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Abstract: Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular
behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as
a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic
cells actively influence the behaviors of surrounding cells, including engulfment, proliferation,
and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is
non-autonomously induced in a cellular community. Of note, it is becoming evident that active
communication between apoptotic cells and living cells contributes to physiological processes
during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual
interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant
to future studies of apoptosis.
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1. Introduction

In multicellular organisms, diverse cellular behaviors underlie the basis for constructing organs
and maintaining homeostasis. These behaviors might appear to randomly occur; however, cells do
communicate with each other in cellular society, and cellular behaviors are integrated to maintain
tissue homeostasis and perform physiological functions. Apoptosis is a morphologically distinct form
of cell death accompanied by a reduction in the cellular volume, condensation of the chromatin, and
nuclear fragmentation. This particular cell death is one of the most fundamental cellular behaviors,
removing unnecessary or potentially harmful cells by activating a genetically-encoded suicide program.
Dysregulation of apoptosis mechanism causes disorders including developmental abnormalities,
tumorigenesis, and autoimmune diseases.

Apoptosis has long been considered an autonomous phenomenon that does not actively affect
surrounding cells. The clearance of apoptotic cells by phagocytic engulfment was discovered early
in cell-death research, and the interaction between dying cells and engulfing cells was likely the sole
communication assumed. With the progress of studies on apoptosis, however, the non-autonomous
effects of apoptosis toward neighboring cells have been gradually revealed. Such apoptotic functions
include the promotion of cell proliferation in the surrounding cells and morphogenetic changes
of neighbors by generating mechanical forces. In addition to the effect of apoptosis on living cells,
apoptosis itself can be non-autonomously controlled by neighboring cells; the process can be induced by
engulfing cells, proliferating cells, and mechanical forces derived from cell crowding. Recent research
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clearly suggests that apoptotic cells actively communicate with neighboring cells, and their interactions
play an important role in the maintenance of tissue homeostasis [1,2]. Studies using tractable genetic
models, especially the fruit fly Drosophila melanogaster, have contributed to our understanding of this
exciting field of research.

In this review, we focus on the cellular interactions between apoptotic cells and their neighbors
in vivo from the perspective that apoptotic cells influence the surviving cells and vice versa, and
discuss future directions in apoptosis research in cellular communities.

2. Apoptosis Signaling Pathway

Apoptosis is mediated by caspases, which are a family of cysteine proteases; its core mechanism
is broadly conserved in multicellular organisms, from invertebrates to vertebrates (Figure 1).
Caspases normally exist as inactive zymogens, and after being processed and separated into large
and small subunits, inactive caspases acquire potential as proteases [3]. Caspases are subdivided
into initiator caspases and effector caspases, both in mammals and Drosophila. Initiator caspases
cleave specific substrates, including zymogens of effector caspases, which are subsequently activated
by the cleavage. Active effector caspases break down intracellular proteins and induce apoptosis.
Because such life-and-death decisions can be deleterious to cells, caspase signaling is carefully
controlled at different points in the mechanism to avoid accidental upregulation. In mammals,
the activation of initiator caspase-9 is regulated by inhibitor of apoptosis proteins (IAPs), which have
E3 ubiquitin ligase activity, and if cells receive an apoptotic stimulus, IAP antagonists (SMAC and
HtrA2) released from mitochondria bind to IAPs and promote their degradation [4–7]. Due to the
degradation of IAPs, adaptor protein apoptosis-activating factor 1 (Apaf-1) forms a complex with
pro-caspase-9, called an apoptosome, and promotes the activation of effector caspases [8].
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complex (apoptosome) with the initiator caspase Dronc. Effector caspases DrICE and Dcp-1 are 
activated by the apoptosome, and the activated effector caspases promote cell death. Eiger 
(Drosophila TNFα ortholog) induces the JNK (c-Jun N-terminal kinase)-mediated cell-death pathway 
through Grindelwald (TNF receptor). In mammals, Smac and HtrA2 released from mitochondria 
block the function of IAP (Inhibitor of apoptosis protein). Mitochondria also secretes cytochrome c 
(cyt c), and the apoptosome which is consisted of cyt c, Apaf-1, and pro-caspase-9 activates effector 
caspases, such as Caspase-3 and Caspase-7. Cell death via initiator caspase-8 requires the activation 
of death ligands and receptor signaling (TNFα-TNF receptor and Fas-Fas ligand). TNFα, tumor 
necrosis factor α. 

Figure 1. Schematic illustration of the apoptosis signaling pathway in Drosophila and mammals.
The same colors and shapes represent functional homologous in both Drosophila melanogaster and
mammals. In Drosophila, RHG proteins (Rpr, Hid, and Grim) produced by apoptotic stimuli inhibit
the function of DIAP1 (Drosophila inhibitor of apoptosis protein 1). Dark (apaf-1 homologue) forms
a complex (apoptosome) with the initiator caspase Dronc. Effector caspases DrICE and Dcp-1 are
activated by the apoptosome, and the activated effector caspases promote cell death. Eiger (Drosophila
TNFα ortholog) induces the JNK (c-Jun N-terminal kinase)-mediated cell-death pathway through
Grindelwald (TNF receptor). In mammals, Smac and HtrA2 released from mitochondria block the
function of IAP (Inhibitor of apoptosis protein). Mitochondria also secretes cytochrome c (cyt c), and the
apoptosome which is consisted of cyt c, Apaf-1, and pro-caspase-9 activates effector caspases, such as
Caspase-3 and Caspase-7. Cell death via initiator caspase-8 requires the activation of death ligands and
receptor signaling (TNFα-TNF receptor and Fas-Fas ligand). TNFα, tumor necrosis factor α.
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In Drosophila, Reaper, Hid, and Grim (RHG) proteins are expressed upon apoptotic stimuli [9]
and inactivate Drosophila inhibitor of apoptosis protein 1 (DIAP1) by degradation [10]. Once DIAP1
is degraded, the initiator caspase Dronc becomes active, resulting in the execution of apoptosis by
activating the effector caspases DrICE and DCP-1 [11,12]. In addition to the intrinsic control, apoptosis
is regulated by extrinsic signalings, such as the Fas-Fas ligand pathway and TNF-TNF receptor pathway
(the TNFα ortholog Eiger and its receptor Grindelwald in Drosophila [13,14]). These signaling pathways
also stimulate stress signaling cascades, such as the JNK pathway, which can induce cell death in
a caspase-dependent and caspase-independent manner [15,16]. As shown in the next section, apoptotic
or dying cells are rapidly engulfed by phagocytes and removed from tissues.

3. Engulfment and Apoptosis

In the animal body, unwanted or untoward cells undergo apoptosis and are rapidly engulfed by
professional phagocytes, such as macrophages, or non-professional neighbors. During the engulfment
process, apoptotic cells actively release secretory signals to recruit engulfing cells and express
membrane proteins that engulfing cells can recognize. The former signals are called find-me signals,
and the latter are eat-me signals [17]. Engulfing cells communicate with apoptotic cells through these
signals and remove only dying cells in a process called apoptotic clearance. The engulfing cells or
phagocytic pathways also contribute to the promotion of apoptosis or non-apoptotic cell removal by
engulfment. The mutual interactions between apoptotic cells and engulfing cells are directed for the
effective elimination of unnecessary cells.

3.1. Apoptosis Induces Engulfment

The efficient clearance of apoptotic cells is performed progressively through interactions with
phagocytic cells via find-me and eat-me signals. Upon release from apoptotic cells, find-me signals are
detected by phagocytes. Several find-me signals have been identified in the mammalian system, such as
phospholipid lysophosphatidylcholine (LPC), sphingosine-1-phosphate (S1P) and CX3CL1/fractalkine,
all of which are shown to work in a caspase-dependent manner [18,19]. Nucleotides like ATP and
UTP released from apoptotic cells also function as find-me signals [20]. Once phagocytes are attracted
toward apoptotic cells, they engulf the apoptotic cells. During this process, the phagocytes engulf
apoptotic cells with phosphatidylserine (PS) exposed on their surface. The exposed PS is then
recognized as an eat-me signal by engulfing macrophages, using secretory proteins MFG-E8 and
Gas6 and receptor proteins Tim4, integrin and MER [17,21,22]. Thus, find-me and eat-me signals from
apoptotic cells are necessary for effective and accurate engulfment.

Apoptotic cells do not only attract macrophages but also contribute to the reprogramming
of macrophage behaviors. A recent report by Weavers et al. suggests that apoptotic cells
induce macrophage priming, which is a preliminary stimulation for activating the immune system
(Figure 2A) [23]. During wound healing of the Drosophila embryonic epithelium, macrophage-like cells
(hemocytes) normally detect wound sites and engulf apoptotic cells [24]. However, in the H99 mutant
that lacks developmental cell death, hemocytes do not engulf apoptotic cells. Interestingly, hemocytes
in H99 mutants fail to detect the wound site after tissue damage, suggesting that hemocytes are not
capable of performing innate immune responses because of their lack of a memory of engulfment.
This defect can be rescued if hemocytes incorporate apoptotic cells induced by ultraviolet radiation
exposure. Molecularly, apoptotic corpses induce an increase in the calcium concentration and activation
of JNK signaling in hemocytes, which affects the level of the receptor protein Draper that recognizes
the exposed PS as a ligand [23]. This study elegantly shows that macrophage priming requires the
uptake of apoptotic cells, as does immune priming, and is a novel example of the interaction between
apoptotic cells and engulfing cells.
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also contributes to NC death in parallel with the JNK-Draper pathway. 
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macrophage priming. Naive macrophages cannot engulf pathogens. Apoptotic cells induce the
non-autonomous activation of macrophages, and uptake of these cells leads to their transformation
into mature macrophages; (B) Model for NC death in Drosophila oogenesis. Stretch follicle cells (FCs)
contact nurse cell (NC) remnants during late oogenesis and non-autonomously promote NC death.
In stretched FCs, the engulfment gene Draper becomes activated by the Ced-12-JNK signal. Ced-12 also
contributes to NC death in parallel with the JNK-Draper pathway.

3.2. Engulfing Cells Contribute to Apoptosis

Engulfment by phagocytes was previously considered the last step of apoptosis. However,
phagocytic cells or phagocytic pathways can actively promote cell death. Studies of cell death
in C. elegans first revealed genetic evidence that engulfment genes contribute to apoptosis.
Using hypomorphic mutants of ced-3, it was shown that additional mutations in engulfment genes
significantly increase the number of surviving cells [25,26]. The expression of the engulfment receptor
ced-1 in engulfing cells rescues the defects in the killing function, suggesting that engulfment genes promote
apoptosis in a non-cell-autonomous manner [25]. Chakraborty et al. further described the mechanism
by which engulfment genes contribute to the actual killing procedure [27]. During asymmetric cell
division of neurosecretory motor neuron neuroblasts (NSMnbs), the gradient of CED-3 is formed by
mutual interaction with the engulfment receptor CED-1 on the surface of neighboring cells. The CED-3
distribution in NSMnbs becomes unequal during metaphase, and after cytokinesis, the CED-3 protein
is unequally segregated and its concentration increases only in the daughter cell, which is destined
to die [27]. This study suggests that engulfment pathways can promote apoptosis by providing the
apoptotic potential in dying cells. Such cell death is also called “assisted suicide”, which is induced by
coordinating canonical apoptotic genes and engulfment genes [28].

In addition to such assistance of apoptosis by phagocytic pathways, engulfing cells are
directly involved in cell death. In the developmental ovary of Drosophila, germ line-derived nurse
cells (NCs) undergo programmed cell death during oogenesis. The Drosophila ovary has few
professional phagocytes; instead, neighboring epithelial follicle cells (FCs) engulf NC remnants [29].
The engulfment receptor Draper and JNK activity in the FCs are required for the clearance of NCs after
starvation-induced cell death. Intriguingly, the overexpression of draper or the JNK pathway in FCs
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induce NC cell death, suggesting that FCs can trigger non-autonomous NC death [30]. A recent report
by Timmons et al. showed that naturally occurring NC cell death is regulated by phagocytic machinery
in FCs (Figure 2B) [31]. During late oogenesis, a population of FCs–the stretched FCs–surround NCs
throughout the process of cell death until their removal by engulfment. When the engulfment genes
draper and Dced-12 or the JNK signaling pathway was blocked in the stretched FCs, NC death and
removal were suppressed. Although NC cell death is not caspase-mediated apoptosis, the engulfment
genes in the FCs non-autonomously control events associated with NC cell death, such as nuclear
envelope permeabilization and DNA fragmentation. Furthermore, genetic ablation of the stretched
FCs prevented the processes of NC cell death, suggesting that the FCs indeed non-autonomously
control NC cell death and their removal. Such phagocytosis is known as “phagoptosis” and is regarded
as primary phagocytosis that induces apoptosis in viable cells. Phagoptosis is also observed in human
cultured microglia, which are brain macrophages that release nitric oxide (NO) and induce the exposure
of PS in surrounding cells [32,33]. Altogether, these recent findings suggest that engulfing cells actively
contribute to apoptotic or non-apoptotic cell death by utilizing the engulfment machinery.

4. Proliferation and Apoptosis

The number of cells in tissue is essential for controlling the size and shape of the tissue and
is constantly monitored to maintain tissue homeostasis. To control cell numbers, cell proliferation
and apoptosis are crucial cellular behaviors, and thus their balance must be tightly coordinated.
For example, after tissue injury, when damaged cells undergo apoptosis, neighboring cells that are
adjacent to the dying cells may proliferate and fill in the gaps left behind. Such additional proliferation
is called compensatory proliferation or apoptosis-induced proliferation [34,35]. Furthermore, apoptosis
can be non-autonomously induced by proliferating cells via sensing the difference in the metabolic
status or cellular nature. In this section, we review the current understanding of the mechanism of
apoptosis-induced proliferation and non-autonomous apoptosis triggered by proliferating cells.

4.1. Apoptosis Induces Proliferation

Compensatory proliferation or apoptosis-induced proliferation was first experimentally shown in
Drosophila imaginal discs. Imaginal discs are larval primordial tissue of adult fly appendages, such as
wings, eyes, and legs, which are composed of polarized epithelial cells. When massive apoptosis was
induced by X-ray irradiation in the developing wing imaginal disc, the size and shape of the adult
wings were nearly normal [36]. This study suggested that the tissue had a mechanism for recovering
from a severe decrease in cell numbers. The molecular mechanism of compensatory proliferation has
been investigated in “undead cells”, where apoptosis itself is blocked. Undead cells are generated
in proliferating imaginal discs by either irradiation or the expression of pro-apoptotic genes when
effector caspases are inhibited by the caspase inhibitor p35. Under such conditions, hyperplastic
tissue overgrowth occurs because the undead cells continue to secrete mitogenic signals picked up
by their neighboring cells. According to previous reports, undead cells in imaginal discs secrete
mitogenic factors, Wnt homologue Wingless (Wg), BMP homologue Decapentaplegic (Dpp), and
epidermal growth factor (EGF), which are necessary for triggering the proliferation of surrounding
cells [37–40]. This additional proliferation requires the activation of an initiator caspase Dronc, and the
subsequent activation of the stress signaling factors JNK and p53 [39,41,42]. Several factors discovered
in this experimental system play an important role in regenerating processes. Two recent reports
showed that reactive oxygen species (ROS) contribute to apoptosis-induced proliferation in both
Drosophila and the zebrafish Danio rerio. In Drosophila, the importance of ROS has been revealed by the
undead-cell system. Extracellular ROS are required for JNK activation via TNF pathway mediated by
macrophage-like hemocytes [43]. Of note, ROS are necessary for regenerative responses induced in the
eye imaginal disc. In adult zebrafish, ROS are detected in apoptotic cells after tail amputation, and
ROS production contributes to JNK activation, which is required for apoptosis-induced proliferation
during regeneration [44].
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Apoptosis-induced proliferation functions as a core for organ regeneration. In the intestines, the
intestinal epithelium serves as a barrier and responds to environmental toxins and physical stress.
Upon such stimulation, orchestrated regenerative responses initiate by coordinating the behaviors of
intestinal stem cells and their neighbors. In the Drosophila gut, damaged epithelial cells (enterocytes)
release cytokines Upd, Upd2, and Upd3 (Drosophila interleukin-6 homolog). These cytokines activate
JAK/STAT signaling in intestinal stem cells and its progenitors, resulting in the promotion of cell
division of intestinal stem cells and the progenitors’ differentiation [45]. Such apoptosis-induced
proliferation during regeneration is also observed in diverse taxa, including the head in Hydra, the tail
in Xenopus leavis, and the liver in mice [1,46]. Secretory proteins from apoptotic cells drive cell
proliferation in their neighbors, and although the proteins differ between organisms, Wnt, Notch,
FGF, TGF-β, and production of prostaglandin E2 (PEG2) have been identified as candidates [47–52].
Overall, these reports support the notion that compensatory proliferation is initiated by secretory
factors from apoptotic cells and reinforces the significance of the active participation of apoptosis in
tissue regeneration (Figure 3A).
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Figure 3. The control of cell numbers in tissue by non-autonomous effects of proliferation and
apoptosis. (A) Apoptosis-induced proliferation. Apoptotic cells secrete mitogenic signals (e.g., Wnt,
BMP and EGF) that induce the proliferation of neighboring cells (yellow hexagons) and contribute to
tissue regeneration; (B) Proliferating cells induce non-autonomous apoptosis. Slow-growing cells are
eliminated by their surrounding fast-growing cells. This event, called cell competition, is essential for
the maintenance of tissue homeostasis.

4.2. Proliferating Cells Contribute to Apoptosis

The close associations of proliferation and apoptosis can be bidirectional events, and indeed,
apoptosis is non-autonomously induced by proliferating cells. One of the best-known examples is
a competitive cellular interaction in which slow-growing cells are eliminated by fast-growing cells
(Figure 3B). This phenomenon, called cell competition, was originally discovered in Drosophila during
the study of dominant mutations of Minute, which encodes ribosomal proteins [53]. In heterozygous
Minute flies, a developmental time delay occurs because of cell-autonomous reduction of the growth
rate [53]. Interestingly, early-induced Minute+/− clones in a wild-type background are eliminated
if surrounded by wild-type cells [54]. In this situation, the wild-type cells were the faster growing
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cells and the heterozygous Minute+/− cells the slower ones, suggesting that the elimination of
Minute+/− cells occurs based on the difference in the cell proliferation rate. Later studies proved that
the elimination of slowly growing cells is induced by non-autonomous apoptosis at the boundary of
wild-type cells [55,56].

Similarly, Drosophila Myc homologue (dMyc) mutant cells are outcompeted by wild-type cells [57].
In a situation where the expression of dMyc is higher than in neighboring cells, even surrounding
wild-type cells undergo apoptosis as a result of competition [58,59]. The decision for Myc-dependent
cell competition is likely mediated via the membrane protein Flower, with different isoforms
corresponding to different levels of dMyc [60]. In dMyc-overexpressing cells, glycolysis is also enhanced
through the activation of p53 to maintain genome stability and viability in cells. This evidence suggests
that Myc-dependent cell competition requires the regulation of metabolic status mediated by p53 as
highly proliferating cells [61]. Such competitive cellular interactions are also observed in mammals.
In mosaic mouse embryos with cells with different levels of c-Myc, the cells expressing lower levels of
c-Myc were eliminated via apoptosis [62]. Myc-dependent cell competition has also been confirmed in
embryonic stem cells and heart development [63,64]. These studies suggest that cell competition is an
evolutionarily conserved phenomenon in which non-autonomous apoptosis is induced by different
proliferation rates or metabolic status.

Competitive-like cell interactions can determine life-and-death decisions between proliferating
and non-proliferating cells. In the Drosophila pupal stage, replacement of the epithelium takes
place in the abdomen, where larval epidermal cells (LECs) are removed by apoptosis and adult
precursor cells (histoblasts) replace them [65]. Most apoptosis in LECs occurs at the proximity of
histoblasts, and if the cell cycle in histoblasts is inhibited, proper caspase activation and subsequent
apoptosis in neighboring LECs are blocked [66,67]. These results demonstrate that LEC apoptosis is
non-autonomously induced by proliferating histoblasts via local cell-cell interactions. The molecular
mechanism of non-autonomous LEC apoptosis remains unknown. During abdominal epithelial
replacement, histoblasts extend specialized filopodia-like protrusions, called cytonemes, toward
LECs [68]. Cytonemes are actin-rich structures involved in transporting signaling proteins [69].
Given that local cell–cell interactions trigger non-autonomous LEC apoptosis, secretory proteins
mediated through cytonemes may be involved in this event. Such communications between
proliferating cells and non-proliferating cells might be applied to interactions between stem cells
and terminally differentiated cells in different organisms.

5. Force and Apoptosis

During development and homeostasis, cells in tissue interact physically with their neighbors
via cell adhesions and the extracellular matrix. Such physical interactions are particularly essential
for epithelial tissue where various morphological changes occur as a cell sheet while maintaining
tissue integrity. Morphogenetic events need driving forces to change individual cell shapes and the
shape of a tissue. Recent research progress suggests that apoptosis accompanying cell delamination
or extrusion from the epithelium is one of the driving forces that directly influence neighboring
cells by producing mechanical forces. Conversely, mechanical forces generated from cell-crowding
non-autonomously induce live cell extrusion or apoptotic cell death. Thus, the relationship between
force and apoptosis is closely interconnected in the cellular community, serving as a morphogenetic
driver and a homeostatic mechanism.

5.1. Apoptosis Induces Mechanical Force

The first in vivo demonstration about force production from apoptotic cells came from the study
of a tissue fusion event, dorsal closure in Drosophila embryogenesis. During dorsal closure, the lateral
epidermis spreads and migrates dorsally, finally covering the dorsal surface. The amnioserosa, which is
an extra embryonic tissue, initially occupying the most dorsal region, reduces its apical surface area,
resulting in basal extrusion. Multiple forces from the retracting amnioserosa and the spreading lateral
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epidermis were suggested to contribute to the movement of the epidermal cells [70]. Toyama et al.
found that apoptosis occurs in the constricting amnioserosa cells and further examined the possibility
that apoptosis produces a mechanical force [71]. While the inhibition of apoptosis in aminoserosa
cells by the expression of p35 caused a delay in dorsal closure, the promotion of apoptosis by the
pro-apoptotic gene grim accelerated the closure process. Laser cutting experiments demonstrated that
epidermal cells are pulled by active mechanical forces derived from apoptotic amnioserosa cells [71].
Following this study, Muliyil et al. identified hierarchies in the apoptosis signaling cascade during
dorsal closure and found that mitochondrial fragmentation is an initial event that is necessary for
the extrusion of amnioserosa cells [72]. Taken together, these findings suggest that developmental
apoptosis plays an active role in morphogenetic changes by generating mechanical forces.

Mechanical forces produced by apoptosis can contribute to epithelial sheet movement or collective
cell migration during organogenesis. In the developing Drosophila male genitalia, the genital disc plate
turns 360◦ and gives rise to part of the adult genital and anal structures [73,74]. It was shown that cell
death mutants have abnormal rotation [75], but the relationship between apoptosis and the rotation
movement remained unclear. Recent studies using a live imaging approach revealed local apoptosis
during genitalia rotation and addressed its role in genitalia development. When apoptosis was
inhibited by the caspase inhibitor p35, although the genital disc moved to some extent, it failed to attain
complete 360◦ rotation, suggesting that apoptosis acts as a brake-release in rotation movement [76].
In addition, when apoptosis was genetically inhibited or promoted, the rotation speed decreased or
increased respectively, depending on the manipulation [77]. Taken together, these findings suggest
that local apoptosis regulates both the beginning of rotation and the rotation speed, acting as a key
factor for the control of tissue movement.

How does apoptosis produce active mechanical forces? A recent study addressed this issue using
Drosophila leg joint formation as a model [78]. Each leg of adult Drosophila derives from a corresponding
larval precursor, a leg imaginal disc. During leg disc development, the initial flat sheet structure creates
several folds, and the tissue is finally separated by flexible joint structures [79]. It was previously
shown that apoptosis occurs at the presumptive joint area, and when apoptosis was inhibited by
p35 in the leg disc, the formation of the joint was incomplete, resulting in an abnormal shape of
the adult leg [80]. Monier et al. further investigated the process of joint formation and examined
the hypothesis that apoptosis induces mechanical force that allows tissue reshaping during leg joint
formation (Figure 4A) [78]. In apoptotic cells at the presumptive joint area, the apical surface deforms
following the cell shrinkage. During this process, an actomyosin cable is formed in apoptotic cells,
and the neighboring cells are pulled toward the apoptotic cells during delamination. An in silico
model also confirmed that both apoptosis and the mechanical force derived from apoptotic cells
are sufficient for attaining folding. These results suggest that the actomyosin cable contributes to
the contraction of the apical surface of the apoptotic cells and the subsequent cell shape change of
the neighboring cells, implying that the apoptotic signal non-autonomously triggers actomyosin
contractility in neighboring cells and synergistic mechanical forces derived from delaminating cells
and neighboring cells contribute to proper morphogenesis.

Such effects of apoptosis on mechanical force production are probably conserved throughout
evolution. During cranial neural tube closure (NTC) in mice, large populations of cells undergo
apoptosis [81]. In NTC formation, the neural plates move toward the midline and finally fuse to form
the roof of the neural tube. According to Yamaguchi et al., in apaf-1 or caspase-3 mutants, the speed of
the dorsal plate movement becomes delayed, and the fusion at the midline fails [82]. This evidence
suggests an active role of apoptosis in dynamic tissue movement during NTC. Collectively, these
studies imply that apoptotic cells directly influence the behavior of their neighboring cells by generating
mechanical forces.
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apoptotic stimulation [84]. In contrast, in the developing fly notum epithelium and zebrafish 
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apoptotic extrusion. The dorsal region of the fly thorax, called the notum, consists of a single 
epithelial layer, and during metamorphosis, notum precursor cells divide without changing the 
overall tissue size, which can cause pressure in the tissue. In the developing notum, large 
populations of cells delaminate basally in the midline region and ultimately undergo cell death, 
probably because of anoikis. The rate of cell delamination increases under conditions where tissue 
growth is genetically promoted. Blocking of apoptosis did not seem to suppress the extrusion, 
suggesting that basal delamination is mechanistically distinct from apoptosis-mediated extrusion [85]. 
However, Levayer et al. contrastingly found that crowded conditions induced caspase activation in 
the midline of the notum, which precedes and is required for cell delamination. Their study supports 
the conclusion that cell delamination is induced by unknown apoptotic stimuli, probably through 
local tissue tension [86]. In zebrafish, both apoptotic and non-apoptotic live cells are extruded in an 
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Figure 4. The interaction between apoptosis and mechanical force. (A) Apoptosis-induced
morphogenetic changes in Drosophila leg joint formation. Apoptotic cells pull their neighbors toward the
basal side during delamination at the presumptive joint area. In their neighboring cells, the actomyosin
cable accumulates in the apical cortical area. The apical surface of surrounding cells undergoes apical
constriction; (B) Model for mechanical tension-induced cell competition. In cultured mammalian
epithelial cells, compaction by overcrowding induces apoptosis in polarity-deficient cells, which is
mediated by the upregulation of p53. The yellow hexagons represent normal cells.

5.2. Mechanical Force Contributes to Apoptosis

In epithelial tissues, to avoid the breakdown of tissue integrity or hyperplasia, the number
and quality of cells are controlled by multiple homeostatic mechanisms. Ordinarily, unwanted
cells are eliminated by apoptosis and removed from the epithelial layer. However, recent studies
suggest that both apoptotic and living cells are extruded from the epithelium by crowding-induced
mechanical force. In the extrusion of cultured epithelial cells, apoptotic stimuli induce apical surface
constriction by actomyosin-mediated contracting force [83]. It has been shown in tissue culture and
zebrafish epithelia that the extrusion of apoptotic cells is controlled by the S1P signaling pathway
upon apoptotic stimulation [84]. In contrast, in the developing fly notum epithelium and zebrafish
epidermis, crowding-induced forces induce living cell extrusion or delamination, in addition to
apoptotic extrusion. The dorsal region of the fly thorax, called the notum, consists of a single epithelial
layer, and during metamorphosis, notum precursor cells divide without changing the overall tissue
size, which can cause pressure in the tissue. In the developing notum, large populations of cells
delaminate basally in the midline region and ultimately undergo cell death, probably because of anoikis.
The rate of cell delamination increases under conditions where tissue growth is genetically promoted.
Blocking of apoptosis did not seem to suppress the extrusion, suggesting that basal delamination is
mechanistically distinct from apoptosis-mediated extrusion [85]. However, Levayer et al. contrastingly
found that crowded conditions induced caspase activation in the midline of the notum, which precedes
and is required for cell delamination. Their study supports the conclusion that cell delamination
is induced by unknown apoptotic stimuli, probably through local tissue tension [86]. In zebrafish,
both apoptotic and non-apoptotic live cells are extruded in an area of high cell density in the tail.
To determine whether or not the rate of crowding-induced extrusion changes in proportion to cell
density, Eisenhoffer et al. established an experimental cell-crowding system with cultured mammalian
cells by adding mechanical pressure and found that, under the overcrowding condition, the extrusion
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of living cells was predominantly promoted [87]. Interestingly, live cell extrusion also requires S1P
signaling, just like apoptotic extrusion, and defects of proper cell extrusion contribute to tumor
progression [88]. Taken together, these findings suggest that increases in mechanical tension trigger
cell extrusion in crowding tissue, which is regulated by both apoptotic and non-apoptotic stimuli.

What determines whether cell delamination is mediated in an apoptotic or non-apoptotic way?
Wagstaff et al. proposed that compaction by overcrowding induces apoptotic cell death in cultured
mammalian epithelial cells through p53 activation in the context of polarity-deficient cell competition
(Figure 4B) [89]. Under these conditions, mechanical stress activates the actin cytoskeleton regulator
ROCK, which leads to the elevation of p53 through active p38 [89,90]. However, how cell-crowding is
sensed at the cell or tissue level and how mechanical forces induce caspase activation in vivo remain
poorly understood. Clarifying the precise mechanism of cell extrusion in living animals is an important
field that will provide mechanistic insights into diseases such as cancer.

6. Future Directions

In this review, we focused on apoptotic functions as a switch for initiating actions of neighboring
cells during immune responses, regeneration, and morphogenetic changes. The progression of cell
death is also non-autonomously induced by interplay with surrounding cells; as such, cell–cell
interactions during apoptosis-induced events or non-autonomous apoptosis are essential for the
maintenance of tissue homeostasis, and defects in these interactions can lead to diseases. Although we
focused on direct interactions or close associations of apoptotic cells and their living neighbors, it is
becoming clear that the effect of apoptosis is not restricted to the cell or within-tissue level. Indeed,
local apoptosis in tissue can influence distant tissue and even the whole body. When the adult fly
cuticle is damaged, ROS activation is promoted in enterocytes of the midgut, which is a remote organ
from the wound site, causing enterocytes to undergo apoptosis. Apoptosis is thus involved in epithelial
cell renewal by stimulating intestinal stem cell proliferation. Interestingly, if epithelial cell renewal
after cuticle damage is blocked by the inhibition of enterocyte apoptosis, then flies exhibit lethality,
probably due to defects in the damping lethal responses [91]. Such inter-organ communications via
apoptosis has also been reported in tissue regeneration. Kashio et al. examined the systemic effects of
local tissue damage in the wing disc epithelium and found that methionine metabolism changed in the
fat body, which is a Drosophila adipose tissue. The altered methionine metabolism is required for wing
disc tissue repair, suggesting that local apoptosis is linked to the fat body metabolism via systemic
factors [92]. These findings suggest that apoptotic cells systematically influence homeostasis of the
whole body and overall organism health.

Recent reports have implied potential crosstalk between individual cellular behaviors influenced
by apoptotic cells. According to Hochreiter-Hufford et al., mouse apoptotic myoblast cells expose
PS and promote cell fusion between healthy myoblasts, which requires mechanical force [93].
The contribution of phagocytosis to dynamic morphogenesis has been shown during Drosophila
dorsal closure, which requires multiple forces for its completion [94]. These studies suggest that
apoptosis-induced phagocytosis may be involved in generating mechanical force in cellular and tissue
movement. Such crosstalk or intertwined effects of different cellular behaviors may contribute to
non-autonomous apoptosis. Because increases in the tissue tension are caused by overcrowding or
the proliferation of neighbors, proliferating cells may be a source of mechanical force in cramped
spaces [85–87]. Therefore, dissecting the intersections of these cellular interactions and behaviors
represents a major direction for future research. Moreover, despite recent progress in understanding
cellular communications between apoptotic cells and their neighbors, much remains to be learned
about their dialogue in terms of cellular dynamics and molecular conversations. How cells interpret
and integrate a diverse range of information from extracellular microenvironments, make appropriate
life-and-death decisions and respond to those decisions remain poorly understood. For example, how
is apoptosis spatiotemporally regulated in morphogenetic events? How much force is necessary for
cells to initiate apoptotic programs? What circumstances decide whether or not apoptotic cells trigger
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cell proliferation in surrounding cells? Looking ahead, future studies should investigate the precise
mechanisms of how apoptotic cells sense specific tissue conditions and select certain interactions
with living cells. It will also be important to clarify the relationship between the local and systemic
effects of apoptosis. A better understanding of apoptotic communications could provide mechanistic
insights into the basic biology during development and homeostasis and lead to potential therapeutic
treatments for diseases associated with cellular communication defects.
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