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Abstract: This study investigated the effects of indole-3-carbinol (I3C) on adipogenesis- and
angiogenesis-associated factors in mature adipocytes. The cross-talk between mature adipocytes
and endothelial cells (ECs) was also explored by cultivating ECs in a conditioned medium (CM)
by using I3C-treated adipocytes. The results revealed that I3C significantly inhibited triglyceride
accumulation in mature adipocytes in association with significantly increased expression of AhR
and CYP1B1 proteins as well as slightly decreased nuclear factor erythroid-derived factor 2–related
factor 2, hormone-sensitive lipase, and glycerol-3-phosphate dehydrogenase expression by mature
adipocytes. Furthermore, I3C inhibited CM-stimulated endothelial tube formation, which was
accompanied by the modulated secretion of angiogenic factors in adipocytes, including vascular
endothelial growth factor, interleukin-6, matrix metalloproteinases, and nitric oxide. In conclusion,
I3C reduced lipid droplet accumulation in adipocytes and suppressed adipocyte-stimulated
angiogenesis in ECs, suggesting that I3C is a potential therapeutic agent for treating obesity and
obesity-associated disorders.
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1. Introduction

Obesity has been a major concern since the 20th century, and its prevalence is increasing in many
countries. In addition to affecting the physical and psychological status of obese people, excess weight,
mainly accumulated in the form of lipid in the adipocytes of white adipose tissue (WAT), considerably
increases the risk of developing various chronic diseases, including diabetes, cardiovascular diseases,
and cancers [1]. Moreover, in addition to mature adipocytes, WAT consists of fibroblastic preadipocytes,
endothelial cells (ECs), and macrophages. The expansion of mature adipoctyes, the differentiation of
preadiopocytes to adipocytes, the formation of new vessels of ECs, and the infiltration of macrophages
accompany the progress of WAT expansion in obesity [2]. Mature adipocytes are not only a lipid
storage site but also produce and secrete different adipokines and factors such as leptin, interleukin
(IL)-6, and vascular endothelial growth factor (VEGF), which are closely associated with angiogenesis
and other pathological conditions in obesity [2,3]. Therefore, the massive accumulation of lipids in
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mature adipocytes in obesity causes intimate interactions between mature adipocytes and adjacent
cells, including vascular ECs in WAT, which may contribute to the pathological characteristics of
obesity, including different metabolic disorders and cancers [4–6].

Indole-3-carbinol (I3C) is a bioactive indolic compound derived from glucosinolates in cruciferous
vegetables, such as broccoli, cabbage, Brussels sprouts, kale, and cauliflower [7]. I3C possesses
anticarcinogenic activities [7–9]. Recently, I3C has shown to exhibit antiobesity activity by reducing
body weight and fat in animals fed a high-fat diet [10,11] and by inhibiting the differentiation of 3T3-L1
preadipocytes [12]. Being an activator of the aryl hydrocarbon receptor (AhR), a ligand-activated
transcription factor crucial in adipogenesis and angiogenesis [13–16], we considered that I3C executes
its activities through the AhR. Although I3C has been shown to inhibit the differentiation of
preadipocytes, knowledge regarding its effects on lipid accumulation in mature adipocytes and
on adipocyte-associated angiogenesis is limited. Because increased triglyceride (TG) accumulation in
mature adipocytes is positively associated with obesity and associated metabolic disorders, compounds
that reduce the TG content in adipocytes may have therapeutic roles in obesity and related pathological
disorders. This study was aimed at examining the roles of I3C in the adipogenesis of mature adipocytes
and in the cross-talk between mature adipocytes and ECs. Furthermore, the effects of I3C on factors
associated with AhR-mediated pathways were determined. Results obtained in this study may facilitate
elucidating the potential use of I3C in adjunctive treatment for obesity and associated disorders.

2. Results

2.1. Effects of I3C on Cell Viability and Lipid Accumulation in Mature Adipocytes

At concentrations of 5–50 µM, I3C slightly, in a concentration-dependent manner, reduced
(5%–22%) the viability of mature adipocytes after 24 h of treatment (Figure 1), and these concentrations
were used for the following experiments. Results from the oil red O staining and analysis of intracellular
TG content revealed that I3C concentration-dependently reduced lipid accumulation in the mature
adipocytes (Figure 2A), and this reduction was associated with the increased release of glycerol by
mature adipocytes (Figure 2B).
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Figure 1. Effect of indole-3-carbinol (I3C) on cell viability in differentiated adipocytes. Cells were 
treated with various concentrations of I3C for 24 h, and cell viability was measured using an MTS 
assay kit. Values are the mean ± SD from three measurements. a–d, bars with different letters 
significantly differ from each other (p < 0.05). 

Figure 1. Effect of indole-3-carbinol (I3C) on cell viability in differentiated adipocytes. Cells were
treated with various concentrations of I3C for 24 h, and cell viability was measured using an MTS assay
kit. Values are the mean ˘ SD from three measurements. a–d, bars with different letters significantly
differ from each other (p < 0.05).



Int. J. Mol. Sci. 2016, 17, 1256 3 of 11
Int. J. Mol. Sci. 2016, 17, 1256 3 of 11 

 

 
(A) (B)

Figure 2. Effect of indole-3-carbinol (I3C) on lipid accumulation in differentiated adipocytes. Cells 
were treated with various concentrations of I3C for 24 h, and the cells were stained with oil red O. 
Intracellular oil red O and triglyceride (TG) (A) and extracellular glycerol (B) contents were 
quantified using the method described in the Materials and Methods. Values are the mean ± SD from 
three measurements. Bars with different letters (a–d) or different symbols (+, #, *) significantly differ 
from each other (p < 0.05). 

2.2. Effects of I3C on Adipocyte-Induced Tube Formation in ECs 

Expansion of adipose tissue is accompanied by increased endothelial angiogenesis; therefore, 
endothelial tube formation was used to explore the effects of I3C on interactions between mature 
adipocytes and ECs. The results revealed that the conditioned medium (CM) from adipocytes 
significantly stimulated the formation of tube-like endothelial structures; however, the presence of 
I3C reduced the interconnection networks among ECs (Figure 3), and the suppression was 
accompanied by the decreased production of proangiogenic factors, including VEGF (Figure 4A), 
IL-6 (Figure 4B), and to a lesser extent, NO (Figure 4C) and matrix metalloproteinases (MMPs) 
(Figure 4D,E), by the mature adipocytes. 

 
Figure 3. Effects of indole-3-carbinol (I3C) on tube formation in endothelial cells activated with the 
conditioned medium (CM) from mature adipocytes. Following 6 d differentiation, mature adipocytes 
were treated with I3C for 24 h, and the CM was collected and used to cultivate endothelial EA hy926 
cells, which were grown on Matrigel-coated plates for 24 h. Formation of tube-like structures  
(as indicated in arrows) was observed and photographed under a microscope after staining  
with calcein AM fluorescent dye. Pictures are representative of three independent experiments.  
Scale Bars = 100 μm 

Figure 2. Effect of indole-3-carbinol (I3C) on lipid accumulation in differentiated adipocytes. Cells were
treated with various concentrations of I3C for 24 h, and the cells were stained with oil red O.
Intracellular oil red O and triglyceride (TG) (A) and extracellular glycerol (B) contents were quantified
using the method described in the Materials and Methods. Values are the mean ˘ SD from three
measurements. Bars with different letters (a–d) or different symbols (+, #, *) significantly differ from
each other (p < 0.05).

2.2. Effects of I3C on Adipocyte-Induced Tube Formation in ECs

Expansion of adipose tissue is accompanied by increased endothelial angiogenesis; therefore,
endothelial tube formation was used to explore the effects of I3C on interactions between mature
adipocytes and ECs. The results revealed that the conditioned medium (CM) from adipocytes
significantly stimulated the formation of tube-like endothelial structures; however, the presence of I3C
reduced the interconnection networks among ECs (Figure 3), and the suppression was accompanied
by the decreased production of proangiogenic factors, including VEGF (Figure 4A), IL-6 (Figure 4B),
and to a lesser extent, NO (Figure 4C) and matrix metalloproteinases (MMPs) (Figure 4D,E), by the
mature adipocytes.

Figure 3. Effects of indole-3-carbinol (I3C) on tube formation in endothelial cells activated with the
conditioned medium (CM) from mature adipocytes. Following 6 d differentiation, mature adipocytes
were treated with I3C for 24 h, and the CM was collected and used to cultivate endothelial EA hy926
cells, which were grown on Matrigel-coated plates for 24 h. Formation of tube-like structures (as
indicated in arrows) was observed and photographed under a microscope after staining with calcein
AM fluorescent dye. Pictures are representative of three independent experiments. Scale Bars = 100 µm.
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Figure 4. Effects of indole-3-carbinol (I3C) on the angiogenic factors in the cultured medium from 
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concentrations of I3C in Dulbecco’s modified Eagle’s medium containing 1% fetal bovine serum for 
24 h. The medium was retrieved for analyzing the vascular endothelial growth factor (VEGF) (A); 
interleukin (IL)-6 (B); nitric oxide (NO) (C); and matrix metalloproteinase (MMP) activities (D); and 
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mean ± SD from three measurements, and bars with different letters (a–c) or different symbols (#,*) 
significantly differ from each other (p < 0.05). 

2.3. Effects of I3C on Protein Expression by Mature Adipocytes 

To determine the effects of I3C on the expression of AhR-, adipogenesis-, and 
angiogenesis-associated proteins by mature adipocytes, a Western blot analysis was performed. 
Figure 5 shows that I3C significantly enhanced the expression of the AhR and the gene that it 
regulates, CYP1B1, in mature adipocytes, but only slightly enhanced ARNT expression at high 
concentrations. In contrast, the expression of nuclear factor erythroid-derived factor 2-related factor 
2 (Nrf-2), HSL, GPDH, and VEGFR was slightly downregulated by I3C, especially at higher 
concentrations. The original blots for each protein are shown in the Figure S1. 

Figure 4. Effects of indole-3-carbinol (I3C) on the angiogenic factors in the cultured medium
from differentiated adipocytes. Following differentiation, adipocytes were treated with various
concentrations of I3C in Dulbecco’s modified Eagle’s medium containing 1% fetal bovine serum
for 24 h. The medium was retrieved for analyzing the vascular endothelial growth factor (VEGF)
(A); interleukin (IL)-6 (B); nitric oxide (NO) (C); and matrix metalloproteinase (MMP) activities (D);
and quantification (E) by using the methods described in the Materials and Methods. Values are the
mean ˘ SD from three measurements, and bars with different letters (a–c) or different symbols (#,*)
significantly differ from each other (p < 0.05).

2.3. Effects of I3C on Protein Expression by Mature Adipocytes

To determine the effects of I3C on the expression of AhR-, adipogenesis-, and angiogenesis-associated
proteins by mature adipocytes, a Western blot analysis was performed. Figure 5 shows that
I3C significantly enhanced the expression of the AhR and the gene that it regulates, CYP1B1, in
mature adipocytes, but only slightly enhanced ARNT expression at high concentrations. In contrast,
the expression of nuclear factor erythroid-derived factor 2-related factor 2 (Nrf-2), HSL, GPDH,
and VEGFR was slightly downregulated by I3C, especially at higher concentrations. The original blots
for each protein are shown in the Figure S1.
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proteins in adipocytes. In addition, I3C suppressed the production of proangiogenic mediators by 
mature adipocytes, leading to decreased endothelial tube formation stimulated by the adipocytes. 
Obesity is positively associated with various metabolic disorders and cancers, and the expansion of 
WAT accompanied by enlarged adipocytes is believed to be a key event in these pathological 
conditions involving the adipogenesis and angiogenesis of adipose tissues. Because the mature 
adipocyte is the major cell type in the WAT of obese people, the suppressive effects of I3C on TG 
accumulation and stimulated endothelial tube formation suggest that I3C has potential therapeutic 
effects on obesity, and possibly, on obesity-associated metabolic disorders. 

Several studies have indicated the protective effects of I3C on cancers and obesity; these effects 
are believed to be intimately associated with the AhR-mediated pathways. The liganded AhR 
dimerizes with the ARNT to modulate various pathways, including carcinogen metabolism and 
adipocyte differentiation. The AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 
β-naphthoflavone (BNF), and polychlorinated biphenyl, activate the transcription of xenobiotic 
metabolizing enzymes CYP1A and CYP1B [17]. On the other hand, the AhR negatively regulates 

Figure 5. Effects of I3C on the aryl hydrocarbon receptor (AhR), AhR nuclear translocator (ARNT),
CYP1B1, hormone-sensitive lipase (HSL), glycerol-3-phosphate dehydrogenase (GPDH), nuclear factor
erythroid-derived factor 2-related factor 2 (Nrf-2), and vascular endothelial growth factor receptor
(VEGFR) protein expression in differentiated adipocytes. Mature adipocytes were treated with various
concentrations of I3C for 24 h, and proteins were retrieved and subsequently measured using a Western
blot analysis. The expression of each protein was adjusted using β-actin, and values represented are
a fold of the control. The values in parentheses represent standard deviations from three different
measurements in this experiment. * indicates significant different from the negative control (p < 0.05).

3. Discussion

In the present study, we demonstrated for the first time that a cruciferous vegetable bioactive
component, I3C, at concentrations of 25–50 µM, significantly reduced TG accumulation in mature
adipocytes, and this effect was associated with increased expression of the AhR and CYP1B1 proteins
in adipocytes. In addition, I3C suppressed the production of proangiogenic mediators by mature
adipocytes, leading to decreased endothelial tube formation stimulated by the adipocytes. Obesity is
positively associated with various metabolic disorders and cancers, and the expansion of WAT
accompanied by enlarged adipocytes is believed to be a key event in these pathological conditions
involving the adipogenesis and angiogenesis of adipose tissues. Because the mature adipocyte is the
major cell type in the WAT of obese people, the suppressive effects of I3C on TG accumulation and
stimulated endothelial tube formation suggest that I3C has potential therapeutic effects on obesity,
and possibly, on obesity-associated metabolic disorders.

Several studies have indicated the protective effects of I3C on cancers and obesity; these effects
are believed to be intimately associated with the AhR-mediated pathways. The liganded AhR
dimerizes with the ARNT to modulate various pathways, including carcinogen metabolism and
adipocyte differentiation. The AhR ligands, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),
β-naphthoflavone (BNF), and polychlorinated biphenyl, activate the transcription of xenobiotic
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metabolizing enzymes CYP1A and CYP1B [17]. On the other hand, the AhR negatively regulates
adipocyte differentiation [13,18], and TCDD suppresses adipocyte differentiation [19,20], whereas the
AhR antagonist α-naphthoflavone (ANF) increases lipid accumulation in mature adipocytes [21]. I3C is
a naturally occurring AhR agonist that exhibits antiobesity activities, such as the reduction of body and
WAT weights in high-fat-diet-induced obese mice and the inhibition of adipocyte differentiation by
activating the silent mating type information regulation 2 homolog 1 and subsequently downregulating
the expression of PPARγ2, C/EBPα, and aP2, factors crucial for differentiation [12,22]. In this study,
we observed that I3C may act through activating lipolysis and/or inhibiting lipogenesis to reduce TG
accumulation in mature adipocytes from the evidence that I3C increased the glycerol released into the
medium and suppressed the expression of GPDH, a key enzyme in lipogenesis, at high concentrations.
The generation of glycerol from TG hydrolysis acts through sequential actions of different lipases,
including adipose TG lipase (ATGL), HSL, and monoglyceride lipase, and both HSL and ATGL are
major enzymes involved in TG catabolism in adipose tissue [23,24]. I3C might not act chiefly through
HSL activation to increase lipolysis in mature adipocytes, because the expression of the HSL protein
was slightly reduced by I3C. However, the phosphorylation status of HSL was not determined, so the
detailed mechanisms require investigated further.

Not only by inhibiting adipocyte differentiation does AhR regulate lipid metabolism. AhR is
a constitutive inhibitor of TG synthesis in mouse embryo fibroblasts (MEFs) [25]; in addition, a
transient fatty liver was observed in AhR-null mice [26], suggesting that AhR acts as a suppressor
of lipid accumulation. Because we observed that I3C enhanced the expression of the AhR protein
in adipocytes, this may be also involved in the suppressed TG accumulation in adipocytes by I3C.
Similarly, Tano et al. [27] indicated that BNF represses the expression of enzymes in the fatty acid
synthesis pathway in primary hepatocytes, leading to a decrease in fatty acid production, and these
effects are dependent upon AhR. TCDD increased the expression of lipolysis-associated factors in
treated mice, and this increase is related to the TCDD-induced wasting syndrome [28,29]. On the other
hand, we previously reported that the AhR antagonist ANF reduced the expression of the AhR in
association with increased TG accumulation in adipocytes [21]. Therefore, we hypothesize that I3C
reduces lipid accumulation in adipocytes by inducing AhR expression and then reducing lipogenesis
and increasing lipolysis responses in 3T3-L1 adipoyctes.

Nrf-2 is another transcription factor crucial in the expression of xenobiotic metabolism enzymes
and in adipogenesis [30]. An intimate interaction between Nrf-2 and the AhR pathways exists.
Miao et al. [31] reported that TCDD induces Nrf-2 expression by activating AhR-XRE binding in
Hepa1c1c cells. Conversely, Nrf-2´/´ MEFs had low levels of AhR expression, and the Nrf-2 activator
upregulated the AhR pathways, subsequently inhibiting adipogenesis in Nrf-2+/+ MEFs. Furthermore,
stable knockdown of Nrf-2 in 3T3-L1 cells inhibited enhanced adipogenesis caused by the deficiency of
kelch-like ECH-associated protein 1 [32], indicating the suppressive role of Nrf-2 in adipogenesis [25].
However, not only I3C but also the AhR antagonist ANF suppressed Nrf-2 protein expression in
mature adipocytes. These results suggest that Nrf-2 predominantly affects adipocyte differentiation;
however, it either does not regulate or only slightly regulates AhR expression and angiogenesis in
mature adipocytes. This mechanism requires further investigation.

In addition to reducing lipid accumulation in mature adipocytes, I3C (5–50 µM) inhibited
endothelial tube formation stimulated by the CM from mature adipocytes, and this suppression
was associated with the decreased secretion of angiogenic factors, including VEGF, IL-6, NO, and
MMPs, by mature adipocytes. Substantial tissue remodeling that occurs within adipose tissues
during fat mass expansion is accompanied by angiogenesis [33,34]. WAT not only is a TG storage
depot but also acts as an endocrine organ because of its abilities to produce and secrete various
adipokines, growth factors, and inflammatory mediators, which may alter the functions of different
cells. Higher serum levels of proinflammatory mediators, such as C-reactive protein, IL-6, and tumor
necrosis factor α, as well as angiogenic factors, including VEGF, IGF-1, MMPs, and leptin, were
observed in obese people compared with those in healthy people [15], and these factors are involved
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in the pathological changes of obesity. Mature human adipose tissue extract produces numerous
angiogenic factors and induces endothelial tube formation [35]. The expression of VEGF positively
correlates to the size of adipocytes [36], and is enhanced by IL-6 [37]. Because I3C was observed to
reduce IL-6 expression in the WAT in high-fat-diet-induced obese mice [11] and in LPS-stimulated
macrophages [38], we hypothesize that I3C (5–50 µM) suppresses adipocyte-induced angiogenesis
both by reducing TG accumulation in mature adipocytes leading to reduce the secretion of angiogenic
mediators, and by directly inhibiting IL-6 expression in mature adipocytes. Alternatively, I3C lowers
leptin levels and increases serum adiponectin levels in obese animals [10]; these effects may contribute
to the antiangiogenic effect of I3C observed in this study. Thus, I3C can not only diminish adipocyte
differentiation but also eliminate angiogenesis, thereby inhibiting obesity.

The estimated daily intake is at the equivalent of 6.4 mg of I3C in the UK, where the cruciferous
vegetable tends to be a dietary staple [39]. Ideally, this dose would generate ca. 9 µM of plasma I3C
concentration in a 70 kg subject on the basis that blood volume comprises 7% of the body weight
without considering digestion and absorption. Similarly, the plasma I3C peaked concentration was
4.13 µg/mL (ca. 28 µM) after orally administering 250 mg/kg of I3C to mice [40]. Although the
plasma I3C concentration from ordinary vegetable consumption is lower than the concentrations we
used in this study, higher plasma concentrations may be possibly achieved by taking I3C dietary
supplements. Alternatively, several acid-catalyzed compounds formed following oral consumption
of I3C have been identified and may contribute to the protective roles of I3C [41–43]. Among these
derivatives, 3,3’-diindolylmethane (DIM) has been reported to play a protective role in metabolic
diseases, including reducing blood glucose and increasing antioxidative enzymes in diabetic mice [44],
as well as in alleviating hepatic steatosis and inflammation in Nonalcoholic steatohepatitis (NASH)
mouse models [45]. Furthermore, a significant amount of DIM could be detected in the plasma and
various organs after oral administration of I3C [40]. In addition, different studies have indicated
that orally giving 400 or 800 mg/day of I3C to human subjects for up to 4.8 years showed no
adverse effects [46,47]. Finally, although the AhR has been associated with carcinogenesis and
toxicity, most studies suggest that I3C acts as a chemopreventive agent. Because I3C decreases
body weight, reduces adipocyte lipid accumulation, and because I3C derivatives possess protective
effects in metabolic disorders associated with obesity, the potential use of I3C in treating obesity or
obesity-associated diseases is plausible, although the effects of I3C in vivo require further investigation.

4. Materials and Methods

4.1. Chemicals and Biochemicals

I3C, insulin, dexamethasone (Dex), 3-isobutyl-1-methyl-xanthine (IBMX), and dimethyl sulfoxide
(DMSO) were purchased from Sigma Chemical (St. Louis, MO, USA). Dulbecco’s modified Eagle’s
medium (DMEM), sodium bicarbonate, fetal bovine serum (FBS), calf serum, trypan blue, and trypsin
were obtained from GIBCO BRL (Grand Island, NY, USA). I3C was dissolved in DMSO, and the final
concentration of DMSO in culture media was 0.1% (v/v).

4.2. Cell Culture

The murine preadipocyte cell line 3T3-L1, which is typically used as a model for studying
adipocyte differentiation and biology, was purchased from the Bioresource Collection and Research
Center (BCRC #60159; Hsinchu, Taiwan). The cells were grown in a monolayer in DMEM supplemented
with 10% fetal bovine serum (FBS) at 37 ˝C in a 95% air and 5% CO2 environment. To induce
adipocyte differentiation, 3T3-L1 preadipocytes were cultivated in a DMEM differentiation medium
that contained 0.25 µM Dex, 10 µg/mL insulin, and 0.5 mM IBMX for 2 days and then maintained in
insulin-containing DMEM for another 4 days to obtain round mature adipocytes. After the medium
was replaced with DMEM containing 1% FBS, the mature adipocytes were treated with I3C for 24 h,
and the cells and the medium were analyzed.
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To examine tube formation, a human endothelium-derived cell line with vascular EC
characteristics, EA hy926, was used. EA hy926 cells were provided by Dr. Cora-Jean Edgell (University
of North Carolina, Chapel Hill, NC, USA), who established and characterized the cells [48], which are
now available from the American Type Culture Collection (ATCC® CRL-2922). The cells were
maintained in DMEM supplemented with 10% FBS at 37 ˝C in a 95% air and 5% CO2 environment.

4.3. Cytotoxicity

To determine the cytotoxic effects of I3C on mature adipocytes, cells were treated with different
concentrations of I3C for 24 h, and cytotoxicity was evaluated by measuring the absorbance of
the formazan product of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) produced by live cells by using a microplate reader at OD490 nm.

4.4. Lipid Accumulation and Glycerol Release of 3T3-L1 Adipocyte

To explore the effects of I3C on lipid accumulation, intracellular TG accumulation in mature
adipocytes was determined using oil red O staining and was quantified using a commercial Randox
TRIGS (Cat TG213) assay kit (Randox Labs, Crumlin, UK). Glycerol released into a medium, regarded
as a marker of lipolysis, was analyzed using a commercial Randox glycerol (Cat GY105) assay kit.

4.5. Tube Formation Assay

To determine whether I3C affects the cross-talk between mature adipocytes and ECs, mature
adipocytes were treated with I3C for 24 h, and the conditioned medium (CM) was retrieved
and used for cultivating EA hy926 ECs, which were grown on BD Matrigel-coated plates for
24 h. The ECs were subsequently stained with calcein AM fluorescent dye (BD Biosciences,
San Jose, CA, USA), and networks of vessel-like structures were observed and photographed using a
fluorescent microscope.

4.6. Assays of Nitric Oxide, VEGF, IL-6, and Matrix Metalloproteinase Activities

To determine the effects of I3C on the production of angiogenic factors by mature adipocytes, the
levels of VEGF, and IL-6 in the CM of mature adipocytes were determined using mouse DuoSet VEGF,
and IL-6 commercial enzyme-linked immunosorbent assay systems (R & D System, Minneapolis, MN,
USA), respectively. The amount of nitric oxide (NO) in the CM was determined using the Griess
reagent. The activities of matrix metalloproteinase (MMP)-2 and -9 in the CM were determined through
gelatin zymography, in which a culture medium containing 5 µg of protein was separated on a 10%
SDS-PAGE gel that contained 1 mg/mL gelatin and then stained with 0.5% Coomassie Blue R-250.
Clear bands in the destained gel against a blue background indicated the presence of MMP-2 and
-9 (92 kDa) and were quantitated using Image-Pro Plus software (Media Cybernetics, Silver Spring,
MD, USA).

4.7. Western Blot Analysis

Expression of proteins related to the AhR-mediated pathway, lipid metabolism, and angiogenesis
in adipocytes was analyzed through Western blot. Following separation on a 10% SDS-PAGE
gel, cellular proteins (15 µg), including AhR (1:1000, Santa Cruz Biotechnology, Santa Cruz, CA,
USA), vascular endothelial growth factor receptor (VEGFR, 1:500, Santa Cruz Biotechnology), the
AhR nuclear translocator (ARNT, 1:1000, Abcam Inc., Cambridge, MA, USA), CYP1B1 (1:1000,
Abcam Inc.), Nrf2 (1:1000, Abcam Inc.), glycerol-3-phosphate dehydrogenase (GPDH, 1:1000,
Abcam Inc.), hormone-sensitive lipase (HSL, 1:1000, Origene Technologies, Inc., Rockville, MD, USA)
and β-actin (1:500, Novus Biologicals, Littleton, CO, USA), were electroblotted onto a polyvinylidene
difluoride membrane and detected with specific protein monoclonal antibodies. Following the
addition of peroxidase-conjugated immunoglobulin G (Millipore Corporation, Billerica, MA, USA)



Int. J. Mol. Sci. 2016, 17, 1256 9 of 11

and detection with Amersham Enhanced Chemiluminescence™ western blotting detection reagents
(GE Healthcare, Piscataway, NJ, USA), the specific proteins were quantitated using Image-Pro Plus
software (Media Cybernetics, Silver Spring, MD, USA).

4.8. Statistical Analysis

Values are expressed as the mean ˘ standard deviation (SD). One-way analysis of variance
followed by Fisher’s least significant difference test were performed using SAS software version 9.1
(SAS Institute, Cary, NC, USA) to compare the differences between groups. Differences were considered
statistically significant at p < 0.05.

5. Conclusions

I3C significantly reduced lipid accumulation in mature adipocytes and suppressed
adipocyte-stimulated tube formation in ECs, and these effects are associated with the decreased
secretion of angiogenic factors by mature adipocytes, including VEGF, IL-6, and NO. In addition, I3C
increased the expression of the AhR and CYP1B1 proteins in mature adipocytes. These results suggest
that I3C can be potentially used for facilitating weight loss and alleviating obesity-associated disorders.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
8/1256/s1.
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