyze the evolution of 
a flood event, including but not limited to the beginning, development, and decline of the 
event, thus providing a powerful tool for users to gain insights into the spatiotemporal 
dynamics of a flood event. 

(1) Time, including time point and timeline: The waterlogging event’s occurrence, 
development, and recession have the property of time. There is a temporal relationship 
between 𝑡 and 𝑡ାଵ, which is expressed in terms of 𝑟௧ . 

(2) Event: Urban waterlogging is a dynamic process of occurrence and evolution, in-
cluding the induction, occurrence, development, and end of a disaster and a series of sec-
ondary disaster events. 

(3) Property: Property is used to describe urban waterlogging disaster events, geo-
graphic objects, and emergency response activities, which is a further refinement of the 
logical architecture of the ontology. In urban waterlogging emergency response ontology, 
spatiotemporal properties are a typical characteristic, and they also include non-spatio-
temporal properties, such as the depth of waterlogging, the scope of the disaster, etc. 

(4) Geographic object: Urban waterlogging involves a series of geographic objects, 
including the disaster-inducing environment and disaster receptor. The disaster-inducing 
environment mainly refers to the elevation, climate, topography, water system, vegeta-
tion, soil, etc. The disaster receptor mainly refers to the sum of the people and property 
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that may suffer from meteorological threats. The spatial distribution and impact range of 
waterlogging can be determined by describing and modeling the geographic objects. 

(5) Emergency response activities: The changes with time during the spatiotemporal 
evolution of the waterlogging event correspond to different emergency response activi-
ties, which are denoted as 𝐸𝑟𝑎. 

Based on time, disaster event, and emergency action, the conceptual model of urban 
waterlogging emergency ontology can be represented as follows: 

Ontology = {< 𝐸𝑣௧ , 𝐸𝑟𝑎௧ , 𝑇௧ >}, (1)

where 𝐸𝑣௧ denotes a disaster event at a given time, 𝐸𝑟𝑎௧  denotes emergency response 
activity at that time, and 𝑇௧ denotes change over time. 

The conceptual model of urban waterlogging emergency ontology is shown in Figure 
3. According to the representation method of urban waterlogging emergency elements 
and relations, a cubic graph structure with time level is established to represent the evo-
lution of urban waterlogging emergency elements and relations. A timeline T represents 
a collection of times, which, for simplicity, we refer to as “timepoints”. These timepoints 
could represent individual events, observations, or milestones in a temporal sequence, 
which contains discrete instances relevant to our analysis. This structure can be used to 
represent the development and change process of two-dimensional graphics along the 
time dimension to express the evolution of urban waterlogging events, geographical ob-
jects, property, and emergency tasks over time. Given a time value, the state of the corre-
sponding section can be obtained from the 3D cube. 

 
Figure 3. Conceptual model of urban waterlogging emergency ontology. 

3.3.2. Ontology Construction for Urban Waterlogging Emergency 
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(1) Conceptual hierarchy construction 
This includes three aspects: urban waterlogging events, emergency response, and ge-

ographical objects. Urban waterlogging has obvious spatiotemporal characteristics, which 
are categorized into four phases: early warning period, beginning period, climax period, 
and demise period. Urban waterlogging events are a complex system developed by mul-
tiple factors interacting and influencing each other, and conductivity is one of its remark-
able features. Once serious damage occurs in a certain system, it will be propagated 
through the correlation between urban systems, eventually leading to urban waterlogging 
and present chain development. 

The emergency response mainly involves two aspects: emergency organization and 
emergency action. Emergency organizations mainly include emergency response agen-
cies, relevant departments, and personnel. Emergency response operations are divided 
into three phases: before, during, and after a disaster. These phases are listed according to 
the entire process of the disaster, with different objectives and tasks for each phase. 

The geographic objects of urban waterlogging events are diverse, mainly including 
two aspects: the disaster-inducing environment and the disaster receptor. 

(2) Property construction 
The description of urban waterlogging event aĴributes can be divided into four cat-

egories: temporal properties, spatial properties, morphological properties, and disaster 
properties, as shown in Table 1. These properties are interconnected and constitute the 
ontology of urban waterlogging events. 

Table 1. Properties of urban waterlogging events. 

Category Property Description 
Time prop-

erty 
Start time Event start time 
End time Event end time 

Spatial 
property 

Location (latitude and lon-
gitude) 

The latitude and longitude coordinates of the disaster event 

Location (administrative 
division) 

Indicates the administrative division where the waterlogging event occurred 

Morphologi-
cal proper-

ties 

Scope of disaster 
Refers to the extent of the area involved in an urban waterlogging event, usu-

ally expressed in km² 

Depth of waterlogging 
Refers to the depth to which waterlogged ground is submerged during an ur-

ban waterlogging event, usually expressed in cm 

Waterlogging flow rate 
Refers to the velocity of waterlogged water flow during an urban waterlog-

ging event, usually expressed in units of m/s 

Disaster 
Property 

Intensity of disaster 
Refers to the severity of urban waterlogging events, which are generally cate-

gorized as light, medium, or heavy 

Damage to buildings 
Refers to the extent of damage to buildings during urban waterlogging 
events, e.g., number of collapsed houses, number of severely damaged 

houses, etc. 
Damage to the transporta-

tion system 
Documentation of damage to the transportation system caused by urban wa-

terlogging events 

Casualties 
Describes the human casualties of a disaster event, including the number of 

people killed, injured, and missing 
Economic loss This aĴribute describes the economic damage caused by the disaster event 

Other losses 
Described other losses that may be caused by urban waterlogging events, 

such as the area of crops affected, the number of livestock affected, etc. 
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The emergency response to urban waterlogging can be categorized into three phases: 
pre-disaster, disaster, and post-disaster, involving task names, categories, and descrip-
tions of actions, as shown in Table 2. 

Table 2. Description of emergency response properties. 

Category Property Description 

Pre-, During, and 
Post-disaster 

Mission name 
Refers to the name of a specific mission developed in response to urban wa-
terlogging, e.g., “Drainage Pumping Station Activation Mission”, “Leakage 

Plugging Mission”, etc. 

Type of mission 
Refers to the categorization of urban waterlogging emergency response mis-

sions, e.g., drainage missions, rescue missions, flood control missions, etc. 

Mission level 
AĴributes that describe the urgency and importance of the urban waterlog-

ging emergency response mission 

Name of emergency re-
sponse organization 

Indicates the name of the agency that performs the emergency response mis-
sion, e.g., a city’s Emergency Management Agency, or a county’s Flood Con-

trol Office 
emergency worker Records information on personnel involved in emergency response 

Description of emer-
gency action 

Refers to the description of specific actions taken by emergency response 
agencies and personnel in response to an urban waterlogging event, such as 

evacuation of people and deployment of materials 

(3) Relationship construction 
The semantic relations of urban waterlogging emergency ontology refer to the se-

mantic associations between different entities, i.e., their meanings and semantic relation-
ships. In the construction of urban waterlogging emergency ontology, there are usually 
three types of semantic relationships: implementation, containment, and logical relation-
ships. The semantic relationships are shown in Table 3. 

Table 3. Semantic relations of the urban waterlogging emergency ontology. 

Relationship Class Relationship Name Relationship Description 

Implementation relationship 
In Charge Of A in charge of B 
Executed By A executed by B 

Has Participant A has participant B 

Containment relationship 
Is Part Of A is part of B 

Has Component A has component B 

logical relationship 
Caused A caused B to respond 

Caused By A’s response is caused by B 
Follow A follows the onset of B 

(4) Generation of ontology 
After the above steps, the definition of classes and properties in the urban waterlog-

ging emergency ontology is basically completed. Using GeoSPARQL to represent spatial 
data, we can define and query features (features class), geometrical objects of features (ge-
ometries class), and spatial relationships between these objects. The geometries’ classes 
can be points, lines, circles, and polygons. In order to facilitate the spatial query using 
Cypher language in Neo4j at a later stage, we use the WKT (Well-Known Text) format to 
store the geometries. The basic structure of the WKT format consists of geometric object 
types (e.g., POINT, LINESTRING, and POLYGON) and specific coordinate data. We de-
fine and process spatial relations through GeoSPARQL and define time-related descrip-
tions based on the existing temporal ontology [50]. Then, relying on the Unified Modeling 
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Language (UML), we transform these classes and aĴributes into an intuitive, easy-to-un-
derstand, and highly extensible ontology model, as shown in Figure 4. 

 
Figure 4. Urban waterlogging emergency ontology. 

3.4. Urban Waterlogging Emergency Knowledge Graph Construction Method 
3.4.1. Construction Process 

The flowchart is shown in Figure 5. There are two types of knowledge sources: struc-
tured data sources (e.g., thematic databases); and semi-structured and unstructured data 
sources (e.g., disaster public announcement web pages, domain literature). For thematic 
databases, field values, records, and other valid information needed for research can be 
obtained directly from the database. For the unstructured data in the ubiquitous network, 
the data volume is larger and contains more information, which is an important data 
source for this study and needs to be considered. The knowledge graph is constructed 
using XLNet-BiLSTM-CRF to extract entity, relationship, and event information from tex-
tual and web data. This includes flooding event information concerning the time, location, 
people involved, and the disaster itself from news reports and social media. The 
knowledge is fused and stored in a Neo4j graph database. Finally, the urban waterlogging 
emergency knowledge graph will be generated. 
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Figure 5. Flowchart for constructing knowledge graph for urban waterlogging emergency response. 

3.4.2. Entity and Relation Extraction 
For the task of entity recognition in disaster events, we adopt a deep-learning-based 

approach. This is because deep-learning-based methods can fully utilize large-scale data 
and the expressive power of deep neural networks to recognize entities in complex and 
variable disaster events accurately. 

We use an entity recognition and relationship extraction model based on XLNet-
BiLSTM-CRF [51], which has shown excellent performance in related tasks and is in line 
with our task requirements. This model first converts the text into a sequence of word 
vectors then obtains each word’s contextual information by BiLSTM feature extraction, as 
shown in Figure 6. BiLSTM consists of two LSTMs: one forward LSTM and one backward 
LSTM. 
 Forward LSTM: Starting from the starting position of the input sequence, it gradually 

reads each word vector (𝑋) and generates a forward hidden state vector (ℎ). 
 Backward LSTM: Starting from the end position of the input sequence, it reverse-

reads each word vector (𝑋) and generates a backward hidden state vector (ℎ). 
Then, the model concatenates the forward hidden state vector (ℎ) and the backward 

hidden state vector (ℎ) to obtain a complete bidirectional hidden state vector (𝐻). Fi-
nally, the model outputs a label prediction score (𝑦) for each input data point (usually a 
word in a sentence or sequence). 

Next, the context information is modeled using XLNet to obtain the context repre-
sentation of each word. Then, the context representation is input into the CRF layer for 
label prediction. Finally, entity recognition and relationship extraction are performed 
based on the prediction results. By combining the advantages of XLNet, BiLSTM, and 
CRF, the model can effectively capture the semantic information in the text and improve 
the accuracy of entity recognition and relationship extraction. 
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Figure 6. Structure of the BiLSTM model. 

3.4.3. Knowledge Fusion 
Knowledge fusion is the process of integrating and merging knowledge extracted 

from different sources. We use the method based on aĴribute and structure similarity for 
knowledge fusion based on the cosine similarity function [33] and that based on the Jac-
card similarity function to calculate the degree of aĴribute similarity and the degree of 
neighboring node similarity, respectively, as shown in Figure 7. 

(1) AĴribute similarity calculation 
In order to assess the similarity of two entities at the aĴribute level, the cosine simi-

larity function is used in this paper. Specifically, the aĴribute set of each entity is regarded 
as a vector in the vector space, the dimensions of the vector correspond to different aĴrib-
utes, and the values of the aĴributes are normalized as the components of the vector. Sub-
sequently, the cosine value of the angle cosine between two vectors is calculated using the 
cosine similarity formula, which is used as a measure of aĴribute similarity. 

(2) Structure similarity calculation 
In order to measure the similarity of two entities in the graph structure, the Jaccard 

similarity function is introduced in this paper. This method evaluates the degree of simi-
larity between two entities in the graph structure by comparing the ratio of the intersec-
tion and concatenation of their sets of neighbor nodes. The selection of neighbor nodes is 
based on direct relationships between entities, such as edge connections. 

(3) Combined scoring and fusion decision making 
By means of weighted summation, the two are combined into a composite score to 

fully reflect the degree of similarity between two entities. Based on a set threshold, deter-
mine whether the similarity between the two entities is high enough to decide whether to 
fuse them into one entity. If the similarity is higher than the threshold, the fusion opera-
tion is performed, including merging aĴributes, updating link relationships, etc. 

In the knowledge fusion process, the similarity function between the computed entity 
𝐸ଵ and the candidate entity 𝐸ଶ is defined as follows: 

𝐹௦(𝐸ଵ, 𝐸ଶ) = (1 − 𝛼)  𝑓௦(𝐸ଵ, 𝐸ଶ) + 𝛼
(ெభ,ெమ)∈(ாభ,ாమ)

𝑓௦(𝐸ଵ, 𝐸ଶ), (2)

𝑓௦(𝑀ଵ, 𝑀ଶ) =
∑ 𝑤ଵ𝑤ଶ


ୀଵ

𝑊ଵ𝑊ଶ

, (3)
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𝑊ଵ = ඨ 𝑤ଵ
ଶ  ,



ୀଵ
 (4)

𝑊ଶ = ඨ 𝑤ଶ
ଶ,



ୀଵ
 (5)

𝑓௦(𝐸ଵ, 𝐸ଶ)
|𝑁(𝐸ଵ) ∩ 𝑁(𝐸ଶ)|

|𝑁(𝐸ଵ) ∪ 𝑁(𝐸ଶ)|
. (6)

0 ≤ α ≤ 1, and α = 0.5 is chosen for the experiment. 𝑀ଵ and 𝑀ଶ denote the set of 
tokens of the two entity strings, which are converted into n-dimensional vectors, and the 
weight of token in each vector is calculated as 𝑤. The aĴribute similarity of the entities is 
obtained through Equation (3). Meanwhile, the ratio of the intersection and concatenation 
of the set of common neighbors of the two entities to be aligned is calculated to determine 
the degree of similarity between the neighboring nodes of the entities, and the structural 
similarity is obtained through Equation (6). When conducting several experiments, we 
adjusted the threshold interval from 0.3 to 0.6 in steps of 0.05 and finally found that the 
fusion results were most satisfactory when the threshold was set to 0.55. Finally, the at-
tribute similarity and structural similarity correspond to their respective weights to obtain 
the final knowledge fusion results. Table 4 shows some knowledge fusion examples. 

 
Figure 7. Entity alignment methods based on the aĴribute–structure similarity approach. 

Table 4. Examples of knowledge fusion. 

Entity 1 Entity 2 After Fusion 

Urban drainage system Urban wastewater treatment systems 
Urban wastewater treatment systems -> Urban 

drainage system 
Sewer Drainage pipe Sewer -> Drainage pipe 

Drainage pumping station Drainage engine room Drainage pumping station -> Drainage engine room 
Rainwater well Drainage well Rainwater well -> Drainage well 

3.4.4. Knowledge Storage Based on Neo4j Graph Database 
The data in the field of urban waterlogging emergency response, after entity identi-

fication, relationship extraction, and knowledge fusion, form knowledge triples of <entity, 
relationship, entity> and <entity, property, property value> structures, as shown in Figure 
8, and the next step needs to store and manage these triples in a specific way. There are 
three main storage methods for knowledge graphs: RDF, relational, and graph databases. 
Aiming at the characteristics of an urban waterlogging emergency knowledge graph, we 
adopt the storage method of the Neo4j graph database. This method can solve the storage 
and query problem of complex relations and aĴributes in the urban waterlogging emer-
gency knowledge graph and can also well support the interaction and fusion of 
knowledge graph data. 
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Figure 8. Representation of knowledge triples. 

4. Experiment and Result Analysis 
4.1. Experimental Data Acquisition and Processing 

The data sources include two types, as shown in Table 5: (1) structured data sources, 
mainly from the National Earth System Science Data Center, which contain the basic geo-
graphic, sociodemographic, and flood prediction and forecasting data of the affected area 
in their thematic data; (2) unstructured data sources, mainly from disaster public an-
nouncement web pages and encyclopedias; for example, the National Disaster Reduction 
Official Website (NDRCC) and Wikipedia contain information on the time and location of 
the disaster, the aĴributes of the disaster-causing factors, and information on the damage 
of the disaster, such as that inflicted on the population, housing, and economy. 

Table 5. Data introduction. 

Data Type Data Source Data Description 

Structured data 
Disaster thematic 

data 
National Earth System 

Science Data Center 

Contains basic geographic, sociodemographic, and flood 
prediction and forecasting data of the affected area in its 

thematic data 

Unstructured 
data 

Search engine Wikipedia 
Using waterlogging disaster events as key words to 

search, including basic information 

Disaster public an-
nouncement 

National Disaster Re-
duction Official Web-

site (NDRCC) 

With a high degree of authority and credibility, it can 
quickly release disaster-related information, including 

the time, place, and scope of impact of the disaster 

News media 
CCTV 

Disaster-related information is provided through news 
reports and special programs 

Huanqiu net 
Not only provides coverage of news events but also pro-

vides in-depth analysis and commentary 

We directly obtain the required data records for structured data types. For unstruc-
tured data types, we obtain disaster-related data through web crawlers. In this paper, a 
total of 159 urban waterlogging events from January 2020 to December 2022 were acquired 
as a data source from which to obtain information about urban waterlogging event entities 
and their aĴributes. Through entity and relationship extraction, the corresponding urban 
waterlogging event aĴributes and relationships are extracted, including the start time and 
end time, “province–city–county” information, disaster-causing factors, the affected pop-
ulation, the emergency relocation of the population, the number of damaged houses, and 
the economic losses. Most of these waterlogging events occur in southeastern China, i.e., 
in the plains of the middle and lower reaches of the Yellow River, Yangĵe River, and Pearl 
River. The waterlogging events in megacities such as Beijing, Shanghai, and Guangzhou 
show a clustering effect. Waterlogging sites in these cities are more concentrated in certain 
areas, which may be related to the topography, drainage system layout, and land use of 
the cities. The incidence of internal flooding is higher in certain specific locations in the 
city, such as overpasses, underground garages, and underground shopping malls. Some 
of the results of the knowledge extraction are shown in Table 6. 
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Table 6. Example entity extraction results. 

Original Text Extraction Result 
A historically rare rainstorm occurred in 

Zhengzhou, Henan Province, China, on 20 
July 2021. The rain lasted for 24 h, flooding 

subway lines and bringing traffic to a stand-
still. Citizens were trapped in subway cars 
and flooded homes. The local government 
launched an emergency plan, and emer-

gency rescue teams and volunteers rushed 
to the scene to carry out rescue work. In 

dozens of hours of struggle, rescue workers 
moved scores of stranded citizens and took 

steps to unblock drainage systems. The 
storm has killed at least 300 people, left 

more than 50 missing and caused direct eco-
nomic losses of more than 10 billion yuan. 

Entity Relation/property Entity/property value 
Urban waterlogging Start time 20 July 2021 

Urban waterlogging Location 
Zhengzhou, Henan Prov-

ince, China 
Urban waterlogging Duration Lasted for 24 h 
Urban waterlogging Caused Flooding subway lines 
Urban waterlogging Caused Traffic to a standstill 
Urban waterlogging Caused Citizens are trapped 
Local government Launched An emergency plan 

Emergency rescue teams Carry out Rescue work 
Emergency rescue teams Moved Scores of stranded citizens 
Emergency rescue teams Unblock Drainage systems 

Urban waterlogging Casualties At least 300 people 

Urban waterlogging Economic loss More than 10 billion yuan 

4.2. Knowledge Graph Generation for Urban Waterlogging Emergency 
The processed knowledge triples can be batch-imported into the Neo4j graph data-

base using py2neo. Specifically, the nodes and relationships can be created, queried, and 
analyzed through Neo4j’s API and Cypher language. Such a knowledge graph can pro-
vide support for emergency management and decision making in urban waterlogging and 
achieve efficient management and utilization of complex urban waterlogging information. 

4.3. Quality Assessment of Urban Waterlogging Emergency Knowledge Graph 
The knowledge graph’s construction strives to be automated, i.e., using as liĴle hu-

man labor as possible, but there are some quality issues. For example, data extracted from 
semi-structured or unstructured resources usually suffer from problems such as incon-
sistent information, erroneous and incomplete narratives, etc. [52]. Therefore, quality as-
sessment of knowledge graphs is essential to knowledge graph construction [53]. 
Knowledge graph quality assessment dimensions generally include three items: correct-
ness, completeness, and conciseness [54]. Correctness refers to whether the entities and 
relationships described in the knowledge graph are compatible with those in the real 
world. Completeness refers to whether the knowledge graph contains all the important 
entities and relationships in the domain. Succinctness is whether the knowledge graph’s 
description of entities and relationships is sufficiently concise and clear. 

We adopt a partial gold standard approach [55] for quality evaluation, selecting part 
of the knowledge graph as the sample set for evaluation by sampling and manually anno-
tating it so that we can use a smaller annotation cost to complete the assessment of the 
correctness, completeness, and conciseness of the knowledge graph with greater preci-
sion, and the framework of quality evaluation is shown in Figure 9. 

Computational correctness: It is generally believed that knowledge from reliable data 
sources is usually reliable. Therefore, we use random sampling and manual comparison 
to compare the content in the knowledge graph with the original content in the data 
sources. Some entities are randomly selected as evaluation samples, which are evenly di-
vided into n groups, and all triples involved in these entities are manually labeled, and 
the accuracy rate of each sampling group is calculated. 

Computational completeness: Raw data from different sources are randomly ex-
tracted and knowledge triples are manually constructed and then compared with the 
knowledge transformed by this data in the knowledge graph. For structured and semi-
structured data, each extracted datum is a set of continuous and related data. For 
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unstructured text data, each extracted datum is a descriptive text containing multiple sen-
tences. The entities, aĴributes, and relationships are manually extracted according to the 
ontology model in chapter 3.3.2 and organized into the form of triples. In order to prevent 
the limitation of single-person cognition, multiple people are used to conduct multi-group 
experiments. The completeness calculation takes the constructed knowledge triples as the 
smallest unit and compares the triples in the knowledge graph with the manually con-
structed triples. 

Computational conciseness: There are two main aspects, redundancy and data con-
ciseness, where entity redundancy = number of redundant entities/total number of enti-
ties; and relationship redundancy = number of redundant relationships/total number of 
relationships. Data conciseness is used to evaluate the knowledge in the data that are not 
related to the urban waterlogging emergency knowledge graph; data conciseness = 1 − 
number of irrelevant entities/total number of entities. We calculated the conciseness de-
gree by randomly sampling the triples in the urban waterlogging emergency knowledge 
graph and manually labeling the redundant entities, aĴributes, and relationships, such as 
recurrence, redundancy, and ambiguity, and comparing them with the sampled overall 
entities, aĴributes, and relationships. 

 
Figure 9. Urban waterlogging emergency knowledge graph quality assessment framework. 

(1) Correctness assessment: In the correctness assessment, 300 entities are randomly 
selected, which involve a total of 1638 triples. In our random selection process, we strive 
to ensure that these entities can cover different types of nodes and diverse relationships. 
These triples are divided equally into 10 groups to be manually labeled and compared 
with the original data. The results of the assessment are shown in Table 7 and Figure 10, 
in which the highest correctness rate is 89%, the lowest is 73%, and the average correctness 
rate is 81%. 

Table 7. Nodal and relational correctness assessment. 

Node or Relationship Type Number of Nodes or Relationships Number of Errors Correctness 
Event nodes 58 5 91.4% 

Emergency response nodes 117 26 77.8% 
Geographic object nodes 74 21 71.6% 

Time aĴribute nodes 36 5 86.1% 
Spatial aĴribute nodes 15 2 86.7% 

Composition 972 179 81.6% 
Association 377 52 86.2% 

Generalization 166 45 72.9% 
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Aggregation 123 27 78.0% 

 
Figure 10. Results of correctness assessment of urban waterlogging emergency knowledge graph. 

(2) Completeness assessment: In the completeness assessment, divided into eight 
groups, each group randomly selected 20 raw data and manually constructed knowledge 
triples. To calculate the completeness, they were compared with the corresponding triples 
in the automatically generated knowledge graph for urban waterlogging emergency. The 
assessment results are shown in Figure 11, where the highest completeness is 71.3%, the 
lowest is 60.2%, and the average completeness is 65.5%. 

 
Figure 11. Results of urban waterlogging emergency knowledge graph completeness assessment. 

(3) Conciseness assessment: A total of 1638 triples and 742 entities in them were la-
beled for redundancy, with 126 and 179 redundant entities and relationships, respectively, 
and 37 entities unrelated to the urban waterlogging emergency domain were labeled, re-
sulting in a calculated entity redundancy of 17.0%, a relationship redundancy of 10.9%, 
and a data conciseness of 95%. 

This shows that in the evaluation experiment, the correctness is 81%, completeness is 
65.5%, entity redundancy is 17.0%, relationship redundancy is 10.9%, and data concise-
ness is 95%. To summarize, most of the triples in this graph are accurate, but there are still 
some relevant triples that are not covered, which may be due to the insufficient data 
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sources for the construction of the knowledge graph, or the failure to extract all the 
knowledge during the construction process. The knowledge graph needs to be constantly 
updated and supplemented with new knowledge to achieve satisfactory results. 

4.4. Application of Knowledge Graph for Urban Waterlogging Emergency 
4.4.1. Query and Visualization 

(1) Event query 
By querying the records of historical waterlogging events, the paĴern of waterlog-

ging occurrence is analyzed. This allows the government to make scientific decisions and 
helps to improve emergency management capabilities. We can use the Cypher query lan-
guage for querying and analysis, as well as the visualization tools provided by Neo4j, such 
as Neo4j Browser or Neo4j Bloom. In Neo4j-based Cypher query, MATCH, WHERE, and 
RETURN are commonly used keywords to specify the query’s schema, filter conditions, 
and return results. By specifying different query statements, temporal distribution que-
ries, spatial distribution queries, and impact factor queries can be executed. The query 
results should meet the following requirements: 

Accuracy and reliability: Query results should be constructed based on trusted data 
and authoritative sources to ensure the accuracy and reliability of information. 

Space coverage: Query results should cover a wide geographical area, ensuring that 
queries and analysis can be conducted for different cities and regions. 

Diversified query methods: Query results should support different types of query 
requirements, such as multi-dimensional queries based on geographic location, time 
range, degree of influence. 

User friendliness: The interface design should be simple and clear and easy to oper-
ate, and users should be able to find the information they need quickly and understand 
the meaning of the query results. 

Using the Cypher language, we can query urban waterlogging events in a given city. 
For example, we query an urban waterlogging event that occurred in Henan Province, 
specifying the name of the city as “Henan” through the “city” entity, and the relationship 
as “HAS_FLOODING_EVENT”, returning the waterlogging event. The following are the 
steps for querying. 

MATCH (c:City {name:” city name “})-[:HAS_FLOODING_EVENT]->(e:Event)  
RETURN e 

This query statement returns the urban waterlogging events for the specified city, as 
shown in Figure 12. This query result is accurate and able to query different cities by de-
fining query statements. By analyzing the query results, we can see the statistics of specific 
data such as the affected area, the number of people affected, and the economic loss. These 
data intuitively reflect the severity and scope of influence of the rainstorm event. The 
cause analysis reveals the background and conditions under which the rainstorm event 
occurred. The triggering and evolution of subsequent disasters are also closely related to 
the spatial and temporal context, with torrential rains leading to secondary disasters such 
as river flooding and landslides. 
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Figure 12. “7.20” rainstorm and waterlogging event in Henan. 

(2) Query using geospatial functions 
Neo4j’s Geospatial plugin provides a series of geospatial functions, such as distance, 

withinDistance, withinRadius, for performing geospatial queries. 
Example 1: Finding locations within a certain range from a specific point. 

MATCH (n:Location) 
WHERE geo.distance(n.location, point({x: 34.804909, y: 113.300109})) < 10,000 
RETURN n.name, n.location, geo.distance(n.location, point({x: 34.804909, y: 
113.300109})) AS distance 
ORDER BY distance 

This query returns all locations within 10 km of Zhengzhou city (latitude and longi-
tude: 34.804909, 113.300109) and their distance from Zhengzhou city center. 

Example 2: Finding locations within a polygon. 
MATCH (n:Location) 
WHERE geo.withinPolygon(n.location, [[34.17, 112.42], [34.17, 114.14], [34.45, 114.14], 
[34.45, 112.42], [34.17, 112.42]]) 
RETURN n.name, n.location 

This query returns all locations that lie within the specified polygon. The polygon is 
defined by a series of points (latitude/longitude pairs) that are arranged in a clockwise or 
a counterclockwise order. 

4.4.2. Analysis of Urban Waterlogging Emergency Events 
(1) Event correlation analysis 
The relationship between the waterlogging event and the emergency response plan 

can be queried through the MATCH and WHERE statements to beĴer understand the 
cause of the event and the response measures. The following is a sample Cypher query 
statement. 
MATCH (n:Event)-[r:RELATED_TO]->(m:ResponsePlan) 
WHERE n.name = “October 2021 Shanxi rainstorms “ AND r.relation_type = “emer-
gency_response” 
RETURN n,r,m 

Through the above Cypher query statement, we can obtain the emergency response 
plans related to the “October 2021 Shanxi rainstorm” event, as shown in Figure 13, and 
further analyze whether these emergency response plans are effective and need to be im-
proved. In this way, we can beĴer understand the relationship between the flooding event 
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and the emergency response plan and provide a reference basis for the development of a 
more effective emergency response strategy. 

 
Figure 13. “October 2021 rainstorm in Shanxi” event. 

(2) Event Evolution Analysis 
With the MATCH and WHERE statements, it is possible to query the evolutionary 

relationships of waterlogging events in time and space to beĴer understand the evolution-
ary paĴerns of the events. For example, we can query the waterlogging events that oc-
curred in Jiangsu Province within the past year to understand their occurrence time and 
duration. The query statement can be shown as follows. 

MATCH (n: WaterloggingEvent) 
WHERE n. occurrence time >= date(“2022-01-01”) AND n. occurrence time < date(“2022-
12-31”) 
RETURN n. event name, n. occurrence time, n. duration, n. occurrence area, n. re-
sponse level 

At the same time, in the urban waterlogging emergency knowledge graph, the event 
evolution analysis algorithm can be used to analyze the evolution of waterlogging events 
in time and space quantitatively, such as the change of the outbreak timing, the duration, 
and the influence range of the event. As shown in Figure 14, based on the results of the 
event evolution analysis, it can be seen that the occurrence time of rainstorms and water-
logging disasters in Jiangsu Province in 2022 is mostly concentrated in the period from 
June to September, and the duration is mostly 2–3 days. The causes of rainstorms and 
waterlogging are twice as many as those of typhoons, and the affected areas are mainly 
located in the Huaibei and Huaibei regions. Therefore, event evolution analysis can beĴer 
understand the development process of waterlogging events and provide a reference for 
formulating emergency response strategies. 
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Figure 14. Analysis of rainfall event evolution in Jiangsu Province in 2022. 

5. Discussion 
Most of the current research on geographic ontologies and knowledge graphs focuses 

on the overall characteristics of geographic elements and tends to ignore domain-specific 
spatial characteristics. However, emergency response to urban waterlogging requires a 
conceptual framework that integrates general geographic properties and domain-specific 
spatial knowledge rules. Our approach addresses this gap by integrating the influencing 
factors and property features related to urban waterlogging into the knowledge graph 
construction. Existing knowledge maps in geography and disaster domains mainly de-
scribe static facts and relationships between geographic entities or events. They largely 
neglect the characterization of spatiotemporal process knowledge, which is critical for un-
derstanding urban flood dynamics and emergency response. This limitation highlights 
the urgent need for methods that can effectively capture and analyze spatiotemporal pro-
cess knowledge in knowledge graphs. This study proposes a timeline-based representa-
tion of urban waterlogging emergency processes. In order to represent the spatiotemporal 
characteristics and evolutionary paĴerns of urban waterlogging more comprehensively, 
we further constructed an ontology conceptual model based on spatiotemporal processes. 
The model abstractly defines the concepts of urban waterlogging events, emergency re-
sponse measures, and related geographic objects and establishes the hierarchical struc-
ture, aĴributes, and spatiotemporal semantic relationships among these concepts. By us-
ing a hybrid top-down and boĴom-up approach, we successfully modeled the spatiotem-
poral processes associated with urban waterlogging and emergency response. 

However, due to the complexity of the problem, some shortcomings still remain. 
First, more elements need to be considered to further summarize the refinement of con-
cept descriptions in the ontology library, as well as to expand and refine the axioms and 
the semantic constraint rules in order to improve the effectiveness of its comprehensive 
application. Second, when conducting the completeness assessment, the average com-
pleteness is 65.5%, which may be due to the insufficient data sources of the knowledge 
graph construction, so the data scope can be further expanded to include pictures, videos, 
and other data sources to improve its practicability. Third, in the section on entity and 
relationship extraction, we adopt the model architecture of XLNet BiLSTM CRF, a combi-
nation that has demonstrated excellent performance in the paper [12] and performs 
equally well in the application scenario of this paper. However, given the space limitation, 
we were not able to analyze it in an exhaustive comparison with other state-of-the-art 
models, which, to some extent, constitutes a limitation of this study. Finally, during the 
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practical application, it is very inconvenient for people who are not familiar with Neo4j 
and do not have a programming foundation; this is because we are using Cypher language 
for querying. Therefore, further designing a Q&A form for querying and analyzing the 
knowledge graph will be needed in future research. 

6. Conclusions and Future Directions 
In this paper, we studied the method of constructing a knowledge graph for urban 

waterlogging emergencies based on spatiotemporal processes. Extreme events like urban 
waterlogging are dynamic and evolve over time, so we proposed a timeline-based repre-
sentation of the urban waterlogging emergency response process. In addition, various fac-
tors, such as the topography, the urban drainage system, and the rainfall intensity during 
inundation, which are constantly evolving during the flooding continuum, have an im-
pact on this dynamic evolving behavior. We have explored and analyzed these factors and 
investigated the conceptual framework of urban waterlogging emergency ontology and 
its construction method. A conceptual model of urban waterlogging emergency ontology 
based on spatiotemporal processes is proposed, and an ontology including conceptual 
hierarchies, aĴributes, and relationships is constructed. Then, we carried out the instance 
supplementation of the knowledge graph, including entity identification, relationship ex-
traction, knowledge fusion, and knowledge storage, and elaborated the specific operation 
methods and technical means of each link. The knowledge graph is visualized, quality-
assessed, and applied through specific experiments, which verifies the effectiveness and 
application value of the proposed method. 

In the future, we will consider introducing more experts in the field to conduct col-
laborative research to build a more comprehensive, accurate, and practical knowledge 
graph for urban waterlogging emergencies. We will further study how to integrate the 
knowledge graph for an urban waterlogging emergency with pictures, videos, and exist-
ing data on urban waterlogging monitoring and early warning to achieve beĴer results. 
We will further study the entity and relationship extraction methods in the urban water-
logging emergency domain to improve the correctness and efficiency of the extraction. In 
addition, we will conduct a study based on urban waterlogging emergency knowledge 
graphs and determine how the knowledge graph query method can improve the effi-
ciency of urban waterlogging emergency knowledge query and analysis. 
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