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Abstract: Growing evidence indicates that small extracellular vesicles, called exosomes, are prominent
mediators of neurodegenerative diseases such as prion, Alzheimer’s and Parkinson’s disease.
Exosomes contain neurodegenerative disease associated proteins such as the prion protein, β-amyloid
and α-synuclein. Only demonstrated so far in vivo with prion disease, exosomes are hypothesised to
also facilitate the spread of β-amyloid and α-synuclein from their cells of origin to the extracellular
environment. In the current review, we will discuss the role of exosomes in Alzheimer’s and
Parkinson’s disease including their possible contribution to disease propagation and pathology and
highlight their utility as a diagnostic in neurodegenerative disease.
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1. Introduction

Neurodegenerative diseases including Alzheimer’s, Parkinson’s and prion disease have distinct
clinical manifestations and molecular pathology however they share common features such as
aggregation of disease specific proteins. These include β-amyloid (Aβ) in Alzheimer’s disease (AD),
α-synuclein (α-syn) in Parkinson’s disease (PD) and the prion protein (PrP) in prion disease. Further
commonalities exist, namely those observed at the anatomical level revealing spread of Aβ and α-syn
is in a non-random, topographically predictable manner in the brain [1,2]. Cell-to-cell contact and
passive spread were initially deemed responsible; however, more recently small extracellular vesicles,
called exosomes, were proposed to play a role [3,4]. A comprehensive introduction into extracellular
vesicles, including exosomes, is provided in this focus edition by Kalra et al. [5].

Exosomes are released into the extracellular environment by most cell types and play an important
role in inter-cellular communication. In the central nervous system (CNS), exosomes can mediate
neuronal and glia communication, promote neuronal repair and growth and contribute to the
progression of glioblastoma and neurodegenerative disease [6–9] (for a review see [10]). Once released
from the donor cell, exosomes act as discrete vesicles travelling to distant and proximal recipient cells
to alter cell function and phenotype. In the case of prion disease, exosomes alter recipient cell function
by transmitting infectivity and initiating a cascade of events that further spreads and propagates the
disease (for a review see [3]).

The idea that exosomes may be involved in the spreading of pathology in other neurodegenerative
diseases such as AD and PD has recently gained considerable attention with Aβ and α-syn postulated
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to spread and propagate via a similar mechanism to PrP [11,12]. Here, we review the recent
literature regarding the possible roles of exosomes in AD and PD and discuss their potential in
biomarker discovery.

2. Alzheimer’s Disease

Alzheimer’s disease is characterized by the presence of insoluble plaques and tangles composed
of Aβ and hyper-phosphorylated tau (p-tau), respectively. The accumulation of Aβ has been shown
to interfere with synaptic plasticity which is required for neuronal signaling and implicated in
pro-apoptotic signaling leading to neuronal loss. The pathological process is slow with pre-clinical
AD likely to extend for more than two decades [13]. During this period, it is speculated that there is a
gradual reduction of Aβ clearance in the brain and an increase in Aβ accumulation which causes the
pathological hallmarks observed in late AD.

2.1. Association of APP and Its Metabolites with Exosomes

The Aβ isoform 1-42 (Aβ42) has been shown to play a key role in the pathology of AD due to its
ability to form both intracellular and extracellular fibrils and aggregates. Aβ is produced from the
processing of the amyloid precursor protein (APP) which is synthesized in the endoplasmic reticulum
(ER) and then transported through the Golgi apparatus to the trans-Golgi-network (TGN). From
the TGN, APP is transported to the plasma membrane driven by TGN secretory vesicles where it
is then cleaved by β- and γ-secretases [14] to produce Aβ. Aβ can also be generated in the ER and
Golgi within the presence of the β- and γ-secretases causing the intracellular accumulation of Aβ [15].
γ-secretase is able to cleave APP at various positions producing a number of isoforms of monomeric
Aβ ranging from 39 to 43 residues in length. The liberated Aβ peptide, in particular, Aβ42 accumulates
extracellularly and overtime assembles into oligomers and protofibrils leading to amyloid plaque
formation (reviewed in [16]). APP at the plasma membrane can be re-internalised back through the
endocytic and recycling organelles and also via the endosomal/lysosomal degradation pathway where
Aβ can be generated where γ-secretase is located [17,18]. Furthermore, APP can be directly trafficked
from the Golgi to lysosomes where it is cleaved and Aβ can rapidly aggregate in lysosomes due to the
low pH conditions in lysosomes [19]. As Aβ42 has a high propensity to aggregate, it may be likely that
this isoform is protected from degradation in the lysosome and the aggregates could eventually be
released upon stress-induced cell death [19]. In AD, the lysosomal and proteasomal systems have been
found to be dysfunctional in certain areas of the AD brain when compared to healthy controls [20].
It is likely that the endosomal/lysosomal system sits at a crossroad between Aβ production and
degradation thus endosomal/lysosomal dysfunction may contribute to the early pathological changes
seen in AD.

An endosomal organelle that fuses with lysosomes is the multi-vesicular body (MVB), also known
as the late endosome compartment, which arises from the maturation of the early endosome. It is
this point where contents of the MVBs can be sent for lysosomal degradation, recycled back to the
trans-Golgi network or plasma membrane. Several studies have demonstrated that Aβ peptides can
be packaged into intraluminal vesicles (ILVs) within the MVBs and upon fusion of the MVB with the
plasma membrane the ILVs are released into extracellular environment as exosomes [21]. The role of
exosomes in AD was initially explored using APP overexpressing cell lines whereby the appearance of
C-terminal fragments (CTFs) of APP and Aβwere observed in exosomes [22,23]. It is plausible that
exosomes containing Aβ are released to clear and regulate rising intracellular Aβ levels. A summary
of the literature demonstrating Aβ and its association with exosomes can be viewed in Table 1.
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Table 1. Studies pertaining to amyloid-β, exosomes and Alzheimer’s disease.

Exosome Source Findings Transfer? Ref.

In Vitro Source

SKNSH-SY5Y cells (differentiated)
expressing WT APP

‚ APP, CTFs-APP and the amyloid intracellular domain
in exosomes. ˆ [22]

CHO cells expressing WT APP

‚ CTFs-APP, Aβ and several key members of the
secretase family of proteases (BACE, PS1, PS2 and
ADAM10) found in exosomes.

ˆ [23]

N2a cells expressing human
AβPP Swedish mutation

‚ Insulin-Degrading Enzyme found in exosomes is
proteolytically active and assists in the degradation of
endogenous Aβ.

ˆ [24]

N2a and primary cultured hippocampal
cells of Prnp+/+ and Prnp´{´ mice

‚ Immobilization of Aβ oligomers occurs through
binding of PrPc at the surface of exosomes. ˆ [25]

N2a and BV-2 cells

‚ Exosomes promote conformational changes in Aβ to
form nontoxic amyloid fibrils.

‚ Exosomes are internalized into microglia to aid in
Aβ degradation.

‘

[26]

Mouse primary astrocytes and neurons

‚ Astrocyte derived exosomes contain ceramide and
PAR4 which were taken up by astrocytes to promote
exosome-mediated astrocyte cell death.

‘

[27]

Mouse primary astrocytes and neurons

‚ Inhibition of sphingomyelinase by GW4869 reduced
levels of exosomes secretion and consequently Aβ
plaque formation.

‚ Exosomes containing Aβ42 injected into brains of an
AD mice model (5XFAD) instigate aggregation of Aβ.

ˆ [28]
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Table 1. Cont.

Exosome Source Findings Transfer? Ref.

In Vitro Source

BE(2)-M17D cells expressing
WT tau (inducible)

‚ Exosomes contained AD associated N-terminal
phosphor-tau epitopes which was also validated in
CSF samples collected from AD patients.

ˆ [29]

Dendritic cells transfected with Lamp2b
fused to the neuron-specific rabies

viral glycoprotein peptide

‚ Exosomes loaded with siRNA targeted to BACE1 were
delivered into recipient cells in culture and in vivo
resulting in the knockdown of BACE1 and a decrease
in the total β-amyloid 1–42 levels.

‘

[30]

Brains of transgenic mice
overexpressing human APP

‚ APP, CTFs-APP, Aβ and several key members of the
secretase family of proteases (BACE and ADAM10)
were found contained in exosomes.

ˆ [31]

CSF collected from Cynomolgus monkeys
and APP transgenic mice in addition to

primary neuronal and N2a cells

‚ CSF exosomes contained Aβ.
‚ Glycosphingolipid enriched neuronal derived

exosomes were able to capture Aβ as a mode of
Aβ clearance.

ˆ [32,33]

Mouse serum of 5XFAD mice

‚ Increase of exosomes in serum from ceramide
treated mice.

‚ Ceramide treated mice were found to display
increased Thioflavin S positive plaques.

ˆ [34]

Human serum and plasma

‚ Detection of elevated total tau, P-T181-tau, P-S396-tau
and Aβ42 by ELISA in AD patients compared
to controls.

ˆ [35]
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Recent reports suggest exosomes, which are usually isolated from extracellular fluid, can be
extracted from brain tissue [28,31,36–38]. Perez-Gonzalez et al. first described the method, using it
to isolate vesicles from the brains of Tg2576 mice (transgenic mice overexpressing human APP with
the K670N/M671L Swedish double mutation) [31]. They observed increased levels of full length
APP, CTFs–APP fragments, and Aβ in “exosomes” from brains of Tg2576 mice compared to wild
type mice [31]. Using a similar isolation method, Dinkins et al., reported that exosome reduction
in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s
disease [28]. Although interesting findings, the minimal experimental requirements for the definition
of exosomes [39] were not met in these studies, making it difficult to draw conclusions from the data
presented [28].

There is evidence to suggest that exosomes have a protective role in neurodegeneration (reviewed
in [40]). Exosomes can also deliver beneficial factors such as proteolytically active plasma membrane
derived insulin degrading enzyme to assist in degrading extracellular Aβ [24]. Other data has
suggested that proteins found on the surface of exosomes such as the cellular prion protein (PrPC),
a cell membrane-bound glycoprotein, can sequester Aβ induced synaptic dysfunction in the brain
suggesting that exosomes have a protective role in the brain of AD patients [25]. The addition of
neuron-derived exosomes with Aβ42 was found to facilitate a rapid conformational change of Aβ
into nontoxic amyloid fibrils which were internalized by microglia and delivered to lysosomes, aiding
Aβ degradation [26]. This supports the observation that microglia were demonstrated to internalize
secreted exosomes for degradation as seen by the accumulation of labelled exosomes found within
Lamp-1 positive late endosomal or lysosomal compartments in cultured microglia cells [41].

A growing number of studies have shown that dysfunction of autophagy plays a critical role in
Aβmetabolism and the pathogenesis of AD [42,43]. Autophagosomes contain Aβ cleaving enzymes in
addition to Aβ [44] and more recently has been shown to mediate Aβ secretion [43]. Autophagosomes
containing Aβ can fuse with MVBs to form amphisomes and potentially release their ILVs in the form
of exosomes upon fusion with the plasma membrane [45] leading to the extracellular release of Aβ.
The induction of autophagy by rapamycin in vivo has been shown to lower intracellular Aβ levels
leading to improved cognition [46]. Conversely, autophagy-deficient APP transgenic mice through the
knockout of autophagy-related gene 7 (Atg7) displayed an increase in intracellular Aβ accumulation
which lead to neurodegeneration and cognitive impairment [43]. In the same study, extracellular Aβ
was found to be reduced possibly indicating that autophagy deficiency impairs secretion of Aβ to the
extracellular environment.

Ultimately, as AD progresses into its advance stages the accumulation of toxic Aβ aggregates
eventually overwhelms any potential mechanism of clearance. The role of exosome remains
controversial [40]; however, further research will provide insight into whether exosomes are driving
the accumulation of Aβ pathology or providing a method of releasing neurotoxic Aβ, likely identifying
potential therapeutics to balance Aβmetabolism.

2.2. Association of Tau with Exosomes

In addition to amyloid plaques, aggregation of intracellular hyperphosphorylated
microtubule-associated tau protein leading to neurofibrillary tangles is a common pathological
feature of AD. The spread of tau occurs after Aβ plaque deposition which is firstly observed in
the hippocampus and the temporal cortex. Tau pathology spreads to various areas of the brain
responsible for specific sensors or motor function and consequently patients are observed to experience
loss of cognitive function (reviewed in [11]). The mechanism behind the secretion and spread of
tau has achieved less attention compared to Aβ. This is most likely due to the first hypothesis
that tau was released following neuronal death or via an exocytic process [47]. In vitro studies
using tau-overexpressing lines have demonstrated tau secretion can be mediated by exosomes and
passive secretion [29,48,49]. More recently, using healthy untransfected neuronal cultures including
neuroblastoma Neuro2a (N2a) cells and human cortical induced pluripotent stem cells (iPSCs),
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less than 1% of extracellular tau was found in exosomes while the majority of tau was found to be
free-floating consisting of truncated c-terminal fragments of tau. Interestingly, isolating neutrally
derived blood exosomes from a total exosome preparation using immunocaptured using antibodies
targeting neural cell adhesion molecule (NCAM), increased levels of p-tau, P-S396-tau and P-T181-tau
were detected in AD patients compared to healthy controls [35]. Further biochemical studies are
required to determine whether hyperphosphorylated tau associated with AD is found in exosomes
within in vitro and in vivo models.

3. Parkinson’s Disease

PD is a neurodegenerative disease which can be characterised by bradykinesia, resting tremor
and postural instability. In PD, the signature histopathological lesions are known as Lewy bodies (LBs).
Whereas the mechanisms underlying the clinical and pathological features of PD remain to be defined,
the protein α-syn clearly plays a central role in the disease process being the main component of LBs.

Association of α-Synuclein with Exosomes

Following the identification of α-syn in biological fluids including CSF [50] and blood [51], it
became clear that α-syn was not exclusively an intracellular protein. Although the mechanism of
α-syn release has not been fully elucidated, a role for the mitochondrial, autophagy and endosomal
pathways is apparent. Both mutation and overexpression of α-syn result in aberrant processing and
degradation in these pathways leading to release of both exosome associated and free α-syn into the
extracellular environment [52–54]. The first indication that α-syn could be externalised via exosomes
was provided by Emmanouilidou et al., showing that exosomes derived from the conditioned media of
the SH-SY5Y cell line contained α-syn [52]. This finding has since been confirmed by others in neuronal
cell culture models, primary dermal fibroblasts [53–59] and in vivo [60,61]. In addition to being found
in association with exosomes, α-syn has been identified in conditioned media and CSF not exosome
associated [53,57,60,62]. It has been suggested that unlike the prion protein, extracellular α-syn is
predominantly free with exosomes representing a small pool of the total extracellular α-syn [58,62–65].
Further studies are required to ascertain if this is indeed the case in vivo.

Increasing evidence suggests that exosome formation and release maybe modulated by the
autophagy-lysosome pathway (ALP), whereby autophagy induction promotes exosome release, while
conditions that stimulate autophagy can inhibit exosome release [45,66]. Impairments in the ALP
are hallmarks of both sporadic and genetic forms of PD [67] suggesting that exosome release may
be enhanced in PD. Indeed, pharmacological modulators of ALP, such as bafilomycin, inhibit of
fusion of the autophagosome to the lysosome, consequently enhancing the release of α-syn in
association with exosomes [53,54,59]. Bafilomycin treatment of H4 cells transfected with α-syn
reduced intracellular α-syn aggregation but increased secretion of smaller oligomers by exosomes
and RAB11A-associated pathways whereas high-aggregated α-syn was secreted by membrane
shedding [59]. The mitochondrial complex I inhibitor, rotenone, is an environmental toxin, known to
induce PD [68]. Rotenone impairs mitochondrial function but is also suggested to impair autophagic
flux and lysosomal functions [69]. When treated with rotenone, enteric neurons release a greater
number of exosomes containing α-syn [58]. Whilst bafilomycin and rotenone promote exosome release,
the autophagy enhancer rapamycin decreased α-syn oligomer signal in exosomes, suggesting that
enhanced lysosomal activity decreases exosomes release and providing further evidence of deregulated
exosome release in PD.

A number of genes linked to PD have roles in autophagic and endocytic pathways including,
LRRK2, VPS35 and PARK9 with evidence slowly coming to light linking these genes to exosome
biogenesis and release. LRRK2 protein is implicated in protein sorting, trafficking and autophagy
and is released in association with exosomes [70,71], VPS35 is involved in endosomal trafficking [72]
and PARK9 protein is a P-type transport ATPase found in MVBs [55,73] and shown to regulate
exosome biogenesis [55,56]. Elevated PARK9 expression increased α-syn externalization in exosomes
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from SH-SY5Y and H4 cells and mouse primary cortical neurons [55,56]. Interestingly, PARK9
overexpression reduced intracellular α-syn levels in SH-SY5Ys and increased α-syn externalization in
exosomes [55]. By contrast, PD patient fibroblasts with loss of PARK9 function have a decreased number
of intraluminal vesicles in MVBs and diminished release of exosomes into culture media [56]. Whether
PARK9-mediated externalization benefits the exporting cell by decreasing intracellular levels of α-syn
but consequently confers α-syn toxicity to surrounding cells is unknown [55]. Kong et al. proposed
that the increased export of exosome-associated α-syn may explain why surviving neurons of the
substantia nigra pars compacta in sporadic PD patients were observed to over-express PARK9 [55,74].

Together, these studies suggest that α-syn is released into the extracellular environment when
cellular pathways fail. The importance, however, of an exosome versus exosome independent pathway
to α-syn spread and propagation is still unclear and an area of intense study. A summary of the
literature demonstrating α-syn and its association with exosomes can be viewed in Table 2.
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Table 2. Studies pertaining to α-synuclein, exosomes and Parkinson’s disease.

Exosome Source Findings Transfer? Ref.

In Vitro Source

SH-SY5Y o/e WT α-syn

‚ α-syn is constitutively secreted in
exosomes and release of exosomal α-syn is
calcium dependent.

ˆ [52]

‚ Lysosomal dysfunction increases release of
α-syn in exosomes and α-syn transmission
to recipient cells.

‘

[54]

SH-SY5Y cells (differentiated) expressing
WT α-syn (inducible)

‚ Only a small portion of secreted α-syn is
in exosomes.

‚ Extracellular, not exosomal α-syn, alters
recipient cell function.

ˆ [57]

SH-SY5Y o/e WT or A53T α-syn

‚ α-syn in neuronal cell media and CSF is
abundant in the neat supernatant,
not exosome.

ˆ [62]

Primary neurons and H4 cells o/e WT α-syn

‚ Autophagy regulates α-syn secretion.
‚ α-syn oligomers are located inside and

outside exosomes and are more prone to
internalization than exosome-free α-syn
oligomers and induce greater toxicity.

‘

[53]

PC12 cells o/e α-syn A30P´/+ p25α

‚ A small fraction (3% of total secreted
α-syn) of α-syn monomer is associated
with exosome.

ˆ [63]

N2a cells WT and o/e α-syn
‚ Exosomes catalyse aggregation of

exogenous α-syn. ˆ [75]
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Table 2. Cont.

Exosome Source Findings Transfer? Ref.

In Vitro Source

SH-SY5Y or HEK293 o/e WT α-syn with or
without PARK9 expression

‚ Elevated PARK9 expression reduces intracellular
α-syn levels and increases α-syn externalization
in exosomes.

‚ PARK9 regulates exosome biogenesis.

ˆ [55]

mouse primary neurons (o/e or KD of
PARK9) and patient fibroblasts

‚ PARK9 regulates exosome biogenesis.
‚ The amount of α-syn in exosomes correlates with

PARK9 expression.
ˆ [56]

H4 cells o/e low or high aggregating α-syn

‚ Low-aggregated α-syn is released by exosomes and
RAB11A-associated pathways whereas
high-aggregated α-syn is secreted via
membrane shedding.

ˆ [59]

Enteric primary neurons
‚ Rotenone increases release of α-syn

containing exosomes. ˆ [58]

Mouse and human plasma
‚ α-syn in plasma L1CAM-containing exosomes is

higher in PD compared to healthy controls. ˆ [60]

Patient urine and CSF ‚ LRRK2 detected urine and CSF derived exosomes. ˆ [70]

Patient sera

‚ 23 exosome-associated proteins differentially
abundant in PD patient sera exosomes. Did not
detect an enrichment of α-syn in PD patient sera
derived exosomes.

ˆ [76]

Patient urine
‚ LRRK2 and DJ-1 detected in urinary exosomes.
‚ Increased DJ-1 in male PD patient urinary exosomes. ˆ [71]

Human CSF N2a and Oli-neu cells

‚ α-syn is in human CSF exosomes and located inside
exosomes, not outside.

‚ Sumoylation regulates exosomal release of α-syn.
ˆ [61]
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4. Use of Exosomes in Biomarker Discovery for Alzheimer’s and Parkinson’s Disease

Exosomes can be isolated from extracellular fluids including cerebrospinal fluid (CSF) [77,78],
blood [79] and urine [80]. As exosomes represent an enriched source of biomolecules, including
proteins and nucleic acids, they are hypothesized to provide a peripheral non-invasive biomarker for
neurodegenerative diseases that would be more reliable than neat CSF, blood or urine [79].

Many groups have analyzed CSF levels of Aβ42, total tau, p-tau, α-syn as biomarkers for
neurodegenerative disease [35,81–86]. Variations in CSF biomarker measurements have been observed
across laboratories. Studies have shown a significant decrease in CSF Aβ42 levels [84,86] or an increase
in both p-tau and Aβ42 levels [35] in AD patients. Others have shown an increase in p-tau in AD
patients but no significant correlation with CSF Aβ42 levels in AD patients compared to healthy
patients or non-AD dementia disorders [81]. Several studies have explored the potential use of α-syn
as a PD diagnostic biomarker in CSF, but the results are inconsistent with some studies showing lower
α-syn in the CSF of PD patients whereas other studies show no significant change [82,83].

Exosomes extracted from CSF were enriched in proteins derived from the brain such as microglia
markers (CD11b and CD45), neuron specific markers (ENO2) and vesicle associated membrane
protein 2 (VAMP2) [87]. Other proteins such as prion protein (PRNP), neurogenic locus notch homolog
protein 3 (NOTCH3), apolipoprotein E (APOE) associated with neurodegenerative diseases were also
enriched in CSF exosomes [87]. A significant increase of total tau and p-tau was detected in exosomal
CSF samples collected from postmortem AD patients compared to controls [29]. However, the increase
of total tau and p-tau was not detected in the same samples when using whole CSF owing to the
observation that there was an enrichment of p-tau in the exosomal samples relative to whole CSF [29].
APP has also been detected in CSF exosomes [88] and in some cases found enriched in the supernatant
rather than in the exosome fraction of CSF [87]. To our knowledge, α-syn has been found in association
with CSF exosomes [64]; however, the diagnostic potential is yet to be explored.

LRRK2 and DJ-1, proteins implicated in PD, have been identified in urinary and CSF exosomes.
Expression of LRRK2 in urinary exosomes was variable in clinical populations, making it difficult
to assess possible LRRK2 changes between PD cases and controls [70]. The authors suggest that
future studies with more samples may address some aspects of power, but it seems unlikely that the
LRRK2 measurement in urine alone would provide a valuable diagnostic tool [70]. DJ-1 in urinary
exosomes has been proposed as a biomarker for PD in males, although a detailed study with a larger
sample size is required to validate preliminary studies [71]. Proteomic analysis of PD patient sera
derived exosomes performed on grouped samples of patients with genetic and sporadic forms of
PD and healthy subjects identified 23 exosome-associated proteins that were differentially abundant
in PD, including the regulator of exosome biogenesis syntenin 1 [76]. These protein changes were
detected despite similar exosome numbers across groups suggesting that they may reflect exosome sub
populations with distinct functions or selective packaging. Based on the findings of this study, it would
be worth investigating the biomarker potential of the identified proteins using a larger clinical PD
cohort. There are several reports of cell-free plasma biomarkers for classifying AD patients from healthy
controls [89–91]. Although these studies show high accuracy for predicting AD, the concern for using
blood based biomarkers is the relevance to brain disease. Recently, the Goetzl laboratory undertook
a different approach by using immunochemical methods to harvest and enrich for brain derived
exosomes in blood using NCAM and L1 cell adhesion molecule (L1CAM) [35,92,93]. In particular, they
were able to specifically analyze levels of Aβ and p-tau levels from exosomes possibly derived from
the brain thus removing noise generated from a general pool of exosomes found in the bloodstream.
Furthermore, 12%–17% of exosomes within the total plasma exosomal population expressed NCAM
and L1CAM [35]; however, it is not conclusive whether the immunocaptured exosomes are bona-fide
exosomes due to the lack of characterization published in their studies. NCAM and L1CAM are
not specifically unique to the brain as they are also expressed throughout the renal system [94,95].
Using a similar approach, α-syn was detected in human plasma derived exosomes (L1-CAM antibody
captured), with patient (267 PD patients) plasma exosomes containing elevated levels of α-syn relative
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to healthy controls (215 aged matched) [60]. Total plasma α-syn levels remained unchanged [60] and
no change was found in patient sera derived exosomes [76], suggesting that L1-CAM antibodies may
capture a distinct, possibly CNS derived, exosome population [60]. These immunochemical capture
methods provide a novel approach to improve specificity of disease biomarkers.

The nervous system is a rich source of miRNA [96], which may reflect the onset and stages of
neurodegenerative disease [97]. Although miRNA can be found in CSF, they are more abundant
in blood and have greater stability. Profiling of circulating miRNA associated with AD has been
performed by various groups [91,98,99] and others have shown some or no correlation with CSF
biomarkers [100,101]. While most of these studies utilize free circulating miRNA, exosomes provide
a protective environment for the extracellular transfer of genetic material and have been shown to
be enriched with miRNA species [79,102]. Using human serum collected from AD patients and
healthy controls, a panel of 16 miRNAs was found to be differentially expressed in exosomes of AD
patients which correlated with other methods of diagnosis such as brain-imaging, neuropsychometric
testing and APOE ε4 genotyping [103]. This demonstrates the feasibility of using exosomal miRNA
as a complementary tool with other biomarkers to act as a pre-screening tool for both AD and PD.
The profile of exosomal miRNA in PD patient blood has not yet been determined; however, it should
be explored given reports of deregulated miRNA in PD patient blood and brain tissue [104–108].

In future studies, it would be interesting to determine whether brain derived exosomes contain
the miRNA species detected in peripheral exosomes and whether exosomal miRNA are able to disrupt
gene expression to further promote neurodegeneration.

5. Conclusions

5.1. A Role for Exosomes in Protein Propagation in Alzheimer’s and Parkinson’s Disease?

A number of studies have indicated that Aβ and α-syn exhibit a prion-like self-propagation
characteristic causing these toxic proteins to further aggregate and form assemblies of small oligomers
to large plaques or inclusions. The deposited proteins act as a template to instigate further progression
of the disease which then spread throughout the brain. The putative spread of these neurotoxic
lesions has been proposed to be mediated by exosomes. An increasing number of studies has
demonstrated that the propagation of the prion protein that occurs in prion diseases, such as
Creutzfeldt-Jakob disease, is via an exosomal pathway [109,110]. The infectious prion protein replicates
by recruiting and converting the cellular form of the prion protein (PrPc) to the abnormal protein
isoform (PrPsc). The infectious pathogen can then be incorporated into exosomes as a mode of
cell-to-cell contact to spread infection through tissues of the lymphoreticular system before invading
the central nervous system as reviewed in [3], raising the question—does Aβ and α-syn propagation
occur via a similar mechanism?

Aβ seeds have been shown to initiate Aβ accumulation and spread in the brain through studies
using APP transgenic mice and performing intracerebral injections of Aβ-rich brain material from
patients with AD or from aged APP transgenic mice [111]. Aβ lesions were observed to spread
throughout the neocortex and hippocampal region followed by the thalamus and septal nuclei
within 12 months of the intracerebral injection of Aβ rich extract [112]. Evidence of internalization
has been described by studies investigating cell-to-cell transfer of Aβ [113,114]. Differentiated
SH-SY5Y cells were able to transfer tagged Aβ peptides which were internalised in co-culture
experiments [114]. The internalised Aβ co-localized with lysosomes; however, the exact mechanism of
transfer was not investigated [114]. The phenomenon suggests that Aβ can be transferred cell-to-cell
and potentially spread the pathology throughout the brain. Furthermore, astrocytes treated with
amyloid peptides were found to trigger release of pro-apoptotic exosomes containing ceramide and
PAR4 (prostate apoptosis response 4) [27]. These exosomes were taken up by astrocytes to further
promote apoptosis, leading to exosome-mediated astrocyte cell death and potentially contributing to
neurodegeneration [27].
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Other studies have demonstrated that microvesicles (MVs) can play a harmful role by contributing
to the accumulation of extracellular toxic Aβ in the brain. MVs are larger plasma membrane-derived
vesicles of approximately 100–1000 nm which are secreted through the outward budding of the cell
surface. Together with exosomes, MVs have also been shown to play an important role in cell-to-cell
communication. Joshi et al. demonstrated that microglia-derived MVs provided an endogenous source
of lipids to promote the formation of neurotoxic Aβ42 [115]. This supports the observation that lipids
are able to activate fibrillisation of monomeric Aβ [116]. To further fuel the generation of neurotoxic
Aβ, activated microglia found surrounding amyloid plaques were found to internalise Aβ42 leading
to aggregation of Aβ42 in association with MVs as seen by confocal microscopy [115]. In the same
study, exosomes secreted from microglia were also found to contain Aβ42, significantly less, however,
compared to MVs.

To demonstrate the seeding hypothesis in tauopathies, tau fibrils were transduced into
tau-overexpressing cells which promoted the misfolding and fibrillisation of intracellular tau
resembling neurofibrillary tangles [117]. The uptake of tau seeds was found to occur spontaneously
through absorptive endocytosis whereby only a small quantity of tau fibrils was required to
instigate the development of intracellular filamentous tau. Furthermore, the spread of tau through
interconnected regions of the brain has also been demonstrated to induce tauopathy in tau-transgenic
mice [118,119].

Fetal mesencephalic grafts transplanted into the striatum of patients with PD develop α-syn
positive and ubiquitin positive Lewy bodies more than a decade after transplantation, suggesting that
α-syn oligomers and pathology can transfer from host-to-graft [120,121] and that α-syn has “prion-like”
activity. Indeed, exosomes are capable of transferring α-syn to recipient cells in vitro [52–54] with
α-syn oligomers associated with exosomes more toxic to recipient cells compared to non-exosome
associated α-syn oligomers [53]. Although non-exosome associated α-syn can be taken up by cells,
exosome α-syn oligomers are more prone to internalization by recipient cells [53] with transmission
to recipient cells relative to the amount of α-syn released from the donor cells [54]. If disrupted by
sonication prior to incubation with recipient cells, exosomal α-syn transfer is prevented, indicating
that intact exosomes are required for efficient transfer and subsequent neurotoxicity [53,54].

There is increasing evidence that interactions with lipid bilayers play a role in α-syn aggregation
and the pathogenesis of PD [75,122,123]. Using Thioflavin T fluorescence to monitor aggregation
kinetics, Grey et al. recently found that exosomes catalyze the aggregation of α-syn in a similar manner
to low concentrations of preformed α-syn fibrils [75]. Aggregation of exogenous α-syn was accelerated
by exosomes irrespective of whether they were derived from control cells or cells over-expressing
α-syn. Lipid vesicles prepared from extracted exosome lipids accelerated aggregation, suggesting that
the lipids in exosomes were sufficient for the catalytic effect to arise [75].

Identification of the mechanisms of cell-to-cell transmission of pathology-associated proteins
would provide a molecular pathway that could be targeted by novel therapies with the aim of
disrupting or delaying spread and the subsequent progression of disease. The importance of an
exosome versus exosome independent pathway to Aβ and α-syn spread and propagation is still
unclear and remains an area of intense study.

5.2. The Use of Exosomes as Therapeutics

The discovery that double-stranded RNA (RNA interference; RNAi) could silence genes by
degrading mRNA in a sequence-specific manner led to investigations into the use of RNAi for
therapeutic purposes [124,125]. As siRNA can be rapidly degraded, there has been substantial interest
in using exosomes for the delivery of siRNA in vivo. Cooper et al. developed modified exosomes that
specifically target the brain by expressing a brain-targeting peptide (rabies virus glycoprotein peptide;
RVG) [126] and loaded them with α-syn siRNA. To evaluate whether this approach could decrease
α-syn aggregates in the brain, mice expressing the human phosphorylation-mimic S129D α-syn were
injected with RVG-exosomes loaded with siRNA α-syn. This resulted in decreased α-syn mRNA and
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protein levels throughout the brain seven days after injection and reductions in intraneuronal protein
aggregates, including in dopaminergic neurons of the substantia nigra [126]. A similar approach using
RVG-exosomes was also used to deliver siRNA targeted to knockdown BACE1, a therapeutic target
for AD [30]. More recently, intracerebral administration of exosomes enriched with glycosphingolipids
was able to clear extracellular Aβ resulting in a decreased deposition of Aβ in the brain of APP
transgenic mice [32,33]. However, recent work from Dinkins et al. administrated subcutaneous
ceramide injections to 5XFAD mice to increase circulating exosomes and aid exosome-mediated
clearance of Aβ [34]. Although amyloid levels did not significantly change, ceramide-treated 5XFAD
mice displayed an increase in cortical plaque number [34]. Further work needs to be carried out to
determine whether increasing or decreasing exosome secretion is beneficial in human AD.

An exosomal-based delivery system for the antioxidant, catalase, has been tested in vitro and
in vivo for models of PD [127]. Catalase loaded exosomes (generated ex vivo) were readily taken up
by neuronal cells in vitro and some exosomes were detected in PD mouse brains following intranasal
administration. The catalase loaded exosomes provided neuroprotective effects in an in vivo model of
PD by decreasing neuroinflammation [127]. These novel approaches pave the way to clinical trials
aimed at exosome delivery of siRNA or next generation drug delivery via exosomes to delay a range
of neurodegenerative diseases including Alzheimer’s and Parkinson’s disease.

In the last decade, there has been an increasing tread of research into exosomes which has
expanded into neurodegenerative diseases. The body of evidence demonstrates that exosomes play
an important part in communication in the brain. Although so far only confirmed in prion disease,
the consensus in the field is that exosomes function as Trojan horses facilitating the accumulation
and spread of neurodegenerative disease associated protein in the brain with in vivo data to support
this hypothesis in AD and PD forthcoming. Upon understanding the physical nature of exosomes,
it may be possible to manipulate their contents to deliver therapeutic factors to delay the onset
of neurodegeneration.

For further information on the basic properties of extracellular vesicles, their involvement in
malignant diseases, their role in cell-to-cell communication, as drug delivery vehicles, and as stem
cell-derived therapeutics, the reader is referred to the various reviews of this focus edition [5,128–131].
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