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Abstract: The tumor targetability and stimulus responsivity of drug delivery systems are crucial
in cancer diagnosis and treatment. In this study, hepatoma-targeting mixed micelles composed
of a hyaluronic acid–glycyrrhetinic acid conjugate and a hyaluronic acid-L-histidine conjugate
(HA–GA/HA–His) were prepared through ultrasonic dispersion. The formation and characterization
of the mixed micelles were confirmed via 1H-NMR, particle size, and ζ potential measurements.
The in vitro cellular uptake of the micelles was evaluated using human liver carcinoma (HepG2)
cells. The antitumor effect of doxorubicin (DOX)-loaded micelles was investigated in vitro and
in vivo. Results indicated that the DOX-loaded HA–GA/HA–His micelles showed a pH-dependent
controlled release and were remarkably absorbed by HepG2 cells. Compared with free DOX, the
DOX-loaded HA–GA/HA–His micelles showed a higher cytotoxicity to HepG2 cells. Moreover,
the micelles effectively inhibited tumor growth in H22 cell-bearing mice. These results suggest that
the HA–GA/HA–His mixed micelles are a good candidate for drug delivery in the prevention and
treatment of hepatocarcinoma.
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1. Introduction

Synthetic or natural polymer nanoparticles have attracted increasing attention as drug delivery
devices because of their chemical structures, surface functionalities, and particle size [1–3]. Given their
non-toxicity, biocompatibility, and biodegradability, nano-sized self-aggregates composed of natural
polysaccharides, such as chitosan [4,5], hyaluronic acid (HA) [6,7], pullulan [8], and dextran [9]
have captured the interest of many researchers. Hydrophobically modified polysaccharides can
self-aggregate in aqueous media through intra- and/or intermolecular hydrophobic interactions to
form nanoparticles with a hydrophobic core and a hydrophilic shell. These amphiphilic polymers are
suitable for encapsulating hydrophobic anticancer drugs, such as doxorubicin (DOX) and paclitaxel.
Drug-loaded carriers effectively prolong the circulation time and release of drugs in a sustained
manner at their target site through the enhanced permeability and retention effects of such carriers [10].
Moreover, nano-sized carriers modified by targeting moieties, such as folic acid [11], antibodies [12],
and various ligands, can bind to specific receptors and be absorbed via receptor-mediated endocytosis,
thereby bypassing the recognition of P-glycoprotein [13].

HA is a natural linear, negatively charged polysaccharide. As one of the main hydrophilic
components of the extracellular matrix, HA is biocompatible, biodegradable, and present in the
extracellular matrix and synovial fluids. HA-binding receptors, such as cluster determinant 44 (CD44)
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and receptor for HA-mediated motility, are overexpressed on many types of tumors [14,15]. Thus, HA is
potent as a targeting moiety in pharmaceutical applications for anticancer therapeutics. Recent studies
have found that HA conjugates containing anticancer agents, such as paclitaxel [15,16], DOX [17,18],
and siRNA [19,20], exhibit an enhanced targeting ability to the tumor and a higher therapeutic efficacy
compared with free anticancer drugs.

Liver cancer is a prevalent cancer with a high mortality. Liver-targeting drug delivery is
a highly desirable strategy to improve therapeutic outcomes; this strategy has significantly lower toxic
side-effects compared with traditional chemotherapy [21]. In the past decade, many scientists have
prepared drug delivery carriers with liver-targeting moieties, such as antibodies [22,23], sugars [24],
and various ligands, for the targeted therapy of hepatocellular carcinoma. Glycyrrhetinic acid (GA)
receptor-mediated drug delivery systems have attracted growing interest for the treatment of liver
cancer because of their lower cost than antibodies [25]. GA surface-modified nanoparticles remarkably
improve liver-targeting efficiency and inhibit liver cancer growth [26–28].

In our previous study, we prepared and characterized amphiphilic HA polymers as nano-delivery
vehicles for DOX [29,30]. Self-assembled nanoparticles based on HA have great capabilities in
the solubilization and delivery of hydrophobic drugs to target CD44-overexpressing tumor cells.
In this study, we aim to develop hepatoma-targeting mixed micelles by combining two strategies:
pH-responsible drug release and GA receptor-mediated targeting of hepatoma cells.

Hepatoma-targeting mixed micelles composed of a HA–glycyrrhetinic acid conjugate (HA–GA)
and a HA-L-histidine conjugate (HA–His) were fabricated. The physicochemical characteristics of the
micelles were investigated using dynamic light scattering, ζ potential measurements, and transmission
electron microscopy (TEM). The cellular uptake of DOX-loaded micelles in vitro was monitored using
human liver carcinoma (HepG2) cells, and the antitumor effect of the DOX-loaded nanoparticles was
studied in vitro and in vivo.

2. Results and Discussion

2.1. Synthesis and Characterization of HA-L-Histidine Conjugate (HA–His) and Hyaluronic
Acid-Glycyrrhetinic Acid (HA–GA) Conjugates

A HA–His conjugate was synthesized as previously described [30], and a HA–GA conjugate
was synthesized using HA as a hydrophilic segment and GA as a hydrophobic segment through
4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT–MM)-mediated coupling
reactions (Figure 1). 1-Ethyl-3(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/
NHS) is the standard method to activate carboxyl groups for amide formation. However, DMT–MM is
more efficient than EDC/NHS in ligating amines to HA and does not require accurate pH control or
pH shift during the reaction [31,32].
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The structure of the HA–GA conjugate was confirmed via 1H-NMR. The 1H-NMR spectra of HA,
GA, and the HA–GA conjugate were shown in Figure 2. Chemical shifts corresponding to HA (2.0
and 3.3–4.7 ppm) were observed, and the characteristic peaks at 0.64–1.37 ppm were assigned to the
typical protons of the GA moiety. The successful introduction of GA into HA was indicated by the
presence of characteristic peaks at 0.6–1.4 ppm [27,33]. The degree of substitution (DS) was determined
by comparing the average number of GA molecules attached per 100 HA molecules. The DS was
controlled within 3–20 by varying the free ratio of GA to HA polymers.
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Figure 2. 1H-NMR spectra of HA, GA, and the HA–GA conjugate.

2.2. Preparation and Characterization of HA–GA/HA–His Micelles

Self-assembled HA–GA/HA–His mixed micelles were prepared using a simple ultrasonic method.
His and a large part of GA were clustered in the core, whereas the hydrophilic backbone of HA served
as the shell, as it is shown in Figure 3.
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Figure 3. Preparation of HA–GA/HA–His mixed micelles.

The average size of the HA–GA/HA–His mixed micelles was influenced by the mixing ratio of
the two polymers. As shown in Table 1, the particle size of the mixed micelles increased from 147.5
to 328.2 nm as the ratio of HA–GA to HA–His (w/w) was decreased from 1:1 to 1:20. This result
indicates that the particle size of the mixed micelles increased with increasing HA–His content.
The ionization–deionization of the imidazole ring possibly caused the disintegration and aggregation
of the micelles in aqueous solution. The HA–GA/HA–His (1:1, w/w) micelles were chosen as the
representative candidate for further studies because of their low particles size.
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Table 1. Mean diameters and ζ potential measurements of HA–GA/HA–His mixed micelles at
different rates.

HA–GA/HA–His DLS (nm) PDI ζ Potential(mV)

1:1 147.5 ˘ 11.8 0.151 ´18.3 ˘ 1.2
1:2 182.3 ˘ 15.1 0.148 ´19.1 ˘ 1.4
1:5 239.1 ˘ 25.8 0.184 ´21.5 ˘ 0.7

1:10 291.6 ˘ 31.2 0.216 ´22.6 ˘ 1.3
1:20 328.2 ˘ 36.7 0.209 ´24.2 ˘ 1.8
0:1 327 ˘ 47.2 0.289 ´24.4 ˘ 2.4

The TEM image and particle size distribution of the HA–GA/HA–His micelles in Figure 4
revealed that the micelles were intact, well-separated, and spherical. The pH responsibility of the
HA–GA/HA–His micelles was measured to determine the effect of pH on the particle size and ζ

potential of the micelles (Figure 4C). The average particle diameter ranged from 147.4 to 158.6 nm at
external pH 7.4–7.0. This result suggests that the mixed micelles could be stable at pH value of 7.4
to 7.0. Stepwise shifts in the pH of the solution to lower pH values resulted in a sudden increase in
average particle size. The particle diameter increased to 248.5 nm at pH 6.8, whereas increased to 374.2,
500.2 and 607.6 nm at pH 6.4, 6.0 and 5.5, respectively [34]. This pH-sensitive ability was probably
due to the deformation of the hydrophobic core induced by the ionizable imidazole rings of His; these
rings were protonated at acidic pH, which triggered the dissociation and increased the size of the
micelles [35]. The ζ potential was measured to reveal the surface charge variation of the micelles at
different pH values. Figure 4C showed that the absolute value of the ζ potential decreased when the
pH was changed from 7.4 to 5.5, whereas the HA–His micelles remained negatively charged because
of the weak acidity of HA (pI = 2.5). This result may be attributed to the fact that the ionized His group
dissociated from the micelle core through the “proton sponge” effect, which decreased the surface
charge of the mixed micelles.Int. J. Mol. Sci. 2016, 17, 364 5 of 14 
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Int. J. Mol. Sci. 2016, 17, 364 5 of 13

2.3. Drug Encapsulation Efficiency and in Vitro Drug Release

When the initial feed ratio of DOX to the HA–GA/HA–His micelles was 10 wt %, DOX was
physically incorporated into the HA–GA/HA–His mixed conjugate. The drug loading (DL) capacity
and encapsulation efficiency (EE) of the DOX-loaded micelles were 91.43% and 8.64%, respectively.
This finding indicates that the hydrophobic DOX molecules were efficiently encapsulated into the
HA–GA/HA–His micelles in aqueous solution because of the presence of a hydrophobic core in the
micelles. The DOX-loaded micelles were found to have a mean diameter of 162 ˘ 6.8 nm (mean ˘ SD;
n = 3). Compared to blank micelles, the DOX-loaded micelles showed a slight increase in micelle size.
The surface charge was ´17.9 ˘ 4.7 mV (mean ˘ SD; n = 3) in ζ potential measurement, which showed
the high stability in water.

The in vitro drug release behavior of the HA–GA/HA–His micelles was investigated under
physiological conditions (pH 7.4), tumor acidic microenvironment (pH 6.4), and intralysosomal pH
(pH 5.5) at 37 ˝C. As shown in Figure 5, the DOX release was significantly influenced by pH. Within
5 h, 14.6 wt % of DOX was released from the micelles at pH 7.4, whereas 21.4 and 27.8 wt % were
released at pH 6.4 and 5.5, respectively. Within 48 h, 37.9 wt % of DOX was released from the micelles
at pH 7.4, whereas 49.5 and 67.9 wt % were released at pH 6.4. The results suggest that the DOX-loaded
HA–GA/HA–His micelles exhibited a sustained DOX release under physiological conditions and
a faster release under tumor microenvironment and lysosomal pH in tumor cells.
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Figure 5. Release behavior of DOX from HA–GA/HA–His micelles at different pH values in vitro.

The drug release mechanism of the micelles might be determined by diffusion and/or degradation.
The in vitro release studies showed that the rate and amount of DOX release increased with decreasing
pH. The micelles possibly possessed compact hydrophobic cores composed of His and GA, and the
DOX release from the cores was almost completely diffusion controlled under physiological conditions
(pH 7.4), which led to a slow release rate. However, the imidazole ring of His was protonated, and the
compact hydrophobic cores became swollen at lower pH (6.4 and 5.5) because the charged imidazole
ring resulted in large amounts of DOX release [35].

2.4. In Vitro Cellular Uptake of GA–HA/His–HA Micelles

Fluorescein isothiocyanate (FITC)-labeled micelles were successfully synthesized to investigate
the cellular uptake of the HA–GA/HA–His micelles. FITC served as a fluorescence probe to track the
HA–GA/His–GA micelles, and cell nuclei were labeled with DAPI (blue fluorescence). As shown
in Figure 6A, strong green fluorescent signals were detected in the cytoplasm of HepG2 cells after
incubation with FITC-labeled HA–GA/HA–His micelles for 2 h. This result indicates that the micelles
were readily internalized into HepG2 cells.
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Figure 6. Fluorescence micrographs of HepG2 cells treated with FITC-labeled micelles (A); The cellular
uptake of DOX-loaded micelles against HepG2 cells (B) and MCF-7 cells (C). FITC channel for
FITC-labeled micelles (green), TRITC channel for DOX (red), and DAPI channel for nucleus (blue) were
simultaneously presented.

The presence of GA in HA–GA/HA–His micelles is essential for hepatoma-targeting drug
delivery. The intracellular uptake of the DOX-loaded HA–GA/HA–His micelles was investigated using
fluorescence microscopy (Figure 7B,C). DOX-loaded micelles were incubated with liver carcinoma
cells (HepG2) over-expressing GA-receptor or non-hepatic tumor cells (MCF-7) for 0.5, 2 and 4 h. DOX
served as a fluorescence probe to track the DOX-loaded micelles. As shown in Figure 6B, cellular uptake
of DOX increased with the extension of incubation time; however there were significant differences
between the two DOX-loaded micelles against HepG2 cells. Red fluorescence spots were remarkably
observed in the cytoplasm of HepG2 cells after incubation for 2 and 4 h. This finding suggests that
the DOX-loaded HA–GA/HA–His micelles were readily taken up by HepG2 cells. By contrast, the
red fluorescence of DOX was weak when DOX-loaded HA–His micelles were incubated with HepG2.
This phenomenon may be attributed to the fact that GA receptor-mediated endocytosis promoted the
cellular uptake of the DOX-loaded HA–GA/HA–His micelles. Moreover, when DOX-loaded micelles
were incubated with MCF-7 cells, which did not over-express GA-receptor, no significant difference
was observed between two treatments. These results suggest that the presence of GA in the mixed
micelles might play a major role in hepatocyte-targeting activity [36,37].
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2.5. In Vitro Cytotoxicity Assay and in Vivo Anti-Tumor Efficacy

The cytotoxicity against HepG2 cells and the antitumor efficacy in hepatoma-tumor-bearing
mice were tested to evaluate the antitumor efficiency of the DOX-loaded HA–GA/HA–His micelles.
The cytotoxicity of the blank micelles and DOX-loaded micelles was investigated using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cell viability of blank
micelles was measured after 48 h incubation. As shown in Figure 7A, the cellular viability of blank
micelles was over 90% at all concentrations (10–1000 mg/mL) tested. It indicated that HA–His micelles
and HA–GA/HA–His mixed micelles were biocompatible and could be used as nano-sized vehicle for
DOX delivery.

The viability of HepG2 cells after respective incubations with free DOX, DOX-loaded
HA–GA/His–GA micelles, or DOX-loaded HA–His micelles for 48 h was evaluated. As shown
in Figure 7B, the three DOX formulations exhibited similar dose-dependent cytotoxic effects against
HepG2 cells. The half maximal inhibitory concentration (IC50) of DOX-loaded HA–GA/HA–His
micelles was determined to be 1.46 DOX equiv/mL, which was nearly 4-fold lower than that of
DOX-loaded HA–His micelles (5.29 DOX equiv/mL), and comparable to that of free DOX (1.19 µg
DOX/mL). These results might be attributed to the fact that the introduction of GA to the micelles
promoted the cellular uptake of DOX because of the high affinity of the GA-modified micelles to HepG2
cells, thereby endowing the micelles a remarkable cytotoxicity against the hepatoma cells [21,36].

The antitumor efficacy of the DOX-loaded micelles on the H22 cell-bearing mice was tested.
As shown in Figure 8, tumor growth was observed for 14 days in the mice injected with free DOX,
DOX-loaded HA–His micelles, DOX-loaded HA–GA/HA–His micelles, blank HA–GA/HA–His
micelles, or physiological saline (control). For the groups of saline and blank HA–GA/HA–His micelles,
the tumors grew rapidly with similar tendency during the test period, indicating the inefficacy of
HA–GA/HA–His micelles. Whereas, the tumor growth could be markedly inhibited in the drug-treated
groups. In vivo tumor inhibition ratio of DOX-loaded HA–GA/HA–His micelles was 78.5%, showing
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higher than that of DOX-loaded HA–His micelles (69.1%) and free DOX injection (72.3%). Compared
to free DOX, the DOX-loaded HA–GA/HA–His micelles possibly increased drug accumulation in
the tumor, which improved their antitumor efficiency. Moreover, the result showed that DOX-loaded
HA–GA/HA–His micelles exhibited stronger tumor regression than DOX-loaded HA–His micelles.
This suggests that the introduction of GA molecular might be effective for hepatoma-targeting delivery,
resulting in higher antitumor efficacy than GA-free micelles [38].
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All H22 cell-bearing mice were sacrificed after 14 days of treatment, and the tumors were extracted.
As shown in Figure 9, the tumor size of the free DOX¨HCl group, or the DOX-loaded micelle group
was smaller than that of the saline group. This result indicates the remarkable antitumor effect of the
free DOX¨HCl and DOX-loaded micelles. Compared with the group treated with the DOX-loaded
HA–His micelles, the group treated with the DOX-loaded HA–GA/HA–His micelles had a smaller
tumor size. This result suggests that the HA–GA/HA–His mixed micelles possessed a higher targeting
capacity than the HA–His micelles because of the active hepatic targeting properties of GA.Int. J. Mol. Sci. 2016, 17, 364 9 of 14 
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The results of cytotoxicity assay in vitro and antitumor efficacy experiment in vivo showed that
the HA–GA/HA–His micelles can deliver DOX effectively and inhibit the growth of hepatocellular
carcinoma. Thus, these micelles have potential importance in pharmaceutical applications.

3. Materials and Methods

3.1. Materials

Sodium hyaluronate (Mw: 70 kDa) was purchased from Shandong Freda Biopharm Co., Ltd.
(Ji’nan, China). GA (purity >98% by HPLC) was purchased from Fujie Pharmaceutical Co., Ltd. (Xi’an,
China). His was purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). DOX¨HCl
was purchased from ShanXi powerdone Pharmaceutical Co., Ltd (Xi’an, China). FITC was purchased
from Huasheng Co., Ltd (Zhejiang, China). EDC, NHS, and DMT–MM were purchased from Shanghai
Medpep Co., Ltd., (Shanghai, China) and pyrene was purchased from Sigma (St. Louis, MO, USA).
All other chemicals were analytical grade.

Human hepatic cell line (HepG2), MCF-7 cells and female BALB/c mice (age: 7 weeks; weight:
approximately 20 g; approved by the WFMU Animal Research Ethics Committee, approval No. 302-003,
Date: 30/5/2015) were obtained from WeiFang Medical University. Care and handling of the animals
were in strict compliance with the “Guide for the Care and Use of Laboratory Animals”. MTT was
purchased from Sigma-Aldrich (St. Louis, MO, USA). RPMI-1640 medium and fetal bovine serum
were purchased from Beijing Solarbio Co., Ltd. (Beijing, China).

3.2. Synthesis of HA–GA and HA–His Polymers

A HA–GA conjugate was synthesized from HA (70 kDa) and GA. GA in methanol was activated
with DMT–MM to form active ester. After the rotary evaporation of methanol, the active ester was
slowly added to ethylene diamine solution, and the mixture was stirred at room temperature overnight.
The diamine-modified GA (GA-N) was purified through column chromatography. The HA–GA
conjugate was synthesized by modifying GA-N to the backbone of HA in the presence of DMT–MM.
After freeze-drying, the chemical structure of the GA-HA conjugate was determined via 1H-NMR
(JNMECP-600, JEOL, Tokyo, Japan), for which the sample was prepared by dissolving the conjugate in
D2O. The routes of synthesis are illustrated in Figure 1.

A HA–His conjugate was synthesized as previously described with some modifications [30].
In brief, HA in formylamine was activated by EDC and NHS (molHA:molEDC:molNHS = 1:1.2:1.2).
Then, His (the molar ratio between the carboxyl group of HA and the amino group of His was 1:6)
in N,N-dimethylformamide (DMF) was slowly added to the HA solution. The reaction mixture was
stirred for 24 h at room temperature under nitrogen atmosphere. After filtration, the solution was
freeze-dried to obtain the HA–His conjugate.

3.3. Preparation and Characterization of HA–GA/HA–His Mixed Micelles

HA–GA/HA–His mixed micelles were prepared by ultrasonic dispersion. In brief, the
HA–GA/HA–His conjugates were suspended in phosphate buffered saline (PBS, pH 7.4) under
gentle shaking. The solution was sonicated three times using a probe-type sonifier (VCX-750, Sonics &
Materials, Newtown, CT, USA) at 90 W, and the pulse was turned on for 2 with 3 s intervals under
ice bath.

The particle size of the HA–GA/HA–His micelles was measured by Malvern Zetasizer 3000 HAS
(Malvern Instruments Ltd., Malvern, UK). All measurements were conducted at 635 nm and 25 ˝C
with a detection angle of 90˝. The concentration of micelles was maintained at 1 mg/mL, and each
batch was analyzed in triplicate. The ζ potential of the HA–GA/HA–His micelles was measured using
Malvern Zetasizer 3000 HSA. Each sample was measured three times at 25 ˝C. Each experimental
result was an average of three independent measurements.
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The morphology of the micelles was observed via TEM (Philips TZOST, Philips Tecnai Co.,
NED, Amsterdam, Netherlands). In brief, one drop of the HA–GA/HA–His micelle suspension was
placed on a copper grid. The grid was allowed to dry at room temperature and was examined under
an electron microscope.

3.4. Preparation and Characterization of DOX-Loaded Micelles

DOX-loaded HA–GA/HA–His micelles were prepared using a dialysis method as previously
described [39]. In brief, DOX¨HCl was dissolved in DMF in the presence of triethylamine (1.3 times
molar quantity of DOX). HA–GA/HA–His conjugates in formamide were mixed with the DMF solution
of DOX. The suspension was stirred overnight using a magnetic stirrer. Subsequently, the system
was dialyzed against deionized water to remove the unloaded drugs, DMF, TEA, formamide, and
triethylammonium chloride by a dialysis bag (MWCO 7000). The dialysis solution was freeze-dried to
obtain DOX-loaded micelles, which were stored at 4 ˝C.

For DL and EE measurements, 5 mg of the freeze-dried DOX-loaded micelles were dissolved
in 10 mL of formamide by gentle heating. The absorbance of DOX was analyzed using a UV–vis
spectrophotometer at 480 nm. The concentration of DOX in solution was obtained using the standard
curve, and DL and EE were calculated using Equations (1) and (2), respectively. All measurements
were performed in triplicate.

DL p%q “ Ws{Wcˆ 100% (1)

EE p%q “ Ws{Waˆ 100% (2)

Ws = amount of DOX in the micelles; Wc = weight of the micelles after freeze-drying; and Wa = total
amount of the DOX¨HCl added.

3.5. In Vitro Drug Release Study

The in vitro release of DOX from the DOX-loaded micelles was performed using a dialysis method
in PBS with different pH values of 7.4, 6.4 and 5.5. In brief, 5 mg of the DOX-loaded micelles were
resuspended in 5 mL of PBS. The suspension was transferred to a dialysis bag and then dialyzed
against 50 mL of the release medium at 37 ˝C with stirring at 100 rpm. At predetermined time
intervals, 4 mL of medium was removed and replaced with the same amount of fresh release medium.
The cumulative amount of DOX released was calculated in accordance with the standard curve by
using a UV spectrophotometer at 480 nm [40]. The in vitro release experiments were carried out in
triplicate at each pH.

3.6. In Vitro Cellular Uptake Studies

3.6.1. Cell Culture

HepG2 cells were maintained at 37 ˝C in a humidified atmosphere of 5% CO2 in RPMI-1640
medium containing 10% FBS, 100 U/mL penicillin, and 0.1 mg/mL streptomycin.

3.6.2. In Vitro Cellular Uptake of Micelles

HepG2 cells were seeded in six-well plates at a density of 5 ˆ 104 cells/mL at 37 ˝C.
After 24 h of incubation, the cells reached 70%–80% confluence, and the medium was replaced
with 2 mL of serum-free culture medium containing FITC-labeled micelles, DOX-loaded HA–His
micelles, or DOX-loaded HA–GA/HA–His mixed micelles, respectively, for 2 h at 37 ˝C. Then, the
cells were washed with cold PBS and fixed with 4% paraformaldehyde solution. Finally, the
intracellular localization of the FITC-labeled micelles and DOX-loaded micelles was visualized via
fluorescence microscopy.
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3.7. In Vitro Cell Cytotoxicity Assay

The anti-proliferative effect of the DOX-loaded micelles on HepG2 cells was tested using an MTT
assay. The cells were seeded in 96-well plates at a density of 5 ˆ 103 cells/well and then incubated
for 24 h in an incubator (37 ˝C, 5% CO2). The culture medium was replaced by free DOX HCl,
DOX-loaded HA–His micelles, or DOX-loaded HA–GA/HA–His micelles, and the cells were incubated
for additional 48 h. Then, 20 mL of MTT solution (5.0 mg/mL) was added to each well, and the cells
were incubated for another 4 h at 37 ˝C. Subsequently, the medium was removed and 200 mL of DMSO
was added to dissolve the formazan crystals. Cell viability was calculated at 490 nm using a microplate
reader (FLx800B, Bio-Tek, Winooski, VT, USA).

3.8. In Vivo Antitumor Efficiency

H22-bearing mice were obtained by subcutaneous inoculation in the flank of BALB/c female
mice with 0.1 mL of a cell suspension containing 1 ˆ 106 H22 cells. When the tumors reached about
100 mm3, groups comprising six mice were randomly assigned to one of the following treatments:
physiological saline (control), blank HA–GA/HA–His micelles, free DOX¨HCl, DOX-loaded HA–His
micelles, and DOX-loaded HA–GA/HA–His micelles. Drugs were administered in an equivalent
volume of 0.2 mL at a dose of 10 mg DOX/kg body weight. The tumor volume was monitored, and
the tumor volume was calculated as follows: tumor volume (mm3) = width2 ˆ length/2. Finally, the
mice were sacrificed, and the tumors were dissected. The body weight, viability, and other adverse
reactions of the tumor-bearing mice were observed and recorded throughout this study.

3.9. Statistical Analysis

All experimental data were expressed as the mean value with standard deviation (mean ˘ SD).
One-way ANOVA was used to compare the differences in the results. Probability values less than 0.05
(p < 0.05) were considered to indicate statistical significance.

4. Conclusions

Hepatoma-targeted mixed micelles composed of HA–GA and HA–His conjugates were prepared
conveniently through ultrasonic dispersion. DOX-loaded mixed micelles demonstrated a pH-sensitive
controlled release of DOX. Moreover, the in vitro cell uptake results showed that the introduction of
GA to the micelles significantly increased the affinity of the micelles to HepG2 cells. In addition, the
DOX-loaded HA–GA/HA–His micelles exhibited remarkable cytotoxicity against HepG2 cells and
effectively inhibited tumor growth in H22 cell-bearing mice.
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