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Abstract: G protein-coupled receptors (GPCRs) comprise the largest family of membrane receptors
that control many cellular processes and consequently often serve as drug targets. These receptors
undergo a strict regulation by mechanisms such as internalization and desensitization, which
are strongly influenced by posttranslational modifications. Ubiquitination is a posttranslational
modification with a broad range of functions that is currently gaining increased appreciation as a
regulator of GPCR activity. The role of ubiquitination in directing GPCRs for lysosomal degradation
has already been well-established. Furthermore, this modification can also play a role in targeting
membrane and endoplasmic reticulum-associated receptors to the proteasome. Most recently,
ubiquitination was also shown to be involved in GPCR signaling. In this review, we present
current knowledge on the molecular basis of GPCR regulation by ubiquitination, and highlight
the importance of E3 ubiquitin ligases, deubiquitinating enzymes and β-arrestins. Finally, we discuss
classical and newly-discovered functions of ubiquitination in controlling GPCR activity.

Keywords: G protein-coupled receptors (GPCR); ubiquitination; β-arrestin; deubiquitinating enzyme;
E3 ubiquitin ligase

1. Introduction

1.1. GPCR Signaling

G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins
that transduce signals from various stimuli, including photons, pheromones, hormones and
neurotransmitters. These receptors regulate numerous physiological processes and are the major
pharmacological targets in the treatment of many pathological conditions including neurological and
cardiovascular disorders, pain, cancer, endocrine and pulmonary diseases [1,2]. Upon activation
by their ligands, GPCRs typically signal via heterotrimeric G proteins. However, GPCRs can also
signal independently of G proteins, in this situation signaling is mainly mediated by β-arrestins [3,4].
β-arrestins belong to the arrestin protein family which consists of four members: arrestin 1 (visual
arrestin), arrestin 2 (β-arrestin 1), arrestin 3 (β-arrestin 2), and arrestin 4 (cone arrestin). The visual and
cone arrestin are localized to retina rods and cones and interact mainly with rhodopsin, while the two
β-arrestin isoforms are ubiquitously expressed. All four arrestins share high sequence and structural
homology [5–7]. β-arrestins were first characterized as key regulators of GPCR desensitization and
internalization [8,9]; however, it is now known thatβ-arrestins can regulate GPCR action by functioning
as scaffolds for signaling molecules [4,10–13]. The phenomenon in which specific ligands preferentially
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activate G protein-or β-arrestin-mediated signaling upon binding to the same receptor is called biased
agonism [14].

GPCR signaling is tightly regulated by various mechanisms, including internalization, desensitization,
and interaction with cytosolic proteins. These mechanisms are influenced by posttranslational
modifications such as phosphorylation, glycosylation, palmitoylation and ubiquitination [15–18].

1.2. Ubiquitination

Ubiquitin is a 76-amino acid polypeptide that is covalently attached to lysine residues in substrate
proteins. The attachment of ubiquitin to substrate proteins is processed by a sequential action of
three types of enzymes: ubiquitin activating enzymes (E1), ubiquitin conjugating enzymes (E2), and
ubiquitin ligases (E3). First, in an adenosine triphosphate (ATP)-dependent process, ubiquitin is
activated by E1. In this step, a thiol-ester linkage is formed between the C-terminal glycine of ubiquitin
and a cysteine of E1 at the active site. Next, the activated ubiquitin is transferred to a cysteine residue
at the active site of E2. Finally, the E3 ligase directly or indirectly catalyzes the covalent attachment
of ubiquitin to the target protein. The human genome encodes two E1s, around 60 E2s, and more
than 600 E3 ubiquitin ligases; therefore, it is not surprising that E3s are responsible for providing
substrate specificity in the ubiquitination process. E3 ligases are mainly categorized into two families:
homologous to E6AP C terminus (HECT), and really interesting new gene (RING), based on the
structure of the catalytic domains [19]. In mammals, around 30 HECT domain E3s and around
600 RING-type ligases are expressed [19,20]. The HECT ligases possess catalytic activity, they accept
ubiquitin from the E2 enzyme and transfer it to the specific residue in the substrate protein [21]; while
RING ligases function by bringing E2 enzymes and substrate proteins in close proximity to each other.

Ubiquitin typically binds to the ε-amino group of a lysine residue; however, recent evidence has
shown that ubiquitin can also be attached to other residues, including cysteines, serines, threonines,
and the N-terminus of the polypeptide backbone [22–28].

Ubiquitin can be attached to single or multiple residues in the substrate protein representing
monoubiquitination and multimonoubiquitination, respectively. Ubiquitin itself contains seven lysine
residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, Lys63) and they can all potentially be ubiquitinated.
Attachment of an additional ubiquitin to a previously substrate-bound ubiquitin molecule leads to
polyubiquitin chains of different configurations. Different types of ubiquitination are often associated
with different functions. Ubiquitination is a reversible modification and ubiquitin moieties can be
removed from the substrate protein by a family of deubiquitinating enzymes (DUBs). The human
genome encodes almost 100 DUBs classified into five families: the ubiquitin carboxy-terminal
hydrolases, ubiquitin–specific proteases (USPs), ovarian tumor-related proteases, Machado-Joseph
disease protein domain proteases, and jab1/MPN domain-associated metalloisopeptidases (JAMM).
All families are cysteine proteases, except JAMM, which are a family of metalloproteases [29].
USPs represent the largest family of DUBs (58 members) and most of the described DUBs involved in
the regulation of GPCR ubiquitination belong to this family [29–31]. We have compiled an overview of
all published studies on GPCR ubiquitination (including E3 ubiquitin ligases), DUBs, receptor residues
which are ubiquitinated, the role of the ubiquitination, and whether the modification is induced by
receptor stimulation (Table 1). In this review, we elaborate on some crucial reports and discuss the role
of ubiquitination in the regulation of GPCR function.
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Table 1. G protein-coupled receptors (GPCR) ubiquitination. The table presents a summary of current knowledge regarding GPCR ubiquitination. The list includes the
GPCR family, receptor name and available information on receptor ubiquitination, including E3 ligase, and deubiquitinating enzymes (DUB) and ubiquitin-binding
sites. Next, we mention whether ubiquitination is agonist induced or constitutive. Finally, the reported effect on GPCR function is stated.

GPCR E3 Ligase DUB Residues Induced/Constitutive Role Comment Reference

Class A GPCRs

Adenosine receptors

A2A N.D. USP4 N.D. Constitutive N.D. Deubiquitination necessary for
surface expression [32]

Adrenoceptors

β2

Nedd4 USP20, USP33 Lys in IC3 and
C-term. Agonist (isoproterenol)

Lysosomal degradation,
regulation of
arrestin-mediated signaling

β-arrestin 2 involved [33–37]

MARCH2 N.D. Non-Lys β-arrestin biased agonist
(carvedilol) Lysosomal degradation N.D. [38]

Angiotensin receptors

AT1 N.D. N.D. N.D. Activation of D5R (Fenoldopam) Proteasomal degradation of
glycosylated receptor Polyubiquitination [39]

Chemokine receptors

CXCR2 N.D. N.D. Lys327 Agonist (IL-8) Internalization, signaling Polyubiquitination [40]

CXCR4 AIP4 USP14, USP8
(indirectly)

Three Lys in
C-term Agonist (SDF-1α = CXCL12)

Lysosomal degradation; together
with STAM-1 role in p44/42
MAPK activation

β-arrestin 1 involved;
DTX3L–controls sorting to lysosomes
by blocking activity of AIP4

[41–48]

CXCR7 N.D. Upon
stimulation Lys in C-term Constitutive

Ubiquitination required for
membrane expression of
the receptor

β-arrestin involved [49]

Class A Orphans

GPR37

Parkin N.D. C-term Constitutive ERAD N.D. [50]

HRD1 N.D. N.D. Induced by overexpression
of ATF6 ERAD Degradation of GPR37 reduces ER

stress induced apoptosis [51]

Dopamine Receptors

D1R, D2R N.D. N.D. N.D. Constitutive N.D. N.D. [52]

D4R Cullin3 N.D. Non-Lys
ubiquitination Constitutive Does not influence degradation Polyubiquitination [28,52,53]

D5R N.D. N.D. N.D. Constitutive N.D. N.D. [52]
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Table 1. Cont.

GPCR E3 Ligase DUB Residues Induced/Constitutive Role Comment Reference

Glycoprotein hormone receptors

FSH N.D. N.D. Mainly in IC3 Constitutive Cell-surface expression Other residues can also
be ubiquitinated [54]

Lysophospholipid receptors

LPA2 N.D. N.D. N.D. Agonist (LPA) Proteasomal degradation,
cell survival N.D. [55]

S1P1 WWP2 N.D. N.D. Functional antagonist (FTY720P) Proteasomal degradation Polyubiquitination [56,57]

Melanocortin receptors

MC2 Mahogunin N.D. N.D. Agonist (ACTH) N.D. Multi-monoubiquitination [58]

Opioid receptors

δ (DOR)

AIP4 N.D. Lys Agonist (DADLE) Proteasomal degradation Polyubiquitination, stimulates
transport to ILVs [59–62]

N.D. N.D. N.D. Select. agonist (Deltropin I) Lysosomal degradation Co-degradation with MOR [63]

N.D. N.D. N.D. Constitutive Proteasomal degradation ER-retained receptor [64]

κ (KOR) N.D. N.D.
Lys338, Lys 349,
Lys 378 in
C-term

Constitutive but enhanced by
agonists

Lysosomal and proteasomal
degradation

Lys63 polyubiquitination; β-arrestin
involved; enhanced by receptor
phosphorylation

[65,66]

µ (MOR)

N.D. N.D. Residue in IC1 Agonist (DAMGO, DADLE) Lysosomal and proteasomal
degradation β-arrestin 1 involved [67–69]

Smurf2 N.D. Lys94 and
Lys96 in IC1 Non-selective agonist (DADLE)

Internalization by controlling
maturation of the
receptor-containing CCPs

Polyubiquitination;
β-arrestin 2 involved [59]

N.D. N.D. N.D. DOR activation (Deltropin) Co-degradation with DOR in
lysosomes N.D. [63]

Orexin receptors

OX2
cIAP-1 and -2
are important N.D. N.D. TNF-α Degradation N.D. [70]

P2Y receptors

P2Y1 Nedd4-2 N.D. Lys in C-term Agonist (ADP) p38 MAPK activation N.D. [71]

Platelet-activating receptors

PAF receptor Cbl is
important N.D. N.D. Constitutive

Agonist (PAF)-dependent
down-regulation in proteasome
and lysosome

Monoubiquitination [72]
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Table 1. Cont.

GPCR E3 Ligase DUB Residues Induced/Constitutive Role Comment Reference

Prostanoid receptors

IP N.D. N.D. N.D. Agonist (cicaprost-mature
receptor)

Lysosomal degradation of mature
receptor; proteasomal degradation
of immature receptor

Polyubiquitination [73]

Proteinase-activated receptors

PAR1
N.D. Upon

stimulation
Lys421, Lys422

in C-term
Constitutive and agonist-induced
(SFLLRN-NH2)

Basal ubiquitination blocks
constitutive internalization;
agonist-dependent ubiquitination
is involved in internalization

N.D. [74,75]

Nedd4-2 Lys Agonist (α-thrombin) p38 MAPK activation Lys63-type polyubiquitination [71]

PAR2 Cbl AMSH and
USP8 Lys Agonist (peptide SLIGR-NH2) Lysosomal degradation Monoubiquitination; DUBs are

essential for lysosomal trafficking [76,77]

Tachykinin receptors

NK1 N.D. N.D. Lys Agonist (Substance P) Down-regulation and degradation N.D. [78]

Thyrotropin-releasing hormone receptor

TRH1 N.D. N.D. N.D. Constitutive ERAD N.D. [79]

Vasopressin and oxytocin receptors

V2 N.D. N.D. Lys268 in IC3 Agonist (Arg-vasopr.) Degradation β-arrestin 2 involved [80]

Class B GPCRs

Glucagon receptors

GIP N.D. N.D. N.D. Agonist (GIP) Proteasomal degradation N.D. [81]

Parathyroid hormone receptors

PTH1 N.D. USP2 N.D. Activating PTH [1–34] and
non-activating PTH [7–34] ligands

PTH [7–34]-induced proteasomal
degradation Lys48-type polyubiquitination [82]

Class C GPCRs

Calcium-sensing receptors

CaS Dorphin N.D. Lys Constitutive ERAD N.D. [83]
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Table 1. Cont.

GPCR E3 Ligase DUB Residues Induced/Constitutive Role Comment Reference

GABAB receptors

GABAB1 N.D. USP14 Lys Constitutive and induced by PMA Internalization and lysosomal
degradation N.D. [84]

Metabotropic glutamate receptors

mGlu1a mGlu5 Siah1A N.D. Lys Constitutive Proteasomal degradation N.D. [85]

Class Frizzled GPCRs

FZD4 N.D. USP8 N.D. Constitutive Internalization; lysosomal
degradation N.D. [86]

N.D., non-defined; A2A, Adenosine A2A receptor; Nedd4, Neural precursor cell-expressed developmentally downregulated gene 4; IC1 or 3, Intracellular loop 1 or 3; MARCH2, Membrane
associated ring-CH-type finger 2; AT1, Angiotensin-II receptor type 1; D1R-D5R, Dopamine D1-D5 receptor; CXCR2-CXCR7, C-X-C chemokine receptor-2- 7; IL-8, Interleukine 8; AIP4,
Atrophin-1-interacting protein 4; USP, Ubiquitin-specific protease; CXCL12, C-X-C motif chemokine ligand 12; STAM-1, Signal transducing adapter molecule 1; MAPK; Mitogen-activated
protein kinase; DTX3L, Deltex E3 ubiquitin Ligase 3L; HRD1, ERAD-associated E3 ubiquitin-protein ligase HRD1; ATF6, Activating transcription factor 6; ERAD, Endoplasmic
reticulum-associated degradation; ER, Endoplasmic reticulum; FSH, Follicle-stimulating hormone receptor; LPA2, Lysophosphatidic acid receptor 2; S1P1, Sphingosine-1-phosphate
receptor 1; WWP2, WW domain-containing protein 2; ACTH, Adrenocorticotropic hormone; DOR, δ-opioid receptor; KOR, κ-opioid receptor; MOR, µ-opioid receptor; ILV, Intraluminal
vesicle; DADLE, [D-Ala2, D-Leu5]-Enkephalin; DAMGO, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin; Smurf2, SMAD specific E3 ubiquitin protein ligase 2; CCPs, Clathrin-coated pits; OX2,
Orexin receptor 2; cIAP-1, Cellular inhibitor of apoptosis protein-1; TNF-α, Tumor necrosis factor α; P2Y1, P2Y purinoceptor 1; PAF, Platelet-activating factor receptor; IP, Prostanoid
IP receptor; PAR1/PAR2, Proteinase-activated receptor 1 and 2; Cbl, E3 ubiquitin-protein ligase Cbl; AMSH, Associated molecule with the SH3-domain of STAM; NK1, Neurokinin-1
receptor; TRH1, Thyrotropin-releasing hormone receptor; GIP, Gastric inhibitory polypeptide; PTH1, Parathyroid hormone 1 receptor; CaS, Calcium-sensing receptor 1; GABAB1,
Gamma-aminobutyric acid B1; PMA, phorbol 12-myristate 13-acetate; mGlu1a/mGlu5, Metabotropic glutamate receptor 1a or 5; Siah1A, Seven in absentia 1A; FZD4, Frizzled-4 receptor.
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2. Functional Role of GPCR Ubiquitination

Although an increasing number of in-depth studies about ubiquitination of GPCRs are becoming
available, our understanding of the function of this modification in the regulation of these receptors is
still very limited. The best characterized role of ubiquitination is the targeting of activated GPCRs for
lysosomal degradation [87–89]. Additionally, ubiquitin has been shown to serve as a tag in the quality
control system, the endoplasmic reticulum-associated degradation (ERAD) pathway, and to direct
misfolded proteins for proteasomal degradation. Ubiquitination also regulates cell surface expression
of GPCRs via different mechanisms and in this way controls cell responsiveness to different stimuli
(Figure 1). Recently, the role of ubiquitin in the regulation of GPCR signaling and its involvement
in differential cellular responses upon GPCR activation with biased agonists has been demonstrated.
These well-defined and novel roles of ubiquitin in GPCR regulation will all be discussed in this review.
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Figure 1. Role of ubiquitin in GPCR trafficking. (1) Many GPCRs have been described to undergo
agonist-induced ubiquitination and down-regulation. Upon endocytosis, they are often directed
for lysosomal degradation via the conserved endosomal-sorting complex required for the transport
(ESCRT) machinery (1a); however, some of them can be deubiquitinated and directed to the
resensitization pathway (1b). (2) Constitutive ubiquitination of frizzled-4 receptor (FZD4R) promotes its
internalization and lysosomal degradation, while deubiquitination leads to its recycling and increased
cell surface expression. (3) Some GPCRs are basally ubiquitinated (steady-state) and upon agonist
binding are deubiquitinated and internalized. After subsequent ubiquitination, they can recycle
back to the cell surface. (4) Some properly folded GPCRs (e.g., A2AR) require deubiquitination to be
delivered to the cell surface. (5) Ubiquitination also functions as a quality control system in which
misfolded, polyubiquitinated receptors are directed for proteasomal degradation via the endoplasmic
reticulum-associated degradation (ERAD) pathway. (6) Some GPCRs are ubiquitinated at the plasma
membrane and are directed to the proteasome via a poorly understood process.
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2.1. Regulation of GPCR Cell-Surface Expression by Ubiquitination

In addition to the transcription, translation, and targeting of the receptor to the plasma membrane,
down-regulation plays an important role in the regulation of GPCR expression. There are two
major pathways involved in the degradation of GPCRs: the ubiquitin proteasome system (UPS),
and the endosomal-sorting complex required for the transport (ESCRT) pathway leading to lysosomal
degradation. Additionally, deubiquitinating enzymes and β-arrestins play an important role in the
regulation of GPCR trafficking. In this chapter, our focus is on single mechanistic studies, but the
entire picture is much more dynamic and diverse. Furthermore, very limited studies have focused
on the kinetics of these processes, that is the kinetics of ubiquitination, deubiquitination, and the
interaction of proteins involved in the regulation of E3 ligases, DUBs, and proteins important for
receptor internalization, etc. Extensive knowledge about these processes is of paramount importance
for full understanding of the regulation of GPCR cell-surface expression.

2.1.1. Proteasomal Degradation

The initial discovery of the role of ubiquitin was to serve as a tag to mark misfolded or unneeded
proteins for degradation in the proteasome. Ubiquitination of GPCRs was shown to be involved in the
ERAD, which mainly serves as a quality control system where misfolded receptors are ubiquitinated,
and targeted for degradation in the proteasome [90] (Figure 1, pathway 5). During biogenesis, GPCRs
and other transmembrane proteins are folded in the endoplasmic reticulum (ER) and adopt specific
conformations. This process is assisted by resident molecular chaperons and folding factors. Next,
proteins are released from the ER and are transported through the secretory pathway to the Golgi, and
upon complete maturation move to their final destination. Misfolded proteins are retrotranslocated
from the ER to the cytosol and upon ubiquitination are further directed to the proteasome for
proteolytic degradation [64,91]. The 26S proteasome is a protein complex consisting of a 20S protein
subunit with a proteolytic function and two 19S regulatory cap subunits. Proteins that are tagged by
polyubiquitin chains consisting of at least four ubiquitin moieties are recognized by 19S regulatory
subunits. Ubiquitin is then cleaved and recycled while targeted proteins are degraded in the 20S
subunit. Lys48-type polyubiquitin chains serve most frequently as signals for proteasomal degradation,
but other linkages such as Lys63-type, Lys11-type, linear and non-lysine ubiquitination chains can also
be recognized by the proteasome [92–95].

In this way, only properly folded receptors are delivered to the membrane. The importance of
ERAD as a quality control system during biogenesis was shown for the calcium-sensing receptor [83],
thyrotropin-releasing hormone receptor [79], µ-opioid receptor (MOR), δ-opioid receptor (DOR) [64,68],
and dopamine D4 receptor (D4R) [96].

However, there have been examples of properly folded GPCRs that are deubiquitinated during
biosynthesis and transported to the cell surface, for example, the adenosine receptor A2A [32].
Furthermore, several GPCRs have been described to undergo basal and agonist-induced proteasomal
degradation (Figure 1, pathway 6). Metabotropic glutamate receptors 1 and 5 (mGluR1 and mGluR5)
and the human follitropin receptor are directed to the proteasome, which does not depend on agonist
stimulation [54,85]. Additionally, proteasomal degradation has been shown to play an important role
in the regulation of different opioid receptors. MOR and DOR agonist-induced down-regulation
were attenuated upon pretreatment of the cells with proteasome inhibitors (Z-Leu-Leu-Leu-al,
ZLLL; lactacystin; Z-Ile-Glu(OtBu), PSI and Ac-Leu-Leu-nLeu-al, ALLN), while pretreatment with
a lysosome inhibitor (E64d) had little effect. In addition, incubation with all tested proteasome
inhibitors in the absence of an agonist increased the steady state MOR and DOR levels, indicating
that proteasomal degradation also has an important role in the basal turn-over of both receptors [68].
The κ-opioid receptor (KOR), ubiquitinated after phosphorylation and Lys63-type polyubiquitination,
was shown as a dominant form of KOR ubiquitination. Agonist-induced ubiquitination of KOR
leads to its down-regulation, but surprisingly, the lysine-deficient mutant with a clear decrease in
ubiquitination was also down-regulated, suggesting that more than one mechanism may control



Int. J. Mol. Sci. 2017, 18, 923 9 of 23

receptor degradation [66]. Additionally, a combination of both proteasome and lysosome inhibitors
was required to completely block KOR degradation, suggesting that both pathways are involved in
agonist-promoted down-regulation of the receptor [65]. Although the effect of proteasome inhibitors
was observed in the above-mentioned examples, it is not clear how mature receptors can be extracted
from the cell membrane and directed to the proteasome. It is possible that the proteasome indirectly
influences receptor degradation, that is via proteins involved in the degradative pathway. Such a
scenario has been previously proposed by Hicke [97].

2.1.2. Lysosomal Degradation

GPCRs that recognize and integrate signals from various stimuli need to undergo strict regulation
to prevent cell overstimulation. One of the main regulatory mechanisms is receptor desensitization,
followed by receptor internalization, and subsequent degradation of the receptor in the lysosomes
(Figure 1, pathway 1).

The involvement of ubiquitin in the regulation of GPCR trafficking was first demonstrated in
1996 in yeast, and showed that ubiquitination was necessary for the internalization and degradation
of the sterile 2 α-factor receptor protein (Ste2p) [98,99]. In mammals, however, ubiquitination is not
required for receptor internalization, but seems to regulate, via different mechanisms, lysosomal
degradation of the activated receptor via the highly conserved endosomal-sorting complex required
for transport (ESCRT) pathway [100,101]. The ESCRT machinery consists of four distinct protein
complexes known as ESCRT-0, -I, -II and -III. ESCRT complexes (together with numerous accessory
proteins) act sequentially to sort ubiquitinated cargo from early endosomes into intraluminal vesicles
(ILVs) of multivesicular bodies (MVBs) before degradation in the lysosome [102].

Ubiquitin-dependent sorting of GPCRs via ESCRT to lysosomes has been shown for many GPCRs
(Table 1). The C-X-C chemokine receptor-4 (CXCR4) and proteinase-activated receptor 2 (PAR2)
are ubiquitinated and sorted for lysosomal degradation upon agonist stimulation. Alterations in
proper ubiquitination of these receptors prevent their lysosomal sorting and degradation. Moreover,
disruption of ESCRT components also blocked CXCR4 and PAR2 sorting to lysosomes, confirming
the importance of this pathway in receptor degradation [46,47,77,103,104]. Other examples of GPCRs
where ubiquitination has been shown to play a role in lysosomal sorting after prolonged agonist
treatment are the neurokinin-1 receptor (NK1R) and MOR. When ubiquitination is impaired upon
internalization, NK1R is recycled back into the plasma membrane [78]. MOR ubiquitination is
necessary for its ESCRT-dependent down-regulation and controls receptor distribution between the
limiting endosome membrane and lumen, but is not essential for receptor delivery to the proteolytic
compartments. Instead, this is dictated by the MOR C-terminal tail and is independent of receptor
ubiquitination [69].

The prototypic β2-adrenergic receptor (β2AR) was shown to be sorted to late endosomes/lysosomes
upon agonist (isoproterenol) stimulation, while the mutant receptor (lacking lysines (β2AR-K0)) was
not ubiquitinated and showed resistance to lysosomal degradation [34,37]. Treatment of the β2AR with
β-arrestin biased agonist (carvedilol) also resulted in ubiquitination and lysosomal sorting of the
receptor. This appears to be a distinct type of ubiquitination, rather than the one induced by a balanced
agonist in which another E3 ligase is involved and where ubiquitin is probably attached to other
non-lysine residues [38]. Upon balanced agonist (isoproterenol) treatment, β2AR is ubiquitinated
by the HECT-type E3 ligase neural precursor cell-expressed developmentally downregulated gene 4
(Nedd4) [36]; while upon β-arrestin biased agonist treatment (carvedilol), the RING-type ubiquitin
ligase membrane associated ring-CH-type finger 2 (MARCH2) ubiquitinates the wild type receptor as
well as the lysine-lacking mutant [38].

Although ubiquitination plays an important role in GPCR lysosomal degradation, there are
examples of receptors which can efficiently sort to lysosomes in a ubiquitin-independent manner.
The calcitonin-like receptor (which is not ubiquitinated upon activation) and a lysine-deficient
mutant of DOR (of which ubiquitination is completely blocked) are still degraded in the lysosomes.
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These receptors require an ESCRT-0 complex component for their lysosome sorting, confirming
that ubiquitination is not obligatory for GPCRs to enter the ESCRT pathway [60,62,103,105].
In contrast, proteinase-activated receptor 1 (PAR1) undergoes agonist-induced ubiquitination and
is directed to lysosomes in the next step. However, its degradation is independent of receptor
ubiquitination and ubiquitin-binding components of ESCRT-0 and ESCRT-I complexes (hepatocyte
growth factor-regulated tyrosine kinase substrate—HRS and Tsg101) [75,106,107]. A later study
revealed that ALG-2-interacting protein X (ALIX), an ESCRT-III interacting protein, interacts with the
YPX3L motif in the second intracellular loop of PAR1 and purinergic P2Y1 receptor, and is necessary
for receptor lysosomal sorting. This conserved motif was also found in the second intracellular loop of
several other GPCRs, suggesting that regulation of lysosomal sorting by ALIX could be a common
mechanism within the GPCR family [61,74,108,109]. Most recently, it was shown that ALIX is regulated
by the arrestin domain-containing protein 3 (ARRDC3), and this regulation is necessary for ALIX to
sort PAR1 to the lysosomes. Upon PAR1 activation, ARRDC3 recruits HECT-type E3 ubiquitin ligase
WW domain-containing protein 2 (WWP2) which ubiquitinates ALIX. In this way, ARRDC3 facilitates
the sorting of PAR1 into ILVs of MVBs [110]. The mechanisms that control ALIX-dependent GPCR
sorting at the multivesicular endosomes remain poorly understood; however, it is speculated that
ubiquitin may regulate ALIX by facilitating its dimerization, which in turn can promote its interaction
with the ESCRT-III complex [110].

This finding demonstrates that direct ubiquitination of the GPCR might not be obligatory for its
degradation, but that ubiquitin may still play an important regulatory role in GPCR lysosomal sorting
by modifying other proteins involved in this process.

2.1.3. Deubiquitination and GPCR Cell-Surface Expression

Ubiquitination can direct receptors for degradation while also regulating the cell-surface
expression of GPCRs. The latter involves the dynamic actions of ubiquitin ligases and DUBs, and in
this way modulates cell responsiveness [111].

GPCRs that undergo agonist-induced ubiquitination are usually internalized and targeted for
degradation in lysosomes. However, after deubiquitination they can often be redirected to the
resensitization pathway and recycled back to the cell surface (Figure 1, pathway 2). Upon stimulation
with the agonist isoproterenol, β2AR is internalized and undergoes lysosomal degradation, but its
deubiquitination by USP33 and USP20 on late endosomes promotes receptor recycling to the plasma
membrane [33]. These USPs are coupled to the receptor in a non-active state and upon agonist
stimulation are transferred to β-arrestin 2. This leads to deubiquitination of β-arrestin 2 and its
dissociation from the receptor upon internalization [33]. At the late endosomes, USPs can reassociate
with the receptor and allow its recycling to the cell surface. It has also been shown that the presence of
only one USP is sufficient for receptor recycling. Most recently, it was described that upon physiological
stress, USP20 is phosphorylated by protein kinase A and this process regulates trafficking of β2AR to
autophagosomes [112].

Ubiquitination of CXCR4 by HECT-type E3 ligase atrophin-1-interacting protein 4 (AIP4) induced by
C-X-C motif chemokine ligand 12 (CXCL12) leads to receptor lysosomal degradation [113]. Overexpression
of USP14 promotes CXCR4 deubiquitination and allows it to escape degradation [42,48]. Another
interesting example represents frizzled-4 receptor (FZD4R) where a balance between ubiquitination
and deubiquitination is important for regulating its membrane expression. Constitutive ubiquitination
of FZD4R promotes its internalization and lysosomal degradation, while deubiquitination mediated
by USP8 leads to recycling and increased cell surface expression [86]. USP8 has also been shown
together with another DUB, associated molecule with the SH3-domain of STAM (AMSH), to regulate
PAR2 trafficking. These two DUBs are associated with the ESCRT pathway. USP8 and AMSH mediate
deubiquitination of PAR2 and its sorting from endosomes to lysosomes [76]. AMSH and USP8 may
also regulate trafficking of DOR, but it is unclear whether they do so through direct deubiquitination of
DOR, or via regulation of the ESCRT machinery [61]. Furthermore, the importance of these two DUBs
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has also been shown in the regulation of CXCR4 ubiquitination; however, in this case, they do not
work through direct deubiquitination of the receptor. USP8 regulates CXCR4 lysosomal degradation,
but does so through the deubiquitination of the ESCRT machinery and not CXCR4 [41]. AMSH was
shown to not play a role in the agonist-induced lysosomal degradation of CXCR4, in contrast to its
role in PAR2 regulation [44,114]. Additionally, deubiquitination and lysosomal degradation of CXCR4
is regulated directly by USP14 [48]. Overexpression of this DUB has been shown to prevent lysosomal
degradation of CXCR4 [42]. These examples highlight that the ubiquitination of a single receptor can
be regulated by several DUBs each working with a different mechanism, and that the same DUB can
change its mechanism of action depending on the receptor which undergoes regulation.

Additionally, there are GPCRs which require deubiquitination to enter the internalization pathway
(Figure 1, pathway 3). The C-X-C chemokine receptor-7 (CXCR7) is ubiquitinated in a basal state on
a lysine residue located in the C-terminus. Receptor activation with CXCL12 leads to its reversible
deubiquitination in a process that requires phosphorylation and β-arrestin recruitment [49]. When the
ligand is removed, the receptor is ubiquitinated again and recycled back to the plasma membrane.

Like CXCR7, PAR1 was described as constitutively ubiquitinated. Agonist stimulation of PAR1
induces its deubiquitination [75]; however, after its internalization, ubiquitination of PAR1 increases
once again [74]. Lysine-less PAR1 mutants displayed constitutive endocytosis, suggesting that
ubiquitination is necessary for membrane expression of the receptor and negatively regulates its
constitutive internalization [75].

In contrast to these observations, the deubiquitination of the adenosine A2A receptor (A2AR)
by USP4 is necessary for the cell surface delivery of a functionally active receptor (Figure 1,
pathway 4) [32].

The parathyroid hormone 1 receptor (PTH1R) regulates bone growth and extracellular mineral
ion homeostasis and represents another interesting example of a GPCR regulated by integrated
ubiquitination and deubiquitination mechanisms. This receptor responds to distinct ligands, and
stimulation with both the activating ligand PTH (1–34) and the non-activating ligand PTH (7–34)
leads to polyubiquitination of PTH1R. The enzymes involved in PTH1R ubiquitination are still
unknown, although an enzyme (USP2) involved in deubiquitination of the receptor has been described.
Upregulation of USP2 mRNA upon treatment with the activating ligands has been shown in bone [115],
and was also detected in rat osteosarcoma cells [82]. The different regulation of USP2 can explain
why ubiquitination induced by the activating ligand PTH (1–34) is transient and the non-activating
ligand PTH (7–34) is sustained. This difference in receptor ubiquitination has important implications
as PTH1R undergoes fast deubiquitination and recycles to the cell membrane upon treatment with
the activating ligand PTH (1–34). In contrast, the non-activating ligand PTH (7–34) induces sustained
ubiquitination of PTH1R which leads to its proteasomal degradation [82].

2.1.4. β-Arrestins, Ubiquitination and GPCR Trafficking

Our knowledge on the role of β-arrestins in GPCR regulation has increased rapidly. From
regulation of GPCR internalization and desensitization, to mediating G protein-independent signaling,
β-arrestins appear to be crucial components of the complicated protein network involved in controlling
proper GPCR function. β-arrestins function as adaptors for E3 ubiquitin ligases [116,117] or
deubiquitinating enzymes [41,118] and as such they play an important role in the regulation of
GPCR ubiquitination. However, at times, their mechanism of action is not well defined. The first
research on the importance of β-arrestins in the regulation of GPCRs by ubiquitination came from
the studies of Shenoy et al. [34] who demonstrated that agonist-induced activation of the β2AR led
to the transient ubiquitination of the receptor and of β-arrestin 2. Next, they showed that the mouse
double minute 2 homolog (MDM2) ligase was important for the ubiquitination of β-arrestin 2, but
that MDM2 depletion had no effect on receptor ubiquitination. Later, it was revealed that another
E3 ligase, Nedd4, was responsible for the ubiquitination of β2AR, and that β-arrestin 2 functioned
as an adaptor to recruit Nedd4 to activated β2AR [36]. A recent study showed that Nedd4 may
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be recruited to β2AR independently of β-arrestin 2 through a mechanism mediated by ARRDC3, a
member of the α-arrestin protein family [119]. Nabhan et al. [119] showed that ARRDC3 interacted
with Nedd4 and β2AR and served as an adaptor for ubiquitination of the receptor mediated by Nedd4.
Knockdown of ARRDC3 abolished agonist-induced ubiquitination and lysosomal degradation of
β2AR. However, another group [120] recently presented a report that β-arrestin 2, and not ARRDC3,
was the adaptor protein necessary for the ubiquitination of β2AR. They also concluded that β-arrestin 2
and ARRDC3 functioned sequentially. Upon β2AR activation, β-arrestin 2 mediated the ubiquitination
of the receptor by recruiting Nedd4 and promoted receptor endocytosis. ARRDC3 (as well as other
ARRDC proteins (2 and 4)) functioned as secondary adaptors recruited to internalized β2AR-Nedd4
complexes on endosomes [120]. β-arrestin 1 was shown to bind and co-localize with HECT-type
AIP4 ubiquitin ligases on early endosomes upon CXCR4 activation [42]. Depletion of β-arrestin 1
blocked agonist promoted degradation of CXCR4 by preventing its trafficking from early endosomes
to lysosomes. Interestingly, ubiquitination and internalization of CXCR4 were not affected, suggesting
that the interaction between β-arrestin 1 and AIP4 was not required for ubiquitination of the receptor
at the plasma membrane, but was probably important for subsequent post-internalization events.
One possible explanation is the adaptor function of β-arrestin 1 for AIP4-mediated ubiquitination of
ESCRT-0 components. β-arrestin 1 was shown to interact with signal transducing adapter molecule
1 (STAM-1) (a subunit of ESCRT-0) [44]. Disruption of this interaction reduced ubiquitination of
the second ESCRT-0 subunit, HRS, which in turn enhanced CXCR4 degradation. Involvement of
β-arrestins in the regulation of ubiquitination of other GPCRs (such as the MOR and vasopressin
V2 receptor (V2R)) was also demonstrated, but the precise role of β-arrestins in these processes was
unclear. Using β-arrestin1/2 knockout mouse embryonic fibroblast (MEF) cells, Groer et al. [67]
showed that β-arrestin1 was crucial for [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) mediated
ubiquitination while morphine (the other agonist) could not induce MOR ubiquitination, nor when
G protein-coupled receptor kinase 2 (GRK2) was overexpressed. As the scaffolding machinery has
not been investigated, we do not know which E3 ligase is involved. However, another study [59]
showed that stimulation of MOR with the non-selective agonist [D-Ala2, D-Leu5]-Enkephalin (DADLE)
induced ubiquitination of MOR by the HECT-type E3 ligase Smurf2.

In case of V2R, β-arrestin 2 was shown to be the critical component in the rapid ubiquitination
and degradation of the receptor upon agonist stimulation [80].

Although β-arrestins are mainly adaptors for E3 ubiquitin ligases, one study [49] showed that
constitutively ubiquitinated CXCR7, upon stimulation, underwent deubiquitination in a process
that required phosphorylation and β-arrestin recruitment. The authors proposed a model in which
β-arrestins may function as scaffolds for deubiquitinating enzymes, but the exact function of these
proteins in the regulation of CXCR7 ubiquitination still needs to be investigated.

All the studies presented clearly show that β-arrestins are very important regulators of GPCR
ubiquitination, although their precise role in this process is still poorly understood.

2.2. Importance of Ubiquitination in GPCR Signaling and Biased Agonism

2.2.1. GPCR Signaling

Although most studies have highlighted the role of ubiquitination as a mechanism controlling
GPCR down-regulation, there is also evidence that ubiquitin influences GPCR signaling. Many GPCRs
signal via activation of the mitogen-activated protein kinase (MAPK) pathway, also known as the
extracellular-signal regulated kinase (ERK) pathway. The MAPK pathway is a chain of proteins in a
cell that transfer the signal from the receptor on the cell surface to the DNA in the nucleus, or to other
subcellular targets causing cellular responses including proliferation, gene expression, differentiation,
mitosis, cell survival, and apoptosis. Signaling molecules in this pathway communicate between
each other by adding a phosphate group to the neighboring proteins. This phosphorylation event
functions as an “on/off” signal, leading to the activation or inhibition of the next signaling molecule
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in the chain [121]. The most commonly studied MAPK pathway initiated by GPCR activation is
the p44/42 MAPK (ERK1/2) pathway. This pathway can be activated by G protein-dependent and
-independent mechanisms [122–124]. The G protein-independent MAPK signaling often requires
β-arrestins as scaffolds for the signaling complexes [10,125,126]. We can assume that the scaffold
function of β-arrestins is related to their ubiquitination status and their ability to co-internalize with
certain GPCRs. The ubiquitination of β-arrestin 2 is controlled by the ubiquitin ligase Mdm2 and the
deubiquitinating enzyme USP33, and is regulated by the activation of GPCRs, e.g., β2AR [35]. Based on
the affinity of β-arrestin and trafficking patterns, GPCRs are divided into two classes. Receptors from
class A (e.g., β2AR) form a transient complex with β-arrestin 2 and internalize without them, which
promotes fast recycling. In contrast, receptors from class B (e.g., V2R) form more stable complexes with
β-arrestin, internalize into endosomes together with β-arrestin 2 and are slowly recycled. Stimulation
of the β2AR and V2R leads to transient or stable β-arrestin ubiquitination, respectively. Thus,
ubiquitinated β-arrestin internalizes (together with the receptor) towards endosomes with activated
MAPK. Such a situation was demonstrated for AT1aR [127,128]. The precise mechanism demonstrating
how ubiquitination of β-arrestin 2 favors sustained p44/42 MAPK activation is unclear. It is possible
that β-arrestin 2-bound ubiquitin allows a more stable interaction between β-arrestin 2 and the receptor
which promotes their co-internalization and sustained MAPK activation on endosomes. Furthermore,
ubiquitinated β-arrestin 2 may work as an adaptor for ubiquitin binding domain (UBD) proteins which
mediate sustained MAPK signaling [129].

Another study indicated that ubiquitination may play a role in the regulation of G protein-dependent
signaling. CXCR4-mediated p44/42 MAPK phosphorylation is G protein-dependent and does not require
β-arrestin. Malik et al. [45] showed that two proteins crucial for lysosomal sorting of CXCR4 (the ubiquitin
E3 ligase AIP4 and the ESCRT-0 subunit STAM-1) were also involved in the regulation of CXCR4-mediated
p44/42 MAPK activation. Depletion of either AIP4 or STAM-1, as well as inhibition of the interaction
between these two proteins, blocked phosphorylation of p44/42 MAPK upon CXCR4 activation.
Moreover, it was observed that there was a discrete subpopulation of AIP4 and STAM-1 in caveolar
microdomains with CXCR4 which appeared to mediate MAPK activation. To explain this observation,
the authors proposed a mechanism in which ubiquitination of STAM-1 by AIP4 in caveolae regulated
the activation of p44/42 MAPK signaling initiated by CXCR4, but further research is required for
clarification [45]. Interestingly, extracellular ubiquitin can bind to the CXCR4 receptor and functions as
a natural agonist of this receptor. Binding of the extracellular ubiquitin promotes intracellular Ca2+

flux and reduces cAMP levels via the Gαi/o protein [130]. These studies present a novel idea on
the importance of ubiquitin in the regulation of GPCR signaling. Ubiquitin does not only influence
receptor signaling by modifying the receptor itself or various receptor interacting proteins, but can
also serve as a direct activator of the receptor on the extracellular site of the cell.

Recently, signaling via another chemokine receptor, CXCR2, was shown to be strictly dependent
on the ubiquitination status of the receptor. A single lysine residue (Lys327) in the C-terminal tail
of CXCR2 was identified as a site of ubiquitination. Moreover, this ubiquitination seemed to play
a key role in receptor internalization and signaling. CXCR2, where Lys327 was mutated to arginine,
displayed decreased polyubiquitination, failed to recruit β-arrestin, and did not internalize upon
stimulation of the receptor. Furthermore, the intracellular signaling—including both early events,
such as MAPK phosphorylation and the increase in calcium flux, and the later activation of the
nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP1)
transcription factors—was blunted. The precise mechanism of how the ubiquitination of a single lysine
can regulate so many aspects of CXCR2 signaling still needs to be elucidated [40]. In addition, a study
where all lysines in the C-terminal tail of the CXCR2 were mutated [131] showed that these residues
were not crucial for CXCR2 degradation in the lysosomes.

Ubiquitination is also important for p38 MAPK activation. It was revealed that activation of
PAR1 with α-thrombin led to its Lys63-type polyubiquitination mediated by the Nedd4-2 E3 ubiquitin
ligase [71]. Ubiquitinated PAR1 recruits the transforming growth factor-β-activated protein kinase-1
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binding protein-2 (TAB2) which binds to the receptor via its ubiquitin binding motif and functions as
an adaptor for TAB1 protein, resulting in TAB2-TAB1-p38 signaling complex formation on endosomes.
The phosphorylation of p38 occurred in a non-canonical way as the two kinases typically necessary
for this process, mitogen-activated protein kinase kinase 3 (MKK3) and MKK6, were not obligatory
in the case of PAR1 initiated p38 phosphorylation. Ubiquitin and TAB-dependent activation of p38
was required for thrombin-induced endothelial barrier permeability in vitro, and signaling by p38
MAPK was essential for PAR1-stimulated vascular leakage in vivo. Interestingly, ubiquitination of
the purinergic GPCR P2Y was also required for the TAB-dependent activation of p38 MAPK upon
receptor activation [71]. This finding suggests that non-canonical p38 signaling is not limited to PAR1
and can be a more general phenomenon with an important role in GPCR ubiquitination.

2.2.2. Biased Agonism

Biased agonism is a phenomenon where different ligands elicit distinct responses at the same
receptor [14]. Understanding the molecular basis of biased agonism is of great importance in
pharmacology as it will allow the development of drugs which produce beneficial responses with
limited side effects [3,132–134]. Recent studies have demonstrated that ubiquitination is important in
determining differential GPCR regulation induced by biased agonists. Here we provide examples that
show that various ligands induce distinct ubiquitination patterns of the same receptor.

MOR, a major target for opiate drugs, is a receptor that displays various responses when activated
with different ligands [135]. Morphine and DAMGO (two MOR-specific agonists) cause a difference in
the recruitment ofβ-arrestins (1/2) and in MOR ubiquitination. Activation of MOR with DAMGO leads
to MOR internalization mediated by β-arrestin 1 and β-arrestin 2. In contrast, morphine induces only
β-arrestin 2 recruitment, followed by receptor internalization [67]. Next, there was a huge difference in
the ubiquitination of MOR upon incubation with morphine or DAMGO (as DAMGO induces MOR
ubiquitination), while morphine treatment had no effect on the ubiquitination of the receptor. Further
experiments proved that β-arrestin 1 (and not β-arrestin 2) was important in MOR ubiquitination.
Another study [62] showed that stimulation of MOR with the non-selective agonist DADLE also
induced ubiquitination of the receptor, which controlled its internalization as ubiquitin-deficient MOR
did not internalize through clathrin-coated pits as efficiently as wild-type receptors.

Another interesting example (previously mentioned in Section 2.1.2) is β2AR, which can be
ubiquitinated by different E3 ligases upon treatment with different ligands. Upon activation of
β2AR with its balanced agonist isoproterenol, the receptor undergoes rapid ubiquitination by
the HECT-type ubiquitin ligase Nedd4, followed by lysosomal degradation [36]. The β-arrestin
biased agonist carvedilol stimulates β-arrestin2-dependent signaling, but is also an antagonist for G
protein-dependent signalling [136]. Stimulation of β2AR with carvedilol also leads to ubiquitination
and lysosomal degradation, but ubiquitination is now added to the receptor via the RING-type E3
ligase MARCH2 [38].

All examples presented above show that distinct ligands can differentially modulate the activity
of the ubiquitin machinery that plays a role in the regulation of biased signaling.

2.3. Transubiquitination

GPCRs are known to transactivate other receptors such as growth factor tyrosine kinase receptors
via release of membrane-anchored ligands, or through the modulation of receptor cytoplasmic
domains [137]. Recent studies have revealed that some receptors and antagonists can stimulate
GPCR transubiquitination and degradation. The orexin receptor (OX2), involved in the regulation of
the sleep/wake cycle, is ubiquitinated and degraded in response to signaling by the proinflammatory
cytokine tumor necrosis factor α (TNF-α) [70]. An example of an antagonist which promotes
ubiquitination of a GPCR is FTY720. This inhibitor of sphingosine-1-phosphate receptor (S1PR)
signaling induces phosphorylation of the C-terminal domain of the receptor followed by receptor
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internalization, polyubiquitination, and proteasomal degradation, and finally results in a functional
antagonism of S1P signaling [56,57].

Moreover, certain GPCRs promote transubiquitination of other GPCRs which can dramatically
change cell responsiveness. This phenomenon was first described for the angiotensin-II type 1 receptor
(AT1R) in response to dopamine D5 receptor (D5R) activation. Both receptors have opposite influences
on cellular signal transduction, where signaling of AT1R is prohypertensive while D5R signaling is
antihypertensive. Li et al. [39] demonstrated that activation of D5R promoted ubiquitination and
proteasomal degradation of AT1R, but it was unclear whether the two receptors interacted directly with
each other, or if it was an indirect effect mediated by downstream signaling molecules (Figure 2(1)).
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Figure 2. Transubiquitination between GPCRs: Activation of one GPCR can promote ubiquitination
of another GPCR. (1) Agonist stimulation of dopamine D5 receptor (D5R) leads to the ubiquitination
of angiotensin-II type 1 receptor (AT1R), disruption of the interaction between the two receptors,
and subsequent proteasomal degradation of AT1R. The precise mechanism is poorly understood;
(2) Activation of δ-opioid receptor (DOR) with its specific agonist leads to the ubiquitination of
µ-opioid receptor (MOR) and co-internalization of both receptors which are in the next steps targeted
for lysosomal degradation. This causes a decrease in cell responsiveness to opiate agonists.

Accumulating evidence suggests that GPCRs can also form functional homo- and heteromers
as well as higher order oligomers which exhibit different signaling properties when compared to
monomers [138–147]. DOR and MOR were shown to form heteromers, and depending on the ligand
used, the heteromers were recycled or directed for lysosomal degradation [63]. Stimulation of DOR
with its specific agonist (Delt I) promoted ubiquitination, but not phosphorylation of MOR and
led to degradation of both receptors (Figure 2(2)). Disruption of the heteromer by an interfering
peptide containing the first transmembrane domain of MOR rescued MOR cell-surface expression and
increased cell sensitivity to opiate agonists [63], while DOR could still undergo internalization.

3. Conclusions

It is widely accepted that ubiquitination plays a vital role in the regulation of many cellular
processes. However, our knowledge about the exact functions of ubiquitination in the coordination
of GPCR action is still limited. The increasing amount of research in this field highlights the huge
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importance of E3 ubiquitin ligases, DUBs and other GPCR-interacting proteins (like β-arrestins)
in coordinating complicated ubiquitin-mediated processes in a very flexible way. The role of
ubiquitination in regulating lysosomal degradation of activated GPCRs is already well-established.
Recent findings have provided evidence for the additional involvement of ubiquitin in many other
regulatory mechanisms like receptor trafficking, β-arrestin-, and G protein-mediated signaling, and
even in the modulation of differential responses initiated by biased agonists. The incredible diversity of
the mechanisms directly or indirectly controlled by ubiquitination warrants future studies to uncover
additional, yet unknown functions of this posttranslational modification in GPCR regulation. Amongst
others, these studies should focus on identifying proteins which are involved in or are targets of
ubiquitination initiated by the activation of specific GPCRs. Finally, understanding the molecular basis
of the regulatory processes controlled by ubiquitin will be of great value in the development of new
drugs and therapies.
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