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Abstract: Multiple linear regression analysis was performed on the quantitative structure-

activity relationships (QSAR) of the triazoloquinazoline adenosine antagonists for human A3 

receptors. The data set used for the QSAR analysis encompassed the activities of 33 

triazoloquinazoline derivatives and 72 physicochemical descriptors. A template molecule 

was derived using the known molecular structure for one of the compounds when bound to 

the human A2B receptor, in which the amide bond was in a cis-conformation. All the test 

compounds were aligned to the template molecule. In order to identify a reasonable QSAR 

equation to describe the data set, we developed a multiple linear regression program that 

examined every possible combination of descriptors. The QSAR equation derived from this 

analysis indicates that the spatial and electronic effects is greater than that of hydrophobic 

effects in binding of the antagonists to the human A3 receptor. It also predicts that a large 

sterimol length parameter is advantageous to activity, whereas large sterimol width 

parameters and fractional positive partial surface areas are nonadvatageous. 
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1. Introduction 

Adenosine receptors belong to the rhodopsin family of G-protein-coupled receptors (GPCRs). These 

are transmembrane (TM) receptors with seven-helices that play key roles in signal transduction, 

including the phosphorylation cascade [1]. The adenosine receptors include the subtypes A1, A2A, A2B 

and A3
 
[2] of which the adenosine A3 receptor performs cardio- or neuro-protective activities during 

cardiac or cerebral ischemia, respectively [3]. The A3 receptor is activated by adenosine or agonists by 

activating inhibitory G proteins, it inhibits the generation of cAMP by adenylate cyclase [4]. However, 

activation of the human A3 receptor results in hypotension and release of inflammatory mediators from 

mast cells [5-6]. At present, human A3 receptor antagonists are being investigated as potential anti-

inflammatory, anti-asthmatic and anti-ischemic agents [7]. 

In order to develop new therapeutics and to define the A3 receptor mechanism, investigations have 

focused on the search for potent and selective A3 receptor antagonists, including flavonoids [8-9], 

pyridine derivatives [10], 1,4-dihydropyridines [11-12] and triazoloquinazolines [13-14]. Derivatives 

of the latter group are considered to be amongst the strongest antagonists of the human A3 receptor 

[15]. Moro et. al. [16] used their seven-helix model of the human A3 receptor to identify certain key 

amino acid residues that could participate in the binding of antagonists [16]. However, this research 

only considered one triazoloquinazoline derivative and did not provide a comprehensive, quantitative 

analysis of antagonist activity. 

Quantitative structure-activity relationship (QSAR) studies represent a powerful tool for relating the 

biological activities of compounds to their physicochemical properties, which are referred to as 

descriptors [17]. As a data set for QSAR analysis of A3 receptor antagonists, we chose a series of 33 

triazoloquinazoline derivatives that had been reported by Jacobson et al. [14]. QSAR analysis was 

performed on the binding affinities of these agonists using descriptors which represent 72 

physicochemical parameters. In order to derive the best QSAR equation, we generated a full search 

multiple linear regression method (FS-MLR). This technique examines all potential combinations of 

the 72 descriptors, in order to identify the descriptor combination which correlates most closely with 

the biological data. 

2. Methods 

2.1. Data Set 

The 3D-sketcher module of the Cerius2 program (version 3.5, Molecular Simulations Inc., San 

Diego, CA) was used to generate molecular models of 33 triazoloquinazoline derivatives. Since there 

was no quantitative binding affinity data for the compound containing the (o-iodophenyl)acetyl (-

COCH2-(2-I-Ph)) group as substituent, we excluded it from the analysis. The γ-aminobutyryl-

substituted derivative 26 was selected as a template molecule because its molecular model could be 

derived from the literature [14]. Upon binding to the human A2B receptor, the amide bond of 

compound 26 is in a cis-conformation [14]. As A3 receptors are thought to form a similar seven-helix 

structure to that of A2B receptors, we used a similar cis-conformation for the amide bond for our model 

of compound 26 binding to the human A3 receptor. In compound 26, the long chain of the substituent 

lies in the plane of the molecule. 



Int. J. Mol. Sci. 2006, 7                           

 

 

487

 

Figure 1. Front (a) and side (b) view of the aligned molecules on the membrane plane. The furan ring 
has been reported to point in an extracellular direction [16]. 

Molecular conformations of the other compounds were fitted manually to the template molecule. 

They were then energy-minimized using the Merck Molecular Force Field (MMFF) [18-19] and the 

models re-aligned to the template molecule using the rigid fit alignment module in the Cerius2 

program (Fig. 1). The charge equilibration method was used to assign atomic partial charges to each of 

the compounds [20]. Activity values for the QSAR equation were obtained using the negative 

logarithm of binding affinity (Ki), which had been determined by radio-ligand binding assays [14]. 

The physicochemical properties of each compound were specified using 72 descriptors, which 

delineate conformational, electronic, spatial, structural, thermodynamic and quantum mechanical 

information. The QSAR+ module of Cerius2 was used to identify all the descriptors. 

2.2. Full Search Multiple Linear Regression Method 

A relationship between independent and dependent variables (physicochemical descriptors and 

biological activities, respectively) can be determined statistically using regression analysis. Linear 

regression is achieved by fitting a best-fit straight line to the data using the least squares method. 

Descriptors that are included in a reasonable QSAR equation should exhibit low collinearity and thus, 

behave as independent variables [21]. We calculated the collinearity between descriptors using 

equation (1) and the quality of fit for a regression equation was assessed relative to its correlation 

coefficient and standard deviation, using equations (2) and (3), respectively. The fitness of the 

regression equation improves, the closer the correlation coefficient approaches to one. The F value 

represents the level of statistical significance of the regression (equation 4). The predictive quality of a 

regression model can be evaluated using the leave-one-out cross-validation procedure (r2
cv). 

Collinearity: 
BA

BA
BA

σσ
ρ

•
= ),cov(

, , (1) 

where σA and σB are the standard deviations of A and B, respectively and cov(A,B) is the covariance 

of A and B. 
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where 2)( YYS jyy −=∑  and n is the number of observations, k is the number of variables, and r is 
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For a regression model, r2 was used to describe the fitness of data and fitness is considered to 

improve as r2 approaches 1. The sum of the squared deviations of dependent variables (SD) is 

described by (Yobs - Ymean)
2 and the predicted sum of squares (PRESS), by (Ypred - Yobs)

2. The cross-

validated correlation coefficient (rcv) is defined as (1 – PRESS/SD)1/2 and it used to evaluate the 

predictive power of the QSAR equations that were generated. Each molecule was eliminated from the 

training set and cross-validated rcv was calculated using the predicted values for the missing molecule. 

The FS-MLR was performed using the least squares method, the statistical definitions described 

above and a full search method. Given that the full search method performs an exhaustive examination 

all possible descriptor combinations, there is little concern that important descriptors might be missed 

and this method enables identification of the QSAR equation with the best correlations. 

The program determines collinearity between descriptors and those combinations containing high 

inter-descriptor collinearity are discarded. Multiple linear regressions are performed using the 

descriptor combinations remaining and upon calculation of the correlation coefficients, QSAR 

equations that have correlation coefficients which equal or exceed a preset value are reported. We 

specified 0.7 and 0.9 as the collinearity and correlation coefficient cutoff values, respectively. 

2.3. Selection of Outliers 

Data points that cannot be described using the QSAR equation are referred to as outliers. In order to 

investigate these systematically we eliminated each compound individually from the data set, 

generating 33 reduced data sets. Then we used the FS-MLR to determine which QSAR equations 

derived the best correlation coefficients from the outlier-free data sets. The best QSAR equation was 

determined using statistical analyses of correlation coefficient, standard deviation and F-value. Once an 

outlier was identified, the elimination process was repeated, in order to achieve the best QSAR 

equations containing between one and five terms. 
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3. Results and Discussion 

3.1. Derivation of QSAR 

In order to derive a reasonable QSAR equation, we performed FS-MLR and evaluated QSAR 

equations that used between one and six terms. With large data sets (n > 30), the linear regression 

equation should contain at least 6 data points per variable in order to avoid chance correlations [21]. In 

Table 1, the statistical values of the best QSAR equations are presented in the column headed ‘none’. If 

the statistical values were unsatisfactory (for example, r2 = 0.61 for a 5 term equation), the QSAR 

equation was not considered to be reasonable. 

  Table 1. Improvement of the best QSAR equation in relation to the number of terms and outliers 

removed. 

None 15 5,15 5,14,15 Outliers 
 
 
No of Terms 

r2a sb Fp
c r2a sb Fp

c r2a sb Fp
c r2a sb Fp

c 

1 0.23 0.82 9.49 0.25 0.82 10.15 0.26 0.83 10.25 0.26 0.84 9.95 

2 0.37 0.75 6.59 0.40 0.75 7.02 0.41 0.75 7.14 0.42 0.76 7.07 

3 0.49 0.69 6.69 0.50 0.69 5.76 0.52 0.69 5.82 0.53 0.70 6.09 

4 0.54 0.66 3.24 0.60 0.63 6.61 0.62 0.62 7.56 0.64 0.62 7.68 

5 0.61 0.63 4.29 0.75 0.51 16.09 0.82 0.44 27.16 0.86 0.40 36.01 

6 0.69 0.57 6.60 0.78 0.49 3.15 0.84 0.42 3.31 0.87 0.38 3.67 
aThe correlation coefficients (r2), bstandard deviations (s) and cpartial F values (Fp) of QSAR equations. 

 

Table 2. Elimination of the outlier from the best QSAR equation and the corresponding statistical 

values in relation to the number of terms. 

No. of 

terms 
Outlier r2a sb Fc 

1 14 0.33 0.77 14.50 

2 14 0.42 0.73 10.63 

3 14 0.54 0.66 11.08 

4 14 0.63 0.60 11.54 

5 15 0.75 0.49 15.80 
acorrelation coefficient (r2), bstandard deviation (s), cF-value (F) 

Removal of outliers improved the correlation coefficient of the QSAR equations. Thus, outliers 

were inspected systematically and are summarized in Table 2, as are the statistical values of the best 

QSAR equations and the specific number of terms. Although compound 14 was found to be an outlier 

in equations using between one and four terms, statistical values indicated that equations with less than 

four terms were unreliable (r2 < 0.64). Following elimination of compound 15, there was great 

improvement in the statistical value (r2 = 0.75) of the best QSAR equation that used five terms. The 
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statistical values of QSAR equations with one to five terms are shown in Table 1, in the column headed 

‘15’. In fact, the residual of compound 15 was -2.98, which was more than six times greater than the 

standard deviation (0.44). Therefore, the compound was considered to be an outlier. In order to 

improve the regression equation further, compound 5 was also removed, as its residual was about four 

times greater than the standard deviation. In Table 1, the statistical values of QSAR equations, 

following elimination of both compounds 5 and 15, are shown in the column headed ‘5, 15’. Increasing 

the number of terms from four to five, improved the correlation coefficient, standard deviation and 

partial F-value by 33, 29, and 259 %, respectively. However, even with removal of compound 14, a 

six-term equation afforded little significant improvement on the statistical values. Thus, it was 

concluded that removal of two outliers (compounds 5, 15) and adoption of a five term equation 

represented the most reasonable steps for derivation of a statistically reliable QSAR equation. The final 

QSAR equation was as follows: 

Log Ki = 0.387L – 3.697B1 – 0.331B3 – 92.456FPSA3 – 10.423ρ + 26.354 

n = 31, r2 = 0.820, r2
cv = 0.716, s = 0.440, F = 22.805 

(5) 

in which n represents the number of data points used for derivation of the equation, r is the 

correlation coefficient, s is the standard deviation from the regression, and F is the F value.  

 

Figure 2. Predicted versus observed human A3 receptor binding affinities. Predicted values were 
determined using equation (5). 

The QSAR equation (5) demonstrates significant correlation and is able to explain 82 % (r2) of 

observed variations in activities. The cross-validated r2 (0.716) indicates that this QSAR equation is 

able to predict activities successfully. Descriptor values, observed activities, and predicted activities are 

presented in Table 3. Predicted activity versus observed activity was plotted (Fig. 2) and the correlation 

matrix (Table 4) demonstrates low collinearity (r2 < 0.5) between descriptors. Although, there may be a 

slight correlation (r2 < 0.33) between descriptors and observed activity, the combination of the five 

descriptors provides a good fit (Table 4). 
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Table 3. Binding affinities and descriptor values from QSAR equation (5). 

 

No Substituents(R) Obsd Pred Resd L B1 B3 FPSA3 ρ 
1a H -1.14 -1.10 -0.04 1.70 1.20 1.20 0.11 1.29 
1b COCH2-Ph 0.19 -0.50 0.69 8.51 2.13 4.50 0.09 1.22 
3 CH2-Ph -1.63 -1.28 -0.35 4.61 1.70 5.98 0.09 1.24 
4 COCH2-(4-CH3O-Ph) -1.16 -0.86 -0.29 8.86 1.90 6.61 0.09 1.22 
5 COCH2-(4-NH2-3-I-Ph) -1.69 -3.37 1.67 8.44 1.91 6.34 0.09 1.49 
6 COCH2-(4-NH2-Ph) -0.55 -0.65 0.10 9.38 1.94 4.66 0.10 1.22 
7 COCH2-(3-I-Ph) -2.95 -3.15 0.20 8.50 2.05 5.94 0.08 1.49 
8 COCH2-(4-I-Ph) -1.80 -1.51 -0.29 9.93 1.91 4.83 0.08 1.50 
9 COCH2-(3-Cl-Ph) -1.51 -1.50 -0.01 8.50 2.10 5.54 0.09 1.27 

10 (R)-COCH(CH3)(Ph) 0.44 -0.25 0.69 7.55 1.81 5.27 0.09 1.21 
11 (S)-COCH(CH3)(Ph) 0.33 -0.11 0.44 7.55 1.81 5.27 0.09 1.20 
12 COCH(Ph)2  0.23 0.14 0.09 8.31 2.02 5.18 0.08 1.19 
13 COC(CH3)(Ph)2  -2.29 -1.60 -0.69 8.20 2.32 6.41 0.09 1.18 
14 COCH2CH2-Ph  -1.37 -0.47 -0.91 6.81 1.82 5.59 0.09 1.21 
15 COCH=CH-Ph (trans ) -1.86 1.12 -2.98 8.17 1.72 3.68 0.09 1.22 
16 D-COCH(CH3)(NH-Boca) -1.67 -2.01 0.35 9.65 2.19 6.07 0.10 1.20 
17 L-COCH(CH3)(NH-Boca) -1.92 -1.82 -0.10 9.65 2.19 6.07 0.10 1.20 
18 CO(CH2)2-NH-Boca

 -0.83 -1.13 0.30 10.15 1.91 6.37 0.11 1.20 
19 CO(CH2)3-NH-Boca

  -1.52 -1.61 0.09 10.00 1.87 8.44 0.11 1.18 
20 CO(CH2)4-NH-Boca

  -1.34 -1.78 0.44 10.51 1.88 9.38 0.11 1.17 
21 CO(CH2)5-NH-Boca

  -1.53 -0.66 -0.87 13.23 1.89 8.77 0.11 1.16 
22 CO(CH2)6-NH-Boca

  -1.73 -1.81 0.08 12.34 1.88 11.00 0.11 1.14 
23 D-COCH(CH3)(NH2) -3.06 -3.11 0.05 4.94 2.05 3.88 0.10 1.24 
24 L-COCH(CH3)(NH2) -3.08 -2.93 -0.15 4.94 2.05 3.88 0.10 1.25 
25 CO(CH2)2-NH2  -2.94 -2.59 -0.35 5.55 1.89 3.49 0.11 1.24 
26 CO(CH2)3-NH2  -1.91 -2.44 0.54 7.10 1.90 3.84 0.11 1.22 
27 CO(CH2)4-NH2  -1.76 -1.85 0.08 8.28 1.89 4.58 0.11 1.20 
28 CO(CH2)5-NH2  -2.33 -1.88 -0.45 8.94 1.89 5.69 0.11 1.18 
29 CO(CH2)6-NH2  -2.54 -2.37 -0.17 8.08 1.89 6.28 0.12 1.17 
30 CO(CH2)4-COOCH2Ph  -1.65 -2.02 0.37 7.93 1.89 9.80 0.10 1.19 
31 CO(CH2)2-COOCH3  -1.74 -1.66 -0.08 7.45 2.07 4.21 0.10 1.25 
32 CO(CH2)6-COOCH3  -1.77 -1.92 0.15 7.95 1.73 9.46 0.10 1.20 
33 CO(CH2)3-COOH -1.91 -1.98 0.07 6.62 1.88 3.86 0.10 1.25 

a -Boc is tert-Butoxycarbonyl. 
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Table 4. Inter-correlation of binding affinity and descriptors from QSAR equation (5). 

 L B1 B3 FPSA3 ρ pKi 

L 1.00      

B1 0.41 1.00     

B3 0.70 0.12 1.00    

FPSA3 0.11 -0.25 0.12 1.00   

ρ -0.21 -0.02 -0.38 -0.53 1.00  

pKi 0.17 -0.19 0.02 -0.33 -0.23 1.00 

3.2. QSAR Analysis 

Although the QSAR equation (5) predicted that the outlier compound 15 would exhibit very high 

activity (1.12), its observed activity (-1.86) did not match (Table 3). This compound has a conjugated 

double bond between the carbonyl and phenyl groups and the reason for its poor fit remains unclear. 

However, it is possible that the rigidity of conjugated double bond causes steric hindrance in the 

binding site of the human A3 receptor.  

The outlier compound 5, which has a di-substituted (4-NH2-3-I-Ph) phenyl group, was predicted to 

exhibit a lower activity (-3.37) than was observed (-1.67). In contrast, compounds 6 (4-NH2-Ph) and 7 

(3-I-Ph) fit well and the former was 3150 times more active than the latter and it is possible that the 

adverse effect that the 3-I substituent exerts on activity is ameliorated by the 4-NH2
 
substituent through 

interactions with residues in the human A3 receptor. However, the QSAR equation (5) failed to explain 

this interaction effectively. 

The sterimol parameter L is defined as the length of a substituent along the axis of the bond between 

the first atom of the substituent and the parent molecule [22-23]. Therefore, a positive L in the QSAR 

equation (5) suggests that there are long substituents in a specific direction. The fractional charged 

partial surface area (FPSA3) is obtained by dividing atomic charge weighted positive surface area by 

the total molecular solvent-accessible surface area [24] and negative FPSA3 values are favored on the 

bond axis. Moro et. al. made the assumption that when compound 1 was bound to the human A3 

receptor, it would be surrounded by transmembrane (TM) units 3, 5, 6, 7 and that its furan ring would 

point in an extracellular direction [16]. Owing to similarities in receptor composition, they suggested 

that in the human A2B receptor, the substituent in compound 26 would locate midway between TM6 

and TM7 and would extend in an extracellular direction from the plane of the membrane [14]. 

Accordingly, the bond axis would be expected to extend to midway between TM6 and TM7 with an 

upward tilt (~45º) from the plane of the membrane, providing sufficient space for molecules with long 

substituents to enter the binding site. The sterimol width parameters (B1 and B3) are orthogonal to the 

bond axis and negative coefficients in the parameters indicate steric hindrance in parallel to the 

membrane (Fig. 1). There is limited space in the TM structure of the human A3 receptor in the direction 

parallel to the membrane and negative B1 and B3 coefficients reflect the steric hindrance in this 

direction. FPSA3 indicates that densely positive surface areas contribute negatively to binding of 

compounds by the human A3 receptor. Thus, we suggest that with respect to ligand binding, the 

positively charged residues of the receptor contribute more than the negatively charged residues. This 

hypothesis is supported by the findings of Moro et. al. [16] which indicate that no negatively charged 
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residues are present in the TM core near the putative binding site and that His272 (part of TM7) is 

located within 5Å of bound compound 1. Density (ρ), which is defined as the ratio of molecular weight 

to molecular volume inside the contact surface, can be used to reflect how tightly a molecule fits into 

the binding site and a negative coefficient of density indicates that packed molecules are of low 

activity. 

Table 5. QSAR equations for subgroups. 

Group Molecule QSAR equation r2 

1 1b, 4 and 6-10 7.28 - 6.49ρ 0.70 

2 1b and 11-14 7.45 - 1.44B3 0.70 

3 16-22 5.92 - 2.97B1- 0.19B3 0.79 

4 23-29 -4.23 + 0.25L 0.61 

5 30-33 0.44 - 22.36FPSA3 0.80 

 

In order to perform further analyses on the QSAR equation (5), the data set was divided into five 

subgroups and a linear regression was performed on each subgroup using one or two of the descriptors 

from the QSAR equation (5). The subgroup members, corresponding regression equations and 

correlation coefficients are presented in Table 5. The first subgroup comprised compounds containing a 

substituent on the phenyl ring of compound 1b. These compounds exhibit a wide range of molecular 

weights (403 - 529) and therefore, density had a marked effect on their activities. For example, 

compounds 5, 7, and 8 were found to exhibit weak activities because of their relatively heavy iodine 

substituents. The second subgroup comprised molecules with substituents on the α-carbon of the acetyl 

group and bulkier substituents were found to increase B3 values, thereby having a negative influence on 

activity. For example, the highest B3 value (6.41) in this subgroup was exhibited by compound 13, 

which is 330-fold less potent than compound 12. The third subgroup included compounds that 

contained bulky tert-butoxycarbonyl substituents and therefore, they have a high sterimol width 

parameter (B3); the critical effect that B1 and B3 exert on the activities of this subgroup may be seen in 

Table 5. The fourth subgroup comprised compounds containing amine chains of various lengths and 

the sterimol length parameter L was found to have a significant effect on this group's activities. The 

final subgroup contained esters and carboxylic acids and the trend in activity could be explained via the 

electronic properties represented by FPSA3. In all the regression equations presented in Table 5, the 

signs of the descriptors were consistent with those of QSAR equation (5) and its correlation 

coefficients to the subgroups were high, indicating that the descriptors in QSAR equation (5) were well 

selected. 
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4. Conclusions 

 

Figure 3. Model for the binding of triazoloquinazoline derivatives to the human A3 receptor. This 
model was generated using QSAR equation (5) and information from the docking study by Moro et. al. 
[16]. The direction of substitution is represented by the wavy bond, the arrow indicates the bond axis 

and direction. The bond axis is tilted by about 45° from the plane of the membrane. The sterimol 
length parameter L is defined as the length of a substituent along the bond axis. Substituents containing 
high L values were favored, whereas high sterimol width parameters orthogonal to L, B1 and B3 were 

found to be unfavorable for binding of compounds to the human A3 receptor. 

Using the FS-MLR method, we have successfully derived the most statistically reasonable QSAR 

equation for the triazoloquinazoline derivatives. The physicochemical descriptors used for the QSAR 

reveal that the electronic (FPSA3) and spatial characteristics (L, B1, B3 and ρ) of substituents provide 

contributions that are critical to ligand-receptor binding. Although the hydrophobic properties of the 

substituents in triazoloquinazoline derivatives might be expected to play a crucial role in the binding 

affinity of these compounds to the generally hydrophobic core of the TM helix [1], our QSAR analysis 

suggests that they exert a negligible effect on ligand binding to the human A3 receptor. Hydrophobic 

effects are only important for the chlorophenyl moiety of these compounds. We propose a model for 

the binding of triazoloquinazoline derivatives to the human A3 receptor that is based on our QSAR 

analysis and the docking study performed by Moro et. al. [16] (Fig. 3). The QSAR equation is 

consistent with the findings of the docking study [16] and provides a quantitative explanation of the 

trends in binding affinity in relation to the physicochemical properties of the compounds. Although this 

QSAR equation is useful, the caveat remains that it was derived from a limited number of amide-

containing compounds. Thus, it is only applicable to similar compounds. Future research will focus on 

modeling the human A3 receptor, including its loop sections, in order to aid in the design of potent 

compounds that bind selectively to the A3 receptor. 
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