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Abstract: This review deals with phytocystatins, focussing on their potential role as defence
proteins against phytophagous arthropods. Information about the evolutionary, molecular and
biochemical features and inhibitory properties of phytocystatins are presented. Cystatin ability to
inhibit heterologous cysteine protease activities is commented on as well as some approaches of
tailoring cystatin specificity to enhance their defence function towards pests. A general landscape
on the digestive proteases of phytophagous insects and acari and the remarkable plasticity of their
digestive physiology after feeding on cystatins are highlighted. Biotechnological approaches to
produce recombinant cystatins to be added to artificial diets or to be sprayed as insecticide–acaricide
compounds and the of use cystatins as transgenes are discussed. Multiple examples and applications
are included to end with some conclusions and future perspectives.
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1. Phytocystatin Features

Peptidase inhibitory proteins are a complex group of molecules involved in the regulation of the
protein degradation caused by peptidases. The MEROPS database (http://merops.sanger.ac.uk) is an
integrated source of information that classifies peptidases and their inhibitors into families and clans [1].
Members of 21 of the 78 families recognized in the current MEROPS 10.0 version have been identified in
plants [2]. From that, some of the most abundant peptidase inhibitors are the phytocystatins (PhyCys),
which belong to the ubiquitous family of the cystatins (MEROPS identifier I25) [3]. Unique structural
features and phylogenetic inferences suggest a specific evolution for PhyCys and support their
inclusion in a specific plant cystatin family [4]. PhyCys are present in all land plants and in the
Chlorophyceae algae. Their number progressively increased on evolution from one member in algae
species to three in the pseudofern Selaginella moellendorffii and five in the moss Physcomitrella patens.
In angiosperms, a broad range of members is found, with extensive species/clade specific duplications
leading to 26 members in the grass species Brachypodium distachion [2]. Most PhyCys are small
proteins with a molecular mass in the 12–16 kDa range and are inhibitors of the cysteine proteases
(CysProt) from the C1A papain-like family. In land plants, some members with a molecular weight of
approximately 23 kDa have a carboxy-terminal extension involved in the inhibition of a second family
of CysProt, the C13 legumains [5,6]. In addition, several 85–87 kDa multicystatins, with eight cystatin
domains, have been described in dicots [7].
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The comparison of the crystal structures of PhyCys from rice, taro, pineapple and sugarcane
support a shared globular structure mainly composed by four β-sheets and one α-helix, and without
any disulphide bridge [8–11]. The inhibitory properties of PhyCys are a consequence of a tight and
reversible interaction with their target enzymes. It involves a conserved tripartite wedge formed by the
partially flexible N-terminus containing one or two glycine residues and two hairpin loops carrying a
conserved QxVxG motif and a tryptophan residue, respectively [4]. Minor sequence and structural
variations, mainly in hypervariable sites, are implicated in the different target inhibitory potency and
specificity among PhyCys [12,13]. Figure 1 displays a structural overlay of PhyCys members from the
algae Chlamydomonas reinhardtii, the moss P. patens and the angiosperm Hordeum vulgare that shows the
common globular structure and the minor structural variations among PhyCys.
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to biotic stress-related signals [4]. First reports showed the induction of PhyCys in tomato and 
soybean by wounding or methyl jasmonate treatments [19,20]. Later on, some publications reported 
the induction of PhyCys in chestnut, maize and wheat mediated by fungal infection [21–23]. Besides, 
different experimental approaches demonstrated the cystatin induction by insects and acari 
infestation. Two maize cystatins were identified as induced genes upon attack by Spodoptera littoralis 
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2. Phytocystatin Functions

From the functional point of view, PhyCys have been implicated in the regulation of both
endogenous and exogenous proteases. CysProt are key enzymes in many physiological processes
in plants that have to be tightly controlled. Cystatins have been related to the control of various
developmental processes involving CysProt, such as the regulation of protein turnover in storage
organs [14–16] or the senescence process mediated by abiotic stresses [17,18]. Furthermore, a defence
role against pathogens and pests has been inferred to PhyCys from their up-regulation in response
to biotic stress-related signals [4]. First reports showed the induction of PhyCys in tomato and
soybean by wounding or methyl jasmonate treatments [19,20]. Later on, some publications reported
the induction of PhyCys in chestnut, maize and wheat mediated by fungal infection [21–23].
Besides, different experimental approaches demonstrated the cystatin induction by insects and acari
infestation. Two maize cystatins were identified as induced genes upon attack by Spodoptera littoralis
caterpillars [24]. Microarray analysis of tomato responses to the spider mite Tetranychus urticae feeding
revealed the up-regulation of a multicystatin as a defence protein [25]. The silkworm Bombyx mori
induced the expression of five mulberry cystatin genes, being one of them stable to silkworm gut
proteases [26]. Other lines of evidence have corroborated this putative defence role. PhyCys may
confer resistance to phytopathogenic virus by inhibiting the cysteine protease activity required to virus
replication [27]. Recombinant PhyCys are able to affect the in vitro growth of several phytopathogenic
fungi [28,29] using a mechanism that does not involve CysProt activity inhibition [30]. In addition,
recombinant PhyCys are able to inhibit the activity of digestive proteases from many herbivores, and a
deleterious effect on their development and reproduction occur when herbivores feed in artificial
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diets including the recombinant PhyCys or in transgenic plants overexpressing a PhyCys gene [4].
Herbivore challenges have been appointed as a key feature in the diversification and proliferation of
PhyCys and other protease inhibitors [2,31,32]. This assumption, together with the huge amount of
evidence relating PhyCys to herbivore defence leads us to focus this review on the defensive role of
PhyCys against phytophagous insects and mites.

3. Phytocystatin Targets: Arthropod Proteases

Insect and acari obtain essential nutrients through hydrolytic activities during the digestion
process. Thus, an efficient proteolysis of plant proteins is crucial to generate free amino acids for
their survival. In fact, because many plant tissues possess suboptimal protein content, nitrogen
often becomes the limiting factor in the nutrition of many, if not most, phytophagous arthropods.
Since digestive proteases are responsible to catalyse the protein breakdown, these enzymes become
potential targets for the control of agricultural pests. Genes encoding proteases are abundantly
expressed in gut tissues under a regulatory control during the different developmental stages.
Different phytophagous arthropods use different proteases for the digestion process depending on
their gut pH. This protease specificity may help to design specific approaches to combat pest using
Protease Inhibitors (PIs) (Figure 2).
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Figure 2. Scheme of arthropod digestive system and protease classes depending of gut pH.
(A) Digestive system is divided in foregut (initial digestion in some insects), midgut (digestion and
nutrient absorption) and hindgut (ion and water regulation and waste excretion), where proteins
are degraded by proteases into peptides and amino acids (solid arrows). Degradation products may
cross the periplasmic membrane (dotted arrows). Enzyme recycling occurs in the midgut of insects
(red arrows) preventing the excretion of digestive proteases; (B) Phytophagous arthropods classified
depending on their major protease classes (serine-, aspartyl- cysteine-proteases) and the gut pH.
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CysProt that catalyse the hydrolysis of dietary proteins have been characterized in the
digestive tract of several groups of phytophagous arthropods, including coleopterans, hemipterans,
homopterans and mites (Figure 2B). The majority of plant-feeding coleopterans and hemipterans have
slightly acidic midguts and cysteine and aspartyl proteases provide the major midgut proteolytic
activities [33]. Serine proteases may also participate in digestion in these two groups, being usually
differentially located than CysProt in the gut in coleopterans [34] and in the salivary glands of
hemipterans [35]. The digestive proteolytic profile of phloem feeding homopterans [36,37] and
cell-content feeding tetranychid mites [38,39] relies as well on CysProt, though aspartyl proteases can
be present. CysProt have also been reported in the gut transcripts of herbivorous dipteran [40] and
lepidopteran species [41]. Their activities in the guts have only been documented in a few cases [42]
and they are expressed at negligible levels [43], being as their physiological role is probably not
related to the hydrolysis of dietary proteins. Indeed, non-digestive CysProt are known to be involved
in other fundamental functions in arthropods, such as the lysosomal catabolism and processing of
proteins, development, reproduction and immune responses [44]. Based on investigations with a
number of insects, an ecto-endoperitrophic flow model has been proposed [33] that allows enzyme
recycling creating a decreasing gradient of proteases along the midgut and preventing the excretion
of enzymes (Figure 2A). In contrast, mite digestive proteases are excreted in the faecal pellets [39].
Genome-wide analysis has revealed multigene families of C1A CysProt genes (both cathepsin B- and
L-like) potentially involved in digestion in insects and mites [45]. The hydrolysis of specific substrates,
activation by sulfhydryl agents and inhibition by E-64 are usually indicative of the presence of cathepsin
B- and L-like proteases in the gut. However, only cathepsin L-like enzymes have been purified to
homogeneity from insect midgut contents [46–48], suggesting that they may be quantitatively the most
important [33]. Likewise, the proteomic analysis of mite faeces from the spider mite Tetranychus urticae
detected four different cathepsin-L like enzymes, indicating that they represent the most abundant
proteases in the gut lumen that are ultimately incorporated into the mite faecal pellets [39]. A unique
proliferation of C13 CysProt genes (legumain-like) was also identified in the T. urticae genome [49]
proteolytically active in both mite bodies and faeces [39]. Their functional role in digestion has yet to
be elucidated.

Expression levels and activity profiles of CysProt in phytophagous arthropods vary through
development and depending on the type of plant consumed. Quantitative changes in activity were
reported when comparing larvae and adults of the beetle Leptinotarsa decemlineata [50] and when
larvae were feed on different plant hosts [51]. Midgut extracts from larvae that ingested eggplant
leaves contained only a few protease forms, while numerous forms were observed in extracts of
potato-and tomato-fed larvae, being some of these forms specific for a particular diet. Likewise,
T. urticae mites reared on maize showed significantly higher cathepsin B-like activity than when
reared on beans [39]. Transcriptome analysis showed that both C1A and C13 CysProt showed specific
developmental patterns of expression [45] and that mites modulate their expression when feeding on
different host plants [49]. The reported diet-related changes in digestive enzymes can compensate for
variable dietary protein quality and/or quantity, but it may be also a strategy to counteract the effect
of plant defence proteins synthesized by different host plants (see Section 5). Mechanisms controlling
digestive proteases act at the level of synthesis, secretion and zymogen activation [33]. The process is
mediated through the coordinated action of endocrine regulatory peptides, endogenous inhibitors
and non-coding micro RNA [52]. Secretion of digestive enzymes is achieved via secretory vesicles that
fuse with the apical membrane of the secretory midgut cells. Then, they empty their contents into the
gut lumen without any loss of cytoplasm (merocrine), or with the whole (holocrine) or part (apocrine)
loss of the secretory cell [53]. In continuously feeding insects the secretion of vesicles is constitutive,
whereas in intermittent feeders the secretory vesicles are stored and released into the midgut lumen
after feeding. Once delivered, cathepsin L- and B-like CysProt require an enzymatic or autocatalytic
activation since they are synthesized as inactive zymogens (pre-pro-proteins encoding a putative
signal that targets them for secretion and an autoinhibitory pro-region). The active C1A CysProt is the
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enzymatic form that can be controlled by endogenous and exogenous cystatins, and maybe also the
target for exogenous pro-region sequences [39].

4. Tailoring and Selection of Phytocystatin for Pest Control

Cystatins, like other proteins involved in plant-pest interactions, include conserved amino acids
affecting their biological activity. These residues have been subjected to a positive selection during the
course of their evolution to generate cystatin variants with improved inhibitory potency and specificity
towards herbivorous [30,31]. A comparative analysis of cereal cystatins identified highly preserved
sequences common to all the cystatins, although some variations maintain the functional diversity
within the protein family. The changes are the result of coevolutionary process lead to counterbalance
mutations in their pest cognate proteases [54].

In 1998, Koiwa et al. [55] described two soybean cystatins, soyacystatin N and L with 70%
sequence identity that showed different inhibition rates. While soyacystatin N was a much more
potent inhibitor of C. maculatus gut proteases and substantially delayed its growth and development
in feeding-diet bioassays, soyacystatin L was essentially inactive as an insecticide. Soyacystatin N
variants containing mutations in essential motifs were constructed. Kinetic inhibitory analysis of
mutated variants allowed the identification of a novel soyacystatin N isoform with higher affinity to
C1A proteases than the wild type [56]. These observations supported the potential of site-directed
mutagenesis for the engineering of recombinant PhyCys with improved inhibitory potency toward
target arthropods [31,56]. Likewise, tailoring the inhibitory specificity of phytocystatins toward
digestive target proteases by single mutations at the positively selected amino acid sites might help to
improve their inhibitory function [32].

Kiggundu et al. [31] identified several amino acid sites to be positively selected in cystatins
from Poaceae and Solanaceae plants to modulate the inhibitory profile. These sites were located at
strategic positions on the protein: surrounding the conserved glycine residues in the N-terminal region,
within the first and second inhibitory loops entering the active site of target enzymes, and adjacent to
the conserved LARFAV motif in the α-helix. They generated mutants at the 8th cystatin unit of the
tomato multicystatin SlCYS8, with alternative residues at positively selected sites. As consequence,
these mutants exhibited improved potency against different model CysProt like papain and cathepsins
B- and H-like. Furthermore, several variants strongly influenced the inhibitory effectiveness of SlCYS8
against digestive gut CysProt in the Colorado potato beetle [32].

The binding affinity method used to select PhyCys variants with greater insecticidal activity
was already described by Koiwa et al. in 1998 [55]. For the same purpose, the discrimination of
differentially inhibited L. decemlineata CysProt was assessed by biotinylated forms of SlCYS8 and
SlCYS8 variants [57]. These tailored cystatins were used to capture susceptible CysProt in protein
extracts of the insect midgut by biotin immobilization on avidin-embedded beads. A quantitative
LC-MS/MS analysis of the captured proteins was performed to compare the inhibitory profiles within
SlCYS8 variants and to identify candidates for the inactivation of specific CysProt targets in the
pest [57]. However, rebalancing of midgut proteases by the pest in response to the cystatins may occur.
This was observed in L. decemlineata larvae, which showed a differential readjustment of functional
protease families after feeding single variants of tomato multicystatin SlCYS8 mutated at positively
selected amino acid sites [58].

The potato multicystatin PMC is another cystatin composed of eight repeating units, each one
capable of inhibiting CysProt [7]. Biochemical studies along with site-directed mutagenesis confirmed
the critical role of pH and N-terminal residues in the dynamic transitions between monomer/polymer
of PMC. These data support the notion that not only positively selected amino acid sites but also
the pH-dependent regulation of the cystatin structure has defence-related implications [7]. Recently,
Rasoolizadeh et al. [12] have also confirmed the contribution of closely located amino acids to the
functional diversity of positively selected plant cystatins in a broader structure/function context,
imposing physicochemical constraints to primary structure alterations.
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In barley, several punctual mutants of the HvCPI-1 cystatin were generated and their inhibitory
properties against C1A proteases investigated [30]. The variant HvCPI-1 C68→G, mutation adjacent
to the conserved QxVxG motif, was better inhibitor for papain and cathepsin B-like activities than
the wild type. The HvCPI-1 and its C68→G variant were tested in vitro against the midgut protease
activities from L. decemlineata. In consequence, the mutant was selected for potato transformation [59].
A decrease in growth was observed in larvae after feeding on transgenic potato plants expressing
the HvCPI-1 C68→G cystatin, supporting the improved properties of C68→G substitution against the
CysProt of this pest.

All these studies underline the complexity of protease/inhibitor interactions in plant-arthropod
systems and point out the potential of positively selected amino acids as target sites to tailoring the
inhibitory specificity of the cystatins towards CysProt of agronomic significance in crop protection.

5. Arthropod Herbivore Responses and Adaptations

Plant-herbivore coevolution has demonstrated that both partners have developed sophisticated
mechanisms to overcome defences elaborated by each other.

The impact of dietary PIs in the arthropod depends on their inhibitor properties but also on
the arthropod species, on its developmental stage and even it varies within different strains from
the same species. Girard et al. [60] described the differential susceptibility of two strains of the
cabbage seed weevil Ceutorhynchus assimilis to oilseed rape plants overexpressing OC-I cystatin.
Zhu-Salzman et al. [61] demonstrated that the growth retardation of Callosobruchus maculatus due to
soya cystatin was only observed in its earlier stages of the development.

Phytophagous pests rapidly adjust their battery of digestive enzymes in response to the
accumulation of defence compounds, mainly to PIs. Comparisons of gut proteolytic activities in
the presence or absence of specific PIs have revealed multiple adaptation strategies to circumvent
anti-nutritional effects of diet [61,62]. Among them, the overproduction of existing digestive
proteases [59,63,64], the secretion of inhibitor resistant enzymes [65,66] and the proteolysis of inhibitors
by inhibitor-insensitive digestive enzymes [66–68] have been reported as physiological adaptations
to minimize the adverse effects on food digestion and nutrient uptake. In some cases, the nutritional
stress is compensated by a higher consumption of transgenic tissue than plant control tissue, with the
consequent increase in the insect weight [59,63,66]. However, biochemical and molecular approaches
evidence that phytophagous arthropods usually combine several adaptive strategies to circumvent
PIs [61,69].

Regarding PhyCys, there are some examples describing different physiological mechanisms
adopted by insects and acari to avoid the deleterious effects provoked by these PIs. Feeding bioassays
conducted with L. decemlineata larvae on OC-I-transgenic potato leaves resulted in larger foliage
consuming due to the production of OC-I-insensitive proteases as a compensatory response to
the nutritional stress [66,70]. In contrast, reduction in weight of L. decemlineata larvae fed on
potato plants expressing the HvCPI-1 C68→G cystatin from barley was probably the result of the
metabolic cost associated with the hyperproduction of digestive cathepsin B-like proteases [59].
Zhu-Salzman et al. [61] demonstrated that the cowpea bruchid C. maculatus overcame the growth
retardation in its earlier developmental stages caused by dietary soya cystatin by increasing the total
proteolytic activity and an enzymatic profile shift toward cystatin-insensitive proteases. Consequently,
larvae recovered their feeding habits and growth, even in the presence of the cystatin in the diet.
Similarly, the spider mite T. urticae responded to the ingestion of the barley HvCPI-6 cystatin by
increasing the expression of both inhibitor-target and non-target proteases [71]. By using a combination
of in vitro protease assays and a shotgun proteomic analysis, Vorster et al. [58] demonstrated that a
specific selection of digestive CysProt isoforms is produced in L. decemlianeata larvae in response to
feeding on single mutated cystatin variants. Curiously, predatory insects can also adapt their digestive
metabolism to the presence of PhyCys ingested by their herbivorous preys. Cystatins from rice and
barley independently expressed in transgenic potato plants induced digestive compensation in the
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natural predators Perillus bioculatus and Podisus maculiventris, respectively, via their herbivorous prey
feeding on the plant [59,72,73].

The ingestion of a PI not only induces changes on the pest digestive proteases but also on the
global gut content proteome. Proteomic data of the intestinal tract of the coleopteran C. maculatus larvae
reared with a diet enriched in a cystatin revealed a substantial rearrangement in its proteome [74].
These findings indicate that the digestive adaptation to PIs is part of the arthropod counter-defence
but little is still known about the specific molecular mechanisms in the adaptation processes.
A wider understanding is needed to use PIs, including PhyCys, for plant permanent protection
to pests.

6. Biotechnological Cystatin Applications to Control Pests

Some biotechnological strategies have been developed to analyse the effect of a known molecule
with insecticide/acaricide properties on phytophagous arthropods. One of them is the production
and purification of the molecule of interest as a recombinant product in heterologous systems.
The alternative approach is the plant transgenesis through the integration of a desirable gene in
the genome of a crop species to confer resistance to a specific pest.

6.1. Recombinant Phytocystatins for in Vitro and in Vivo Assays

Recombinant cystatin production using biological systems such as bacteria, yeast or plant cultures,
either to perform in vitro inhibitory assays, to be added into artificial diets or even to be sprayed as
defence compounds, constitutes an important biotechnological approach. The heterologous expression
of PhyCys fused to specific tags to be easily purified from microbial and yeast cultures, or their
transient expression in Nicotiana benthamiana, allows the isolation of the recombinant protein for further
studies or applications [37,75]. Mostly, recombinant cystatins have been used to perform in vitro
inhibitory assays using specific protease substrates and protein extracts or purified digestive proteases
from arthropods. This approach generates rapid and useful information about the proteolytic profiles
and cystatin binding affinities [37,38,76,77] and is particularly used for the tailoring and selection of
PhyCys for pest control (see Section 4).

Another application of recombinant cystatins is based on the fact that some insects, at least certain
laboratory strains, may feed on artificial diets. Thus, feeding bioassays can be performed by adding
recombinant cystatins to diets to evaluate insect susceptibility. Many reports have tested differences in
insect growth, development and survival as well as alterations in digestive physiology in response to a
cystatin-artificial diet under confined conditions (Koiwa et al. 2000 [37,46,78]).

In barley, the inhibitory capability of the whole gene family of cystatins, containing 13 members,
was analysed (see Suplementary materials) after purifying the 13 recombinant cystatins
(HvCPI-1 to -13). First, in vitro inhibitory experiments were performed against protein extracts from
two aphids, M. persicae and Acyrthosiphon pisum, and two mites, T. urticae and Brevipalpus chilensis,
which rely on CysProt for digestion [37,38]. Now, to complete this study, the in vitro assays have been
extended by including two coleopteran species, L. decemlineata and Diabrotica virgifera, whose major
digestive proteases also belong to the C1A peptidase family [33]. Protein extracts from the coleopteran
were prepared to carry out in vitro inhibitory assays with the 13 recombinant barley cystatins, using two
substrates susceptible to be specifically degraded by cathepsin B- and L-like proteases. As is shown
in Figure 3, protease activities from D. virgifera resulted more susceptible to be inhibited by barley
cystatins than the enzymes from Colorado potato beetle. The inhibitory profile indicated that cathepsin
L-like activity of L. decemlineata was high inhibited by barley cystatins than the B-like. Both activities
were similarly reduced in the case of the western corn rootworm. Recombinant HvCPI-6 was the
strongest inhibitor and reduced about 70% and 50% cathepsin L- and B-like activities in L. decemlineata,
respectively, and almost produced a complete inhibition of both activities in D. virgifera extracts.
The cystatins HvCPI-1, -2, -3 and -5 also inhibited both cathepsin activities in extracts from both
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coleopterans whereas HvCPI-8 only reduced the cathepsin L-like activity of Colorado potato beetle.
No significant inhibition was detected when HvCPI-4, -7, -10, -12 and -13 proteins were used (Figure 3).

The whole set of inhibitory results obtained with the recombinant barley cystatins and the protein
extracts from pest species demonstrated an inhibitory specificity of the different PhyCys against C1A
proteases from different arthropod origin. This specificity is essential to select the best inhibitor for
controlling each arthropod species, or even a particular strain, in an integrated pest management
program. Our findings also indicate that the HvCPI-6 cystatin resulted especially efficient, which has
been confirmed using artificial diets [37] and after being expressed in transgenic plants (see Section 6.2).Int. J. Mol. Sci. 2016, 17, 1747 8 of 16 
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6.2. Phytocystatins and Transgenic Plants

The experience of more than twenty years of commercialization of Bt-crops expressing
Bacillus thuringiensis toxins to control insect pests and reduce insecticide spray practises supports the
usefulness of crop biotechnology [79]. Nevertheless, some phytophagous arthropods, mainly aphids
and mites, are insensitive to Bt proteins [80,81]. For instance, the two-spotted spider mite T. urticae fed
on Bt-plants is able to accumulate higher levels of Cry toxins than that expressed by transgenic plants
without suffering any alteration in their behaviour [82]. Similarly, no differences have been reported in
the performance of the green peach aphid, M. persicae that fed on Bt or non-Bt plants, although Bt toxin
residues have not been found in their guts [83]. In this scenario, PIs appeared as alternative genes
against the digestive physiology of insects and mites.

There are many examples of transgenic plants expressing cystatin encoding genes as well
as engineered cystatin genes with improved potency or specificity to control pests (Table 1).
Numerous transgenic plants harbouring cystatin from rice, barley, Arabidopsis, potato and taro have
been generated with the aim of controlling insects and acari whose digestive physiology is mainly
based on CysProt. As is shown in Tables 1 and 2, rice cystatin encoding genes, particularly OC-I,
OC-II and the engineered OC-I∆86 form, are the most widely used cystatin as transgenes. Two cystatins
from barley (HvCPI-1 and HvCPI-6) and the point mutant HvCPI-1 C68→G have been transgenically
expressed in Arabidopsis, potato and maize to determine how they affect insects and mites. In addition,
Arabidopsis and taro cystatins and potato multicystatin have been ectopically expressed in poplar and
solanaceous species to analyse their inhibitory properties against insects.

From the insect side, coleopteran species are probably the most frequently employed pests
to perform bioassays with cystatin-transgenic plants. Among them, many studies highlighted
changes in the digestive physiology, performance and adaptive effects of the Colorado potato beetle
T. decemlineata after feeding on potato plants independently expressing OC-I, OC-II and HvCPI-1
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cystatin [59,66,70,72,73,84,85] or combining more than one PI [62,86,87]. The homopteran M. persicae
has been also used to perform bioassays with potato, oilseed rape and eggplant expressing the OC-I
or its mutated form OC-I∆86 [88–92]. These studies revealed that rice cystatins reduced proteolytic
activities of the aphid and interfere with various aspects of its performance such as weight or fecundity.
Likewise, significant delay in the development time to reach adult stage was observed in M. persicae
after feeding Arabidopsis expressing HvCPI-6 [37]. In addition, feeding assays to check the cystatin
impact on hemipteran and lepidopteran species using transformed solanaceous and fabaceous species
have demonstrated the defence role of this PI alone or in combination with other transgenes, even
when CysProt are not the major digestive proteases of the pest (Tables 1 and 2).

To avoid pest adaptation to PI-plants, the gene pyramiding approach by stacking various defence
genes in a transgenic plant has been developed as an excellent biotechnological method. Besides,
the creation of hybrid PIs by combining PI genes or derived partial sequences may enhance their activity
or increase the potential number of interactions in the target pest [13]. Plastid engineering technology
combined with transgene stacking approach has provided the generation of tobacco multi-resistance
against insects and pathogens. This strategy confirmed that the simultaneous expression of several
defence genes conferred a broad spectrum of resistance [93]. A special mention is required to highlight
the potential of engineered multidomain cystatins, consisting in multiple domains from different
cystatins in a single protein. Using this technology, Outchkourov et al. [94,95] combined deterrent
with toxic effects derived from an engineered inhibitor expressed in transgenic potatoes. As a result,
they provided a new control way to effectively interfere with growth and development of the western
flower thrip Frankiniella occidentalis.

Table 1. Target arthropods and transgenic plants overexpressing phytocystatins (PhyCys).

Target Pest
Cystatin Transgenic Plant Reference

Order Species

Homoptera Myzus persicae OC-I Potato [88]
Oilseed rape [89,90]

Eggplant [92]
OC-I∆D86 Potato [91]
HvCPI-6 Arabidopsis [37]

Coleoptera Baris coerulescens OC-I Oilseed rape [96]
Ceutorhynchus assimilis OC-I Oilseed rape [60,63]

Chrysomela tremulae OC-I Poplar [97]
Chrysomela populi AtCYS Poplar [98]

Leptinotarsa decemlineata OC-I Potato [66,72–74,84]
OC-II Potato [85]

HvCPI-1 C→G Potato [59]
Phytodecta fornicata OC-II Alfalfa [99]

Psylliodes chrysocephala OC-I Oilseed rape [63]
Sitophilus zeamais OC-I Rice [100]

Lepidoptera Plutella xylostella OC-I Oilseed rape [101]
Spodoptera littoralis HvCPI-1 C→G Potato [38]

Hemiptera Macrosiphum euphorbiae OC-I Eggplant [92]
OC-I∆D86 Potato [91]

Riptortus clavatus CCI Soybean [102]

Acarina Brevipalpuls chilensis HvCPI-1 C→G Potato [38]
Tetranychus urticae HvCPI-6 Maize [38]

HvCPI-6 Arabidopsis [39,71]

Cystatins: Arabidopsis (AtCYS), Barley (HvCPI-1 C→G, HvCPI-6), Maize (CC-I) and Rice (OC-I, OC-I∆D86, OC-II).
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Table 2. Target arthropods and gene pyramiding or engineered approaches using PhyCys.

Target Pest
Cystatin + Proteins Transgenic Plant Reference

Order Species

Coleoptera Leptinotarsa decemlineata OCI + OCII Potato [86,87]
OC-I∆D86 + CpTI Arabidopsis [62]

Plagiodera versicolora OC-I + CRY3A Poplar [103]

Lepidoptera Helicoverpa armigera CeCPI + Sporamin Tobacco [104]
Spodoptera exigua CeCPI + Sporamin + chitinase Tobacco [93]
Spodoptera littura CeCPI + Sporamin + chitinase Tobacco [93]

Thysanoptera Frankiniella occidentalis Engineered PCM + domains Potato [95]

Acarina Tetranychus urticae HvCPI-6 + CMe Arabidopsis [70]

Cystatins: Barley (HvCPI-6), Rice (OC-I, OC-I∆D86, OC-II), Taro (CeCPI), Potato (PCM). Trypsin Protease
Inhibitors: Cowpea (CpTI), Barley (CMe). Bt-Toxin (CRY3A).

The importance of PhyCys to combat phytophagous tetranychid mites is remarkable.
Few approaches have been useful to control the two-spotted spider mite T. urticae, an important
polyphagous pest that feeds on more than 150 crop species and presents a great record of pesticide [105].
However, feeding experiments developed with transgenic maize or Arabidopsis resistant plants
expressing HvCPI-6 cystatin showed a significant reduction of the mite cathepsin L- and B-like activities.
In parallel, the development and reproductiveperformance of mites was negatively affected [38,71].
The multigene approach targeted to control T. urticae infestation by co-expressing two barley proteases
inhibitors (the HvCPI-6 cystatin and the trypsin inhibitor CMe) in Arabidopsis plants corroborated
the impact of the inhibitors on the endogenous mite peptidase activities and on the mite survival.
Interestingly, double transgenic plants showed significantly less damaged leaf area than plants from
single transformation events and much less than non-transformed controls [71].

The widespread use of transgenic plants with cystatin alone, stacked with other genes, or with
engineered cystatin specifically targeting pest digestive proteases has demonstrated its potential for
pest control.

7. Conclusions and Future

Many advances have been achieved on the characterization and function of PhyCys in different
physiological processes of the plant involving the regulation of endogenous or heterologous proteases.
Their defensive function has pushed researchers to consider PhyCys as proteins of particular value
with big potential to be integrated as a new tool in Pest Control Management. Most of the strategies
developed up to now have been based on their transgenic expression in plants. Nevertheless,
some biochemical characteristics of cystatins, such are their small size or their stability, have redirected
the interest for their production as recombinant molecules. The large-scale production of PhyCys has
already demonstrated their utility as nutraceuticals, food additives or stabilizers of other recombinant
proteins [13]. Probably, the evaluation of their potential as chemicals with insecticide and acaricide
properties to be sprayed is the next step. A more complete understanding of the arthropod responses
to PI ingestion is a prerequisite for the application of PhyCys in the field.
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