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Abstract: The complex cross-talk between tumor cells and their surrounding stromal environment
plays a key role in the pathogenesis of cancer. Among several cell types that constitute the tumor
stroma, bone marrow-derived mesenchymal stem cells (BM-MSCs) selectively migrate toward
the tumor microenvironment and contribute to the active formation of tumor-associated stroma.
Therefore, here we elucidate the involvement of BM-MSCs to promote osteosarcoma (OS) and
hepatocellular carcinoma (HCC) cells migration and invasion and deepening the role of specific
pathways. We analyzed the function of aquaporin 1 (AQP1), a water channel known to promote
metastasis and neoangiogenes. AQP1 protein levels were analyzed in OS (U2OS) and HCC (SNU-398)
cells exposed to conditioned medium from BM-MSCs. Tumor cell migration and invasion in response
to BM-MSC conditioned medium were evaluated through a wound healing assay and Boyden
chamber, respectively. The results showed that the AQP1 level was increased in both tumor cell
lines after treatment with BM-MSC conditioned medium. Moreover, BM-MSCs-mediated tumor cell
migration and invasion were hampered after treatment with AQP1 inhibitor. These data suggest that
the recruitment of human BM-MSCs into the tumor microenvironment might cause OS and HCC cell
migration and invasion through involvement of AQP1.
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1. Introduction

Tumors are essentially composed of two interdependent compartments, namely tumor cells and
surrounding stroma. Tumor stroma is largely a product of the host and contains connective tissue,
blood vessels and several types of resident and infiltrating host cells. The most apparent function of
tumor stroma is to provide a structural support to tumor cells but it has become increasingly evident
that it also interacts with tumor cells and evolves with them [1]. In fact, the architecture surrounding
the tumor is not static but is subjected to a continuous remodelling in response to the dynamic interplay
between tumor cells and stroma [2]. While tumor cells have a clonal origin and grow accumulating
mutations in different genes, stromal cells are non malignant, polyclonal and have variable origin.
In tumor microenvironment (TME) there are many stromal cells including: fibroblasts, endothelial
cells of the blood and lymphatic circulation, pericytes and a variety of bone marrow-derived cells that
comprise macrophages, neutrophils, mast cells, myeloid-derived suppressor cells and mesenchymal
stem cells (Figure 1). Specific homing to TME of bone marrow mesenchymal stem cells (BM-MSCs)
and their immunosuppressive effect renders them appropriate vehicles to deliver drugs to TME [3].
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Conversely, it has been demonstrated that BM-MSCs contribute to the development of cancer stem cell
(CSC) niche in breast [4] and prostate carcinomas [5].
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Figure 1. The primary tumor microenvironment. Cancer cells in primary tumor are surrounded by a 
complex microenvironment including multiple stromal cell types that converge to promote tumor 
growth and dormancy, invasion and metastasis development and resistance to therapy. Key role of 
bone-marrow derived mesenchymal stem cells (BM-MSCs) in tumor cell migration and invasion. 
Cancer stem cell (CSC); carcinoma associated fibroblasts (CAFs); dendritic cell (DC); myeloid-
derived-suppressor cells (MDSCs); natural killer (NK); tumor associated macrophages (TAM). 

Figure 1. The primary tumor microenvironment. Cancer cells in primary tumor are surrounded
by a complex microenvironment including multiple stromal cell types that converge to promote
tumor growth and dormancy, invasion and metastasis development and resistance to therapy. Key
role of bone-marrow derived mesenchymal stem cells (BM-MSCs) in tumor cell migration and
invasion. Cancer stem cell (CSC); carcinoma associated fibroblasts (CAFs); dendritic cell (DC);
myeloid-derived-suppressor cells (MDSCs); natural killer (NK); tumor associated macrophages (TAM).

There is no doubt that bidirectional communication between cancer cells and surrounding stroma
can promote the transfer of information for as the production of factors (growth factors, cytokines
and chemokines) acting through a paracrine mechanism to modify the microenvironment. Moreover,
it has demonstrated that tumor cells secrete extracelullar vesicles containing different biomolecules
(proteins, RNA, DNA and lipids) [6] that may be involved in promoting cancer progression and may
represent targets for therapeutic intervention [7]. Such modifications in the microenvironment can
stimulate tumor initiation, proliferation and metastasis. In the last decades, many studies focused
attention on the possible involvement of aquaporins (AQPs), a family of proteins characterized for their
particular ability to regulate water and solute trafficking along membrane, with tumor progression [8].
Recent findings demonstrated that water homeostasis regulated by aquaporins represents an important
mechanism at the basis of numerous processes such as cancer cell differentiation [9,10] and proliferation
as well as apoptosis [11]. Moreover, aquaporins seem to be involved in tumor cell migration [12]
and thus, in tumor spread and metastasis because of their sensitivity to changes in extracellular
osmolality [13]. In particular, many studies showed a key role of AQP1 in metastatic process and
neo-angiogenesis in a tumor animal model [14]. Nude mice that received AQP1-expressing melanoma
cells via the tail vein developed more lung metastases at 3 weeks with respect to control mice [15].
AQP1 is strongly expressed in several human breast carcinomas, glioblastoma multiformes and several
types of primary lung tumors. Moreover, it has been well demonstrated that tumors expressing
AQP1 were more infiltrative compared with AQP1-null tumors [12]. Recent studies reported that
AQPs might play an important role in human hepatocarcinoma cells (HCCs) [16]. Furthermore,
Wu et al. (2015) [17] found that AQP1 mRNA was elevated in osteosarcoma tissue and a high level of
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AQP1 was associated with poor prognosis in osteosarcoma. In this study, we analyzed the involvement
of AQP1 in osteosarcoma (OS) and hepatocellular carcinoma (HCC) progression due to BM-MSCs.

2. Results

2.1. Enhancement of Aquaporin 1 (AQP1) Levels in Osteosarcoma (OS) and Hepatocellular Carcinoma (HCC)
Cells by Conditioned Medium from Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs)

We evaluated whether conditioned medium from BM-MSCs (BM-MSC-CM) could affect the
expression of the water channel AQP1 in osteosarcoma cells (U2OS) and hepatocellular carcinoma
cells (SNU-398). BM-MSC-CM treatment of OS and HCC cells for 24 h caused a significant increase in
AQP1 protein levels (Figure 2A). We found that BM-MSCs induced a 25- and 2.3-fold enhancement in
AQP1 levels in U2OS and SNU-398 cells, respectively, with respect to the control (10% fetal bovine
serum (FBS)) (Figure 2B).
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Figure 2. Conditioned medium (CM) from bone-marrow-derived mesenchymal stem cells (BM-MSC)
increases aquaporin 1 (AQP1) levels in SNU-398 and osteosarcoma cells (U2OS) tumor cell lines.
(A) Western blot analysis of AQP1 expression in U2OS and SNU-398 after treatment with BM-MSC-CM
for 24 h. The equal protein loading was evaluated by using actin. Representative images from three
independent studies; (B) AQP1 levels were represented as fold change respect to 10% fetal bovine
serum (FBS), which was arbitrarily determined to be 1. Results are expressed as means ˘ SD.

2.2. Inhibition of AQP1 Hampers OS and HCC Cell Migration Bone Marrow-Derived Mesenchymal Stem
Cells-Conditioned Medium (BM-MSC-CM)-Mediated

Because tumor cells with high levels of AQP1 had a stronger capacity for cell migration, invasion,
and metastasis [15], the BM-MSC-CM effect on wound healing was investigated. After wounding,
images of U2OS and SNU-398 migration were acquired at 0 and 24 h (Figure 3A,B). The treatment with
BM-MSC-CM induced a significant wound closure enhancement in U2OS cells (49.6%) with respect to
control cells (1% FBS) (p < 0.01). Treatment with 100 µM of the AQP1 inhibitor [18] tetraethylammonium
chloride (TEA) in U2OS cells cultured in the presence of BM-MSC-CM caused a significant delay in
wound closure (16.6%) with respect to cells grown in the presence of BM-MSC-CM alone (p < 0.001)
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(Figure 3A). Similar to that shown in U2OS cells, BM-MSC-CM induced significant wound closure
enhancement (44.5%) in SNU-398 cells. Similar to OS cells, TEA induced a significant reduction of
BM-MSC-CM-mediated wound closure (13%) in HCC cells (p < 0.001) (Figure 3B).Int. J. Mol. Sci. 2016, 17, 1102 4 of 10 
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chamber). The AQP1 inhibitor (TEA) caused a significant decrease in the BM-MSC-mediated U2OS 
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Figure 3. AQP1 inhibitor hampered BM-MSC-CM-mediated wound closure in U2OS and SNU-398 cells.
(A,B) Scratch wounds were performed when both tumor cells were confluent and images of wounds
area were captured at T = 0 and 24 h using a digital camera attached to phase contrast microscopy. The
experiments were performed in the presence or absence of 100 µM tetraethylammnium chloride (TEA)
used as the AQP1 inhibitor. Wound closure was measured using Image J (National Institutes of Health,
Bethesda, MD, USA) (%) = 1 ´ (wound width tx/wound width t0) ˆ 100. Results are expressed as
means ˘ SD. * p < 0.001 and # p < 0.001. Scale bar = 600 µm.

2.3. Inhibition of AQP1 Hampers BM-MSCs-CM-Dependent OS and HCC Cell Invasion

To assess the BM-MSC effect on U2OS and SNU-398 cell invasiveness, a Boyden chamber with
membrane pre-coated with matrigel was used. A significant increase in OS and HCC cell invasiveness
with respect to the control (1% FBS supplemented medium) was observed when both tumor cell lines
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were seeded in the upper chamber and exposed for 48 h to BM-MSC-CM as chemoattractant (lower
chamber). The AQP1 inhibitor (TEA) caused a significant decrease in the BM-MSC-mediated U2OS
and SNU-398 cell invasion rate (p < 0.001) (Figure 4A,B).Int. J. Mol. Sci. 2016, 17, 1102 5 of 10 
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Figure 4. AQP1 inhibitor prevented BM-MSC-CM-mediated invasion of U2OS and SNU-398 cells.
(A,B) Invasion assay was performed using a Boyden chamber pre-coated with matrigel. Tumor cells
were seeded in the upper chamber whereas 1% FBS (negative control), 10% FBS (positive control) and
BM-MSC-CM were added to the lower chamber as chemoattractants. Tumor cells were treated or not
treated with AQP1 inhibitor TEA (100 µM). Results are expressed as means ˘ SD. * p < 0.001 and
# p < 0.001. Scale bar = 600 µm.

3. Discussion

As in normal wound healing, tumora also activate the recruitment of host cells into the tumor
microenvironment to regulate survival and proliferation [19]. Recently, bone marrow mesenchymal
stem cells were shown to be recruited into primary tumor sites and contribute to the development
of niches for cancer stem cells and the epithelial-to-mesenchymal transition (EMT) program [20]. In
particular, growing evidence supports the hypothesis that BM-MSCs participate in TME differentiation
into carcinoma-associated fibroblasts (CAFs) [21,22]. Many studies reported that BM-MSCs promote
tumor proliferation and invasion of different carcinomas including breast [4,23], prostate [20,22],
osteosarcoma [24–26] and colon [27–29]. Recent studies have also clarified the role of tumor cells as
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cells capable of modifying their environment by releasing important biomolecules from extracellular
vesicles [7]. Furthermore, proteins, RNA and lipids released by tumor cells may be clinically relevant
to cancer progression and useful in diagnosis of cancer and assessment of prognosis. Previous
work by our group demonstrated that BM-MSCs induce OS and HCC progression through CXCR4
activation [30]. Furthermore, we observed an inhibition of the EMT program when OS and HCC
cells were treated with a novel CXCR4 antagonist. It has been observed that through enhanced water
flux mediated by the AQP channels, tumor cells are believed to acquire an enhanced migratory and
invasive phenotype [12]. AQP1 is up-regulated in different carcinomas including: colon, breast, lung
and glioblastoma multiforme [15]. Several reports found that AQP1 overexpression in tumor cells may
increase tumor invasiveness and angiogenesis [31].

In the present study, we used tetraethylammonium (TEA) to block AQP1. The inhibitor effect
of this molecule on AQP1 function is controversial. Brooks et al. [18], for the first time, reported that
TEA reduced the water permeability of human AQP1 expressed in Xenopus oocytes. These data were
subsequently confirmed and a much stronger AQP1 inhibition by TEA was observed [32]. Moreover, a
combination of three different theoretical approaches identified the binding site for TEA in human
AQP1, thus suggesting this compound as a putative lead for AQP1 selective blockers [33]. Conversely,
other studies did not support the action of this molecule to inhibit AQP1 activity [34,35]. The different
behavior shown by TEA to block AQP1 could be dependent on the assay system used and the cell line
tested [36].

In addition, Wu et al. [17] reported that knockdown of AQP1 by siRNA in osteosarcoma cells;
U2OS or MG63 cells inhibited cell proliferation and significantly inhibited cell adhesion and invasion.
Furthermore, the AQP1 inhibitor AqB013 abrogated migration and invasiveness of colon cancer cells
and prevented endothelial tube formation in vitro [37]. In the present study, we demonstrate that
BM-MSCs-CM stimulated migration and invasion of osteosarcoma and hepatocellular carcinoma
cells and their effects were hampered by the addition of the AQP1 inhibitor, thus confirming the
involvement of this channel protein in the first step of the metastatic process.

4. Materials and Methods

4.1. Cell Lines and Culture Conditions

The human osteosarcoma cells (U2OS) from Sigma-Aldrich (St. Louis, MO, USA) were grown in
McCoy’s 5A. Hepatocellular carcinoma cells (SNU-398) from the American Type Culture Collection
(Rockville, MD, USA), were cultured in DMEM. FBS (10%), penicillin (100 U/mL) and streptomycin
(100 µg/mL) were added to both media. All cell lines were cultured in an incubator (37 ˝C; CO2 5%).

4.2. Bone Marrow Mesenchymal Stem Cell Isolation and Characterization (BM-MSCs)

BM-MSCs kindly provided by the Rizzoli Orthopaedic Institute were cultured in α-modification
of minimal essential medium (α-MEM, Gibco, BRL, Gaithersburg, MD, USA) supplemented with 20%
FCS for 2–3 passages [38]. Moreover, flow cytofluorimetric analysis was used to evaluate stemness
in BM-MSCs markers (positive markers: CD44, CD73, CD90, CD105, CD146) (negative markers:
CD34 and CD45).

In order to obtain conditioned medium (CM), BM-MSCs were seeded and grown in medium with
20% FCS until 70% cell confluence and then it was replaced with FCS-free medium for 24 h.

4.3. Western Blot Analysis

Cell lysates were lysed in 40 mM Hepes pH 7.5, 120 mM NaCl, 5 mM MgCl2, 1 mM EGTA, 0.5 mM
EDTA, 1% Triton X-100 containing protease (Complete Tablets-EDTA free, Roche, Basel, Switzerland)
and phosphatase inhibitors (20 mM a-glycerol-3-phosphate, 2.5 mM Na-pyrophosphate) according
to the method previously described [39]. After homogenization and centrifugation for 15 min at
13,000ˆ g at 4 ˝C the protein suspension was collected and the protein content was determined using
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a BCA protein assay kit (Thermo, Waltham, MA, USA). Equal proteins samples (50 µg) were loaded
and separated by SDS-PAGE under reducing conditions. The next step was to transfer the separated
proteins to PVDF membranes. After blocking in 5% milk, primary antibodies were added. After
being washed in TTBS buffer, the membranes were incubated with horseradish peroxidase-labeled
antimouse or antirabbit Ig antibodies for 1 h and then protein detection was performed by ECL system
(Menlo Park, CA, USA). Each band of western blot was quantified by densitometric analysis using
Image J. Anti-AQP1 (sc-20810, Santa Cruz, CA, USA) and anti-β-actin (A4700, Sigma-Aldrich) were
used in the experiment.

4.4. Wound Healing Assay

U2OS or SNU-398 cells were plated in 6-well plates and grown until confluence. Then, a linear
wound was gently created in the monolayer using a sterile yellow pipette tip. After rinsing with PBS
to remove the debris, the cells were incubated with culture medium containing 1% FBS, 10% FBS,
BM-MSCs-CM, or TEA (100 µM) at 37 ˝C and 5% CO2 for 24 h. Images of wounds area were obtained
using phase contrast microscopy. As the cell migrated to fill the scratched area, images were captured
by a digital camera attached to microscope. The wound closure was quantitated in each sample as the
area covered by the cells in 24 h using TScratch analysis software [40].

4.5. Cell Invasion Assay

24-well trans-well plates (with 8 µm pores membranes) (Corning Inc., Corning, NY, USA) were
used. Membranes were pre-coated with diluted Matrigel (1:3 in PBS); U2OS and SNU-398 cells
(2.5 ˆ 105) in serum-free medium were then plated in the upper chamber. In the lower chamber, the
following were added as chemoattractants: medium containing 1% FBS, 10% FBS and conditioned
medium obtained from BM-MSC. After 48 h incubation, the cells that had invaded the lower chamber
were stained with 0.1% crystal violet, then colorant was eluted and the absorbance read at 570 nm. To
block AQP1, U2OS and SNU-398 cells cells were treated with 100 µM of TEA, a specific AQP1 inhibitor.

4.6. Statistics

All experiments were independently performed at least three times and the data values are
presented as means ˘ standard deviation (SD). Statistical analysis was performed by Student’s t test
using GraphPad Instat (La Jolla, CA, USA). p ď 0.05 was considered statistically significant.

5. Conclusions

We found that AQP1 levels in osteosarcoma (OS) and hepatocellular carcinoma (HCC) cells were
increased when tumor cells interacted with BM-MSCs in the microenvironment. In addition, we
elucidated the key role of AQP1 in BM-MSC-induced migration and invasion of OS and HCC cells.
In conclusion, our study may provide a potential therapeutic strategy targeting AQP1 to hamper
cross-talk between BM-MSCs and tumor cells, thus preventing the establishment of distant metastasis.
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Abbreviations

AQPs aquaporins
α-MEM α-modification of minimal essential medium
BM-MSCs bone marrow-derived mesenchymal stem cells
CAFs carcinoma associated fibroblasts
CM conditioned medium
CSCs cancer stem cells
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DC dendritic cell
DMEM Dulbecco’s modified Eagle medium
ECL enhanced chemiluminiscence
EMT epithelial-to-mesenchymal transition
FBS fetal bovine serum
FCS fetal calf serum
HCC hepatocellular carcinoma
MDSCs myeloid-derived-suppressor cells
NK natural killer
OS osteosarcoma
PBS phosphate buffered saline
SD standard deviation
TAM tumor associated macrophages
TEA tetraethylammonium chloride
TME tumor microenvironment
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