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Abstract: γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate
brain. In the past, there has been a major research drive focused on the dysfunction of the
glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However,
there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this
neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent
picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in
neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in
the processes of learning and memory, such changes in GABAergic function could be an important
factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available
therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in
AD could open up innovative and novel therapeutic opportunities.
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder, and the most prevalent form
of dementia in elderly patients [1,2]. The onset of the disorder is insidious, and symptoms tend to
progress gradually with age from mild memory impairment to severe dementia [3]. A range of other
symptoms are associated with the progression of the disease, including the loss of language skills,
cognitive deficits, loss of higher executive function, psychomotor impairment, and neuropsychiatric
disturbance [3]. In advanced stages of disease progression, patients often experience significant
difficulty in performing the necessary functions of daily life [3]. It has been estimated that
approximately 46.8 million people were affected by dementia globally in 2015 [4]. With an estimated
global incidence of approximately 9.9 million new cases per year, current trends indicate that the
prevalence of dementia will double approximately once every 20 years [4]. In particular, rising life
expectancies and an aging population in both developed and rapidly developing societies are mirrored
by an increase in disease burden due to dementia, with dementia of the Alzheimer’s type accounting
for an estimated 50–80% of the burden of dementia [4–7].
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A small proportion of early-onset AD cases can be attributed to autosomal dominant mutations
in one of three genes—presenilin 1 [8], presenilin 2 [9,10], or the amyloid precursor protein (APP)
gene [11]. However, at present, the specific causes underlying the far more common late-onset
form of the disease are poorly understood. Apart from age, several other genetic and non-genetic
factors have been associated with alterations in disease risk for non-familial AD; these include gender,
the apolipoprotein E genotype, baseline cognitive scores, and educational level [12]. The pathogenesis
of AD is known to be associated with significant dysfunction in the cholinergic and glutamatergic
neurotransmitter systems, including altered levels of these neurotransmitters and the massive
degeneration of neuronal networks [13,14]. However, the progression of the disease is likely far more
complex, with the involvement of additional neurotransmitter systems and molecular components.
Thus, a comprehensive understanding of AD pathogenesis with a view towards the development of
novel treatment strategies requires a more global consideration of neurotransmitter dysfunction in the
diseased brain. γ-aminobutyric acidergic (GABAergic) dysfunction in AD has long been a neglected
area of inquiry, due in no small part to the inconsistency of previous results, making this a poorly
understood and controversial subject. In this review, we present and discuss evidence for GABAergic
dysfunction in AD, and the role that this could play in the development of the disorder.

2. The γ-Aminobutyric Acid (GABA) Signaling System

γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the mammalian
central nervous system (CNS), and it is crucially important in the regulation of responsiveness
and excitability in human cortical networks [15,16] and in the synchronization of cortical neuronal
signaling activity by networks of cortical interneurons [17–19]. The ubiquity of GABAergic regulation
in the CNS gives this neurotransmitter a central role in a very wide range of physiological and
biochemical processes—GABAergic control is involved in the regulation of cognition [20,21], memory
and learning [22–26], motor function [27,28], circadian rhythms [29,30], neural development [31–34],
adult neurogenesis [35–38], and sexual maturation [39–42]. Dysfunction in GABAergic signaling is
known to be a central factor in the pathogenesis of several neurological disorders, with the role of
GABA in epilepsy and the maintenance of the inhibitory-excitatory (E/I) balance in the human cortex
being the subject of significant scholarship [43–45]. The contribution of GABAergic dysfunction to
disorders such as Alzheimer’s disease (AD) [46,47], major depressive disorder [48,49], anxiety [49–51],
autism [52,53], schizophrenia [54–56] and bipolar disorder [57] is also known or suspected, with many
lines of evidence pointing to the underlying contribution of defects in the signaling system [53,58].
Thus, the GABAergic system has long been a major target in the development of treatment strategies
for these conditions. Following is a brief description of the major components of the GABAergic
system (summarized in Figure 1).

2.1. GABA Synthesis

GABA synthesis occurs via the α-decarboxylation of L-glutamate by the enzyme glutamic acid
decarboxylase (GAD)—a single-step, irreversible reaction dependent on the availability of the cofactor
pyridoxal-5′-phosphate (a vitamer of vitamin B6) [59–61]. Two major isoforms of GAD exist—a 65 kDa
isoform (GAD65) and a 67 kDa isoform (GAD67); GAD65 is the major isoform of GAD expressed
in the mammalian brain [62,63], localized primarily to the axon terminals of synaptosomes and
interacting readily with the plasma membrane, whereas GAD67 is more widely distributed in the
cytosol of cells [64–69]. The differential distribution of the two GAD isoforms corresponds well with
the presence of two pools of intracellular GABA—one of which is found in vesicles and the other in
the cytosol, and which are released by different mechanisms [70,71]. It has thus been suggested that
GAD65, being localized in the synaptic bouton, plays a role in the synthesis of GABA released via
a vesicular mechanism [72,73], whereas GAD67 likely mediates the synthesis of the cytoplasmic pool
of GABA [71].
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Figure 1. An overview of the γ-aminobutyric acid (GABA) signaling system. The schematic diagram 
represents a GABAergic synapse and depicts the key aspects of GABAergic signal transduction. 
GABA is synthesized in the pre-synaptic terminal from glutamate by glutamic acid decarboxylase 
(GAD). GABA is then recruited into synaptic vesicles via the action of vesicular GABA transporter 
(vGAT). Following membrane depolarization, GABA is released into the synapse and can bind to 
either ionotropic GABAA receptors (GABAAR) or metabotropic GABAB receptors (GABABR) on the 
postsynaptic membrane, resulting in inhibition of the post-synaptic neuron. Released GABA is 
cleared from the synapse by membrane-bound GABA transporters (GATs), localized to neurons and 
astrocytes. In astrocytes, GABA is recycled into synaptic vesicles or taken up by mitochondria, where 
it is metabolized by GABA transaminase (GABA-T) to glutamine for neuronal uptake. 

2.2. GABA Metabolism and Homeostasis 

GABA metabolism in the brain occurs through a highly compartmentalized set of enzymatic 
processes. Neurotransmitter levels at GABAergic and glutamatergic synapses are largely maintained 
by astrocytes, through their mediation of the glutamate/GABA-glutamine cycle (summarized in 
Figure 1) [74]. Cortical synapses are tightly enveloped by highly specialized astroglial processes 

Figure 1. An overview of the γ-aminobutyric acid (GABA) signaling system. The schematic diagram
represents a GABAergic synapse and depicts the key aspects of GABAergic signal transduction.
GABA is synthesized in the pre-synaptic terminal from glutamate by glutamic acid decarboxylase
(GAD). GABA is then recruited into synaptic vesicles via the action of vesicular GABA transporter
(vGAT). Following membrane depolarization, GABA is released into the synapse and can bind to
either ionotropic GABAA receptors (GABAAR) or metabotropic GABAB receptors (GABABR) on
the postsynaptic membrane, resulting in inhibition of the post-synaptic neuron. Released GABA is
cleared from the synapse by membrane-bound GABA transporters (GATs), localized to neurons and
astrocytes. In astrocytes, GABA is recycled into synaptic vesicles or taken up by mitochondria, where it
is metabolized by GABA transaminase (GABA-T) to glutamine for neuronal uptake.

2.2. GABA Metabolism and Homeostasis

GABA metabolism in the brain occurs through a highly compartmentalized set of enzymatic
processes. Neurotransmitter levels at GABAergic and glutamatergic synapses are largely maintained
by astrocytes, through their mediation of the glutamate/GABA-glutamine cycle (summarized in
Figure 1) [74]. Cortical synapses are tightly enveloped by highly specialized astroglial processes [75,76],
where GABA is taken up following synaptic release [77–79] and catabolized to succinate in
a two-step reaction catalyzed by the mitochondrial enzymes GABA transaminase (GABA-T) and
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succinate semialdehyde dehydrogenase (SSADH). Succinate, being an intermediate component of the
tricarboxylic acid (TCA) cycle, is subsequently converted to glutamine (Gln) by glutamine synthase,
and Gln is then transported into neurons where it undergoes conversion to glutamate (Glu) [80]. It has
been estimated that GABA metabolism accounts for ~8–10% of the total flow through the neuronal
TCA cycle [80]. Most of this glutamate then undergoes conversion to glutamine (Gln) through the
action of the strictly astrocyte-specific enzyme glutamine synthetase (GS) [81]. Gln is released by
astrocytes and taken up by the closely apposed presynaptic neurons, where it can be re-converted to
glutamate through the action of the predominantly neuronally localized enzyme phosphate-activated
glutaminase (PAG) [82–84]; this process is regulated by the availability of phosphorylated species such
as ATP and GTP [85,86], by TCA cycle intermediates [86,87], by cyclic nucleotides such as cAMP and
cGMP [86], and by the products of the catalytic reaction (Glu and NH4) [86], allowing for negative
control of this process at a number of different levels. Glutamate is thus readily available for GABA
synthesis by GAD.

2.3. Mechanisms of GABA Transport and Synaptic Uptake

The GABAergic system plays an essential role in the fine temporal control of neuronal activity, at
the level of individual neurons as well as larger neuronal populations. For this reason, the timing of
receptor activation is important, and GABA levels in the extracellular compartment must be carefully
regulated [88]. The clearance of GABA from the synaptic cleft, and its reuptake into neurons and
astrocytes following neurotransmission, occurs through high-affinity GABA uptake systems [89,90].
GABA transport is mediated primarily by four GABA/Na+/Cl− symporters—in humans these
are GABA transporter 1 (GAT1), GABA transporter 2 (GAT2), GABA transporter 3 (GAT3) and
the betaine-GABA transporter (BGT1). Within neurons, GABA transport into synaptic vesicles is
mediated by the vesicular GABA transporter (vGAT) [91]. Functionally, the GABA transporters are
responsible for the modulation of GABAergic inhibition by terminating the synaptic action of GABA
and thus shaping the postsynaptic response to inhibitory presynaptic neurotransmitter release [92–98].
The differing ionic and pharmacological sensitivities of the different GABA transporters, and their
differing affinities for GABA transport, make this a very heterogeneous uptake system which can
control inhibitory synaptic signaling in a number of ways [99–101]. The GABA transporters are widely
distributed throughout the mammalian central nervous system, with individual transporters having
unique and sometimes overlapping regional distributions, mainly located on neuronal and glial cell
membranes [102–110].

GAT1 is the most highly expressed GABA transporter in the mammalian cerebral cortex [111],
and is generally considered to be the primary presynaptic neuronal GABA transporter. This transporter
is also localized to astrocytic membranes at GABAergic synapses [104]. The extensive nature of GAT1
expression reflects its importance in regulating cortical excitability and information processing at
synapses [104]. GAT2 is primarily found in various tissues outside of the CNS (in particular in the
proximal tubules of the kidney, in the heart, and in liver hepatocytes), but has a limited distribution in
some regions of the brain and in the retina [99,112,113]. GAT3 is primarily found in the nervous system,
and is localized almost entirely to the processes of astrocytes within the cerebral cortex, indicating
that this transporter is responsible for the uptake of GABA into astrocytes rather than neurons [114].
BGT1 is primarily a transporter for betaine, and has a lower affinity for GABA than the aforementioned
transporters. The distribution of BGT1 in the mammalian brain is contentious, but some studies report
that it is expressed by astrocytes at extrasynaptic sites, possibly suggesting a role in the regulation of
tonic extracellular GABA levels.

2.4. GABA Receptors

GABA and its structural analogues bind to and activate GABA receptors (GABARs).
The regulation of neural function by GABA occurs through its interaction with two classes of
receptors—ionotropic GABAA/C receptors and metabotropic GABAB receptors.
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GABAA ionotropic receptors (GABAARs) are most commonly possess a pentameric structure,
with five protein subunits arranged around a central Cl− channel [115–117]. These receptors may be
assembled from many possible subunit isoforms, each of which may belong to one of eight known
subunit families—α, β, γ, δ, $, ε, θ and π [118,119]. Many of these subunit families comprise multiple
subtypes (α1–6, β1–4, γ1–4, $1–3, ε, δ, θ and π), encoded by over 20 different genes [120,121]. There is
a high degree of amino acid sequence identity within each subunit family (~70–80%), but much lower
between them (~20%). Adding to this remarkable heterogeneity between and within subunit families,
some of these subunits (such as γ2) may also exist as multiple splice variants [122,123]. Most GABAARs
have a specific 2α:2β:1γ heteropentameric structure. In addition to this, each of these subunits may
belong to any of the subtypes within their subunit family, and different variations of the 2α:2β:1γ
template may occur in different brain regions [116,124–126]: ~60% of cerebral GABAARs are of the
α1β2γ2 configuration, with the other two often-observed configurations being α2β3γ2 (~15–20%) and
α3βnγ2 [127,128]. Other less common configurations are observed in brain regions such as the dentate
gyrus (DG), hippocampus and cerebellum, and many other potential heteropentamers have been
generated under laboratory conditions. Thus, there are many ways in which GABAAR subunits can
interact—in fact, taken together, previous studies investigating the range of different possible GABAAR
subtypes seem to point towards a remarkable promiscuity in the association of receptor subunits.
Within receptor heteromers, different subunits are found at varying frequencies. Sieghart et al. have
reviewed the methods commonly utilized to elucidate the subunit composition of the various possible
receptor configurations [129]. It has been shown conclusively, in immunoprecipitation studies, that the
α1 subunit is the most widely expressed, present in ~70–90% of GABAARs [129]. Another two subunits
of the α-family, α2 and α3, are respectively present in approximately 35% and 14% of GABAARs [129].
Alternatively, α5 and α6 are less common, and found in only a small proportion of GABAARs, in
particular in the hippocampus and cerebellum [129–131]. All three β-family subunits appear to
occur quite commonly in subunit heteromers throughout the brain [126,129,131,132]. However, of
the γ-family subunits, the γ2 subunit is by far the most commonly associated with other subunits in
receptors (~50–60%) [129,133,134]. Multiple subunits from the same family may be present within the
same receptor subtype.

Due to the ionic basis of the channel function of GABAARs, they are responsible for the inhibition
and modulation of fast synaptic transmission. In general, GABAergic inhibition may be phasic or tonic.
Phasic inhibition is produced by transient GABA release at the synapse, whereas tonic inhibition results
from prolonged or continuous stimulation of extrasynaptic GABAARs by extrasynaptic GABA [135].
The extensive molecular heterogeneity of GABAAR subtypes, and the resulting array of potential
receptor configurations, plays a central role in the modulation of inhibitory postsynaptic potentials
(IPSPs). The specific subunit composition of postsynaptic GABAARs on the contacted domain of the
neuron determines the nature of the response to inhibitory signaling, and the functional properties of
GABAARs differ depending on their subunit compositions [136,137]. The orthosteric GABA binding
site is located at the interface between the α and β subunits, and alterations in α and β subunit
subtypes in the GABAAR may alter the affinity or sensitivity of the receptor to GABA and other
orthosterically binding agonists and antagonists [138,139]. In addition, various modulators of the
GABAA receptor bind at allosteric sites—benzodiazepines (BZ), for instance, bind to the receptor at
the γ2-α interface [129]. Thus, the absence of the γ2 subunit makes the receptor insensitive to this
class of modulators, including drugs and endogenous ligands [140]. Further, γ subunits have also
been shown to disrupt the Zn2+ interaction site on the GABAAR, and the absence of this subunit
thus increases endogenous Zn2+ inhibition of GABAARs [141]. The γ2 subunit is also believed
to play a role in GABAAR desensitization [142]. It has been shown that receptors containing the
α1 subunit undergo rapid deactivation, whereas α2 subunit–containing receptors undergo slower
deactivation [143]. Further, δ subunit–containing receptors are mostly extrasynaptic, and the δ subunit
increases the sensitivity of the receptor to GABA, thus playing an important role in tonic inhibition [144].
Other endogenous and exogenous modulators of GABAAR function, including barbiturates, ethanol,
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steroids, picrotoxin, and melatonin, interact with the receptor at their various orthosteric or allosteric
binding sites and function through diverse mechanisms of action [145]. Thus, the individual GABAAR
subunits may each be involved in a range of functions, and they may interact with each other in
complex ways. Interestingly, it has been shown that the GABAAR subunit composition may vary
between different brain regions [129,146], and that subunit distributions may be altered in various
neurological disorders [147–149]. Thus, it is clear that the pharmacological properties and sensitivities
of the GABAARs are dependent on subunit composition. An understanding of GABAergic function
in any specific brain region or cell type requires the knowledge of local GABA subunit distribution.
It is thus essential to understand subunit alterations in health and disease in order to arrive at
a comprehensive understanding of the impact of GABAergic dysfunction on brain function.

The functional GABAB metabotropic receptor (GABABR) incorporates two subunits—GABAB1

and GABAB2 (GB1 and GB2), both of which play distinct functional roles, and interact
allosterically to regulate receptor function [150,151]. Like other GPCRs, the GABABR subunits each
consist of seven transmembrane α-helical domains, connected by intracellular and extracellular
loops [152,153]. These proteins also feature an intracellular C-terminus and an extracellular
N-terminal tail. The C-terminal region and the intracellular cytoplasmic loops are associated with
a membrane-associated heterotrimeric G-protein, and this intracellular domain is also the site of
interaction with a variety of other proteins, including adapter proteins and enzymes [154–156].
The GB1 subunit is responsible for the recognition and binding of ligands to the receptor via a large
extracellular ligand-binding domain, but is not itself capable of forming a functional receptor [157,158];
in fact, the GB1 subunit features an endoplasmic reticulum (ER)-retention signal on its C-terminus,
which prevents its trafficking to the cell membrane in vivo [159]. GB2 is required to ensure the
correct trafficking of the receptor complex to the plasma membrane, through the masking of the
GB1 ER-retention signal via an interaction between the C-terminal domains of both subunits [159].
In addition, signal transduction in GABABRs following the binding of agonists to the GB1 subunit is
mediated by GB2—without this subunit, it is possible that the GABABR is non-functional [150,160–162].
However, there is emerging evidence that the GB1 receptor subunit may have some functional capacity
on its own—exerting effects on the ERK pathway, for instance [163]. The GABABR may incorporate
one of two isoforms of the GB1 subunit; these are termed GB1a and GB1b, and display differing
distributions within the synapse [151,164,165]. GB1a-containing GABABRs are targeted to both axons
and dendrites, as well as to glutamatergic terminals, whereas GABABRs incorporating GB1b are
only trafficked to GABAergic dendritic terminals, and both receptor subtypes modulate differing
functions at these sites [166–168]. These two GABABR subtypes also have different expression profiles
in various brain regions and at different stages of development [165]. Thus, GABABRs also display
a small amount of structural heterogeneity which is of importance to the functional diversity of
these receptors.

Our current understanding of GABA receptor alterations with respect to AD will be covered in
detail in the next section.

3. GABA System Changes in Alzheimer’s Disease (AD)

3.1. Alterations in GABA Levels and Glutamic Acid Decarboxylase (GAD) Enzyme Activity

The role of GABAergic dysfunction in the pathogenesis of AD is a poorly understood and
controversial matter. However, there is increasing evidence to suggest that neurotransmission at
GABAergic synapses is significantly affected in AD in several different ways. Many studies have been
concerned with the measurement of post-mortem GABA concentrations, GAD distribution and GAD
activity in Alzheimer’s disease. However, the results of these studies, when taken together, are difficult
to interpret due to their often-contradictory results, as well as the substantial limitations associated
with post-mortem GABA and GAD measurement. In general, most post-mortem studies in tissue
from patients with AD and other conditions with AD-like pathology indicate moderate-to-significant
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reductions in GABA concentrations in various cortical areas, including in the temporal [169–176],
frontal [170,172,173,177,178], parietal [169,170,172,173] and occipital [173,175,177,178] cortices.

More specifically, within the frontal cortex, GABA depletion has been observed in the orbitofrontal
region [178] and the premotor cortex [173]. However, several other post-mortem studies have indicated
that GABA levels in one or more of these regions are not significantly altered [170,172,177–179],
and GABA levels are reportedly unchanged within the insular and angular cortices [178]. One recent
study found that GABA levels were substantially reduced within the AD temporal cortex, without
looking into whether these changes are subregion-specific [176], but other studies generally report
a decrease in GABA levels across multiple subregions of the temporal cortex [169–175].

Outside of the cortex, one study has reported reduced levels of post-mortem GABA in
the cerebellum [175], while another reported no such changes [174]. Changes in post-mortem
hippocampal GABA levels are similarly contentious, with some groups reporting decreases in
the measured levels of the neurotransmitter [172,174,177] and some reporting a preservation of
GABA levels [173,178–180]. One study also found decreased GABA levels in the parahippocampal
cortex [173]. Within the AD thalamus, it has been observed that GABA levels are depressed in the
dorsomedial nucleus [173], maintained in the anterior nucleus [173,174] and conserved [173,174] or
reduced in the ventrolateral nucleus [178]. Another study has reported unchanged GABA levels
in the thalamus in general [175]. Decreased GABA levels have also been observed by some in the
cingulate cortex [173,178] and amygdala [172,178]. Other studies have reported that GABA levels are
conserved in the putamen [173,174], caudate nucleus [173–175], substantia nigra [174,177,178], nucleus
accumbens [173,174,178], amygdala [174], septal nuclei [174], hypothalamus [174,178], and cingulate
cortex [170,174] in the AD brain. Only one study has actually reported a significant increase in
GABA concentrations within the caudate nucleus [178], but GABA levels otherwise appear to be
well-preserved in the structures of the basal ganglia in AD. As can be seen, many studies of GABA
level alterations in the AD thalamus and subcortex are contradictory. However, it seems that there is
a general trend in these studies towards a depression of GABA levels in many brain regions in AD.
Reported changes in GABA levels in the aforementioned regions and others have been summarized in
Table 1.

Table 1. Changes in GABA levels in the human Alzheimer’s disease brain.

Region Change References

Hippocampus ↓ [172,174,177]
↔ [173,178,180]

Subiculum ↔ [174]

Thalamus (Whole/Subregion Unspecified) ↔ [175]

Thalamus (Dorsolateral Nucleus) ↔ [178]

Thalamus (Dorsomedial Nucleus) ↓ [173]

Thalamus (Ventrolateral Nucleus)
↓ [178]
↔ [173,174]

Thalamus (Anterior Nucleus) ↔ [173,174]

Subthalamic Nucleus ↔ [174]

Cingulate Cortex ↓ [173,178]
↔ [170,174]

Amygdala ↓ [172,178]
↔ [174]

Caudate Nucleus
↔ [173–175]
↑ [178]

Putamen ↔ [173,174,178]
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Table 1. Cont.

Region Change References

Substantia Nigra ↔ [174,177,178]

Substantia Innominata ↔ [174,177]

Globus Pallidus (Whole) ↔ [174]

Globus Pallidus (Interna) ↔ [178]

Globus Pallidus (Externa) ↔ [178]

Nucleus Accumbens ↔ [173,174,178]

Septal Nuclei/Medial Olfactory Area ↔ [174]

Frontal Cortex (Subregion Unspecified) ↓ [177]

Frontal Cortex (Prefrontal Cortex)
↓ [173,174]
↔ [172,179]
↑↓ [170]

Frontal Cortex (Superior) ↔ [178]

Frontal Cortex (Orbitofrontal Cortex)
↓ [178]
↔ [174]

Frontal Cortex (Premotor Cortex)
↓ [173]
↔ [174]

Frontal Cortex (Primary Motor Cortex) ↓ [174]

Insular Cortex ↔ [178]

Temporal Cortex (Subregion Unspecified) ↓ [176]

Temporal Cortex (Superior) ↓ [170,174,175]

Temporal Cortex (Middle) ↓ [170,172–174]

Temporal Cortex (Inferior) ↓ [171,174]
↔ [173,178]

Temporal Cortex (Temporal Pole) ↓ [173]
↔ [174]

Temporal Cortex (Entorhinal Cortex) ↓ [173]

Temporoparietal Cortex (Posterior) ↓ [169]

Parietal Cortex (Superior) ↓ [170]

Parietal Cortex (Primary Somatosensory Cortex) ↓ [173]

Parietal Cortex (Somatosensory Association Cortex) ↔ [172,174]

Parietal Cortex (Angular Cortex) ↔ [178]

Occipital Cortex ↓ [177,178]

Occipital Cortex (Visual Cortex) ↓ [173,175]
↔ [172]

Cerebellum
↓ [175]
↔ [174]

Hypothalamus ↔ [174,178]

Hypothalamus (Mammillary Body) ↔ [178]

Nucleus Rubor ↔ [174]

Periaqueductal Gray ↔ [174]

Raphe Nucleus ↔ [178]

Pons (Basilar) ↔ [174]

Medulla Oblongata (Olivary Body) ↔ [174]

Changes were considered significant at p < 0.05. ↑ Increase, ↔ No change, ↓ Decrease, ↑↓ Increase or decrease
depending on conditions/procedures.
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Suggesting the possibility of GABA upregulation in some regions, a recent study by Wu et al.
demonstrated the anomalous accumulation of GABA in DG reactive astrocytes in post-mortem
human AD tissue and in an AD mouse model (5xFAD) [181]. It was theorized that GABA is
released through astrocytic GAT3 (GAT4 in mice), potentially resulting in raised extracellular GABA
concentrations in this region [181]. As the authors point out, it is important to keep in mind that total
GABA concentrations were measured in brain tissue homogenates containing both astrocytes and
neurons, although it is likely from these results that increases in total GABA are driven by astrocytic
synthesis/uptake and release. This may lead to increased ambient GABA levels, but might not
influence the total GABA levels within the hippocampus, and it is important to note that this increase
may be brain region- or subregion-specific. This could potentially be supported by the recent finding
by Mitew et al. that in APP/PS1 transgenic mice, astrocytes may increase GABA synthesis in response
to high regional Aβ load [182].

After considering the studies listed above, it becomes clear that there is little consensus in the
literature regarding alterations in GABA levels in different regions of the AD brain. While some studies
demonstrate significant and, in many cases, considerable reductions in GABA levels in various brain
regions, these results are not always replicable. Some of these studies have been listed and reviewed in
detail previously by Lanctôt et al. [183]. Many of these studies differ significantly in various aspects
of study design, including sample size, the mean age of cases, gender, post-mortem delay, stage of
the disease, comorbidity, cause of death, and use of CNS medications by patients prior to death.
A common limitation in such studies is the availability of appropriate tissue; many groups lack access
to tissue from defined subregions and from a large enough sample of patients to exclude those with
confounding pre-conditions. This is important, as GABA levels may be influenced by a variety of
different factors. Known prior use of CNS drugs (including BZs [171]), or a lack of records concerning
prior drug use, may be a major confounding factor in many of these studies. Patient age and the stage
of the disease are also important considerations—in a previously cited study by Rossor et al., it was
demonstrated that hippocampal GABA levels were only decreased by about 24% in a cohort of 49 AD
patients compared with controls, but an alteration of 41% was observed for AD patients below 79 years
of age (n = 26) and only 9% for those above 79 years (n = 23) [172]. It thus becomes clear that in order
to arrive at a conclusive understanding of alterations in GABA and GAD activity, a far greater degree
of standardization is required in future studies, and the aforementioned confounding factors must be
controlled for carefully where possible.

A major limitation with post-mortem studies of this nature is the effect of the antemortem agonal
state—the period between the onset of the terminal phase of an illness and death due to the illness. It is
well known that in this time, several important parameters may be significantly altered, including RNA
and protein stability/degradation, tissue pH, enzyme activity and the levels of several biomolecular
markers, and this can be especially relevant in the period immediately preceding death [184–187].
There is limited evidence to suggest that subcortical GABA levels are relatively unaffected by the
agonal state [188], but that cortical GABA levels may be reduced [170]. The effect of the agonal
state on post-mortem pharmacological and biochemical measures is dependent on the nature of the
agonal state (disease severity, comorbidity, length of the agonal state, drug treatment, age, cause of
death), and the precise circumstances and nature of the agonal state often vary considerably between
patients and between experimental cohorts [189]. The agonal state may be particularly protracted in
dementia, where death may commonly be attributed to bronchopneumonia [190]. Another concern
relevant to these studies is the post-mortem rise in GABA levels in the mammalian brain, with levels
increasing from 30 min to a few hours after death, and remaining stable for ~24–48 h after [191,192].
This makes the post-mortem interval (PMI) an important confounding factor in these studies, and the
matching of cases by PMI is essential. Thus, potential antemortem and post-mortem changes in
GABA levels make it difficult to study any dysregulation in GABA levels that might occur in AD.
Several studies have attempted to address this concern by conducting antemortem studies of GABA
in the cerebrospinal fluid (CSF). Most studies of this nature seem to indicate a preservation of GABA
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levels in the CSF of AD patients when compared with healthy controls [193–200]. However, some
studies have demonstrated decreased CSF GABA concentrations in AD patients [201–204]. Aside from
the confounding factors already mentioned, it is doubtful whether the results of these studies are
neurologically relevant. GABAergic inhibition in the brain is dependent on synaptic and interstitial
GABA, and tightly regulated by synaptic and extrasynaptic GABA transporters. GABA levels in the
CSF are thus unlikely to be representative of physiologically important concentrations in the neuronal
milieu and within the synaptic cleft.

Another measure of GABA system function is the activity of the GAD synthesizing enzyme.
It was observed by Perry et al. that GAD activity was apparently reduced in post-mortem tissue
homogenates (from all four cortical lobes) from patients with dementia (including AD and mixed-type
dementias), but this was only observed at later stages of the disease, and was later shown by the
same group to most likely have been the result of perimortem agonal state conditions (i.e., at or
near the time of death) [205,206]. Indeed, GAD activity may be significantly affected by factors
in the antemortem agonal state; among demented patients, this is often associated with decreased
cerebral blood flow and respiratory conditions such as bronchopneumonia [206,207], conditions that
have been associated with reduced GAD activity in the human and primate cerebral cortex [208,209].
In particular, GAD activity is affected by more acidic pH conditions in the agonal state [207]. This could
well explain, at least in part, the sometimes-dramatic reductions in cortical GAD activity seen in some
early studies of patients with dementia [210,211]. Indeed, this appears to be supported by a study
by Reinikainen et al., in which cases were carefully selected based on a pre-mortem severity index
(PMSI) to reduce the effect of the agonal state and of variable agonal state conditions between cases;
in this study no significant changes were observed in GAD activity in any of multiple regions of the
cerebral cortex, hippocampus, thalamus, pons and basal ganglia tested [212]. Thus, it is doubtful
whether post-mortem measures will improve our understanding of GAD activity alterations in AD.
Other studies have approached the problem of GAD dysfunction by examining GAD expression levels
in the AD brain, as it has been demonstrated that GAD67 post-mortem mRNA levels are unaffected by
antemortem conditions [213]. In an in situ hybridization study, Gao and Moore found no changes in
the regional or cellular expression or distribution of cDNA for either of the two GAD isoforms within
the human AD suprachiasmatic nucleus and the surrounding areas of the chiasmatic hypothalamus
and retrochiasmatic area [214]. A recent study by Schwab et al. reported a severe reduction in GAD65
immunoreactivity in the human AD middle temporal gyrus (MTG), hippocampus and putamen,
and confirmed with Western blot that GAD65 protein levels in the MTG were similarly reduced.
However, they did not observe the same for GAD67 [215]. It should, however, be pointed out here that
only a small proportion of GABAergic neurons in the basal ganglia were stained for GAD in this study,
and it is thus possible that these results are only representative of one or more neuronal subpopulations
that have been labeled with this antibody [215]. Another in situ hybridization study showed that
GAD67 mRNA expression in the AD striatum was increased in the dorsal striatum and present in
more neurons there, but no alteration was observed in the ventral striatum [216]. These changes were
attributed not to an increase in the hybridization signal per cell, but an increase in the number of cells
expressing GAD67 mRNA. However, the case number was small and it was not shown whether there
was any correlation with protein expression [216]. An important point concerning these studies is that
they did not consider GAD activity or expression with relation to local AD pathology. Mitew et al.
demonstrated approximately doubled synaptosomal GAD activity in synaptosomal preparations
from Aβ plaque–rich sites in the APP/PS1 transgenic mouse cortex, but no change in regions of the
cerebellum that were plaque-free [182]. This could perhaps indicate localized GABAergic dysfunction
in regions of the brain with more extensive AD pathology, and it will be important to confirm this in
future studies.

Thus, it is fair to say that our understanding of AD-associated changes in GABA and GAD has
been marred by limited comparability between studies, due to differing experimental conditions
and case selection protocols, variable sample characteristics, differing (and often small) sample sizes,
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variable post-mortem intervals, and differing antemortem agonal state factors. Taken together, there
appears to be a general trend towards the depression of GABAergic signaling and metabolism in many
brain regions in patients with AD. Still, given the aforementioned concerns, future studies in this area
will need to exercise great care in case selection and experimental design so as not to add to the large
amount of inconclusive and uninterpretable data currently available.

3.2. GABAergic Neurons and Synaptic Dysfunction in AD

Based on a few early studies indicating a relative sparing of GABA levels and GAD activity
in the AD brain [174,205,212,217], it has long been believed that GABAergic neurons are relatively
spared during the pathogenesis of the disease. More recent studies have indicated neuronal sparing
as well [218]. However, the assertion that GABAergic neurons are completely unaffected by the
disease process has now been questioned in recent research. It has been demonstrated that there
is considerable loss of GABAergic synaptosomal uptake in AD, indicating damage to GABAergic
terminals independent of any actual GABAergic neuronal loss [217]. Thus, despite the apparent
sparing of the GABAergic neuronal system, there is the potential for disruption in synaptic function
at GABAergic terminals, which has been implicated as an important factor in the pathogenesis of
AD and associated dysfunction in other neurotransmitter systems [47]. The binding of [3H]nipecotic
acid, a radioligand based on an inhibitor selective for high-affinity GABA reuptake sites on synaptic
terminals, is significantly reduced in the temporal cortex of the AD brain, but not in the frontal cortex
or basal ganglia [219]. This could represent synaptosomal degeneration in the AD temporal cortex, or
perhaps the downregulation of GAT1, and a decrease in GAT1 has indeed been previously observed
in the mouse superior temporal cortex [218]. Bell et al. also demonstrated a significant reduction in
GABAergic presynaptic bouton density in APP/PS1 (18-month-old) transgenic mice [220]. This appears
to contradict the results of an earlier study by the same group, which observed a significant increase
in GABAergic presynaptic bouton density in a TgCRND8 (4-month-old) mouse model of AD [221].
However, it is important to keep in mind that TgCRND8 mice display an early-onset form of the disease,
exhibiting more severe memory deficits and Aβ deposition at an early age [222,223]. It is possible
that early deficits in excitatory neurotransmission in TgCRND8 mice result in an upregulation of the
presynaptic GAD65 marker used to label these boutons. Also important is the difference in age between
the animals used in the two studies, which could imply that presynaptic bouton density is increased
early in the course of disease pathology and decreases later in the disease. Ultimately, the differing
characteristics of these mouse models make it difficult to compare these results in a meaningful manner.
Contrary to these observations, Mitew et al. showed in a recent study that the density of presynaptic
boutons expressing vGAT in the inferior temporal cortex is preserved in both early preclinical and
late-stage forms of human AD, as well as in APP/PS1 (12-month-old) transgenic mice [182]. Bell et al.
utilized GAD65 as a marker of GABAergic presynaptic boutons in their studies, while Mitew et al. used
vGAT for this purpose. One has to consider the possibility that it was GAD65/vGAT protein expression
changes that were measured in these studies rather than changes in bouton density, making it difficult
to conclude from these studies whether and how presynaptic bouton density is affected. However,
an interesting observation in the study by Mitew et al. was that vGAT-positive synaptic boutons in
regions with high Aβ plaque density were larger in both preclinical and end-stage human AD when
compared with controls. The authors theorize that this could indicate a larger pool of presynaptic
GABA-containing vesicles, possibly representing a compensation mechanism for decreased excitatory
signaling [182], but this may support the possibility of synaptic dysfunction in GABAergic neurons. It
should be said here that the possibility of localized or selective interneuron loss cannot be completely
discounted. In a recent study, it was shown that APP/PS1 mice exhibit significant hippocampal
parvalbumin- and calretinin-positive interneuron loss in the CA1 and CA2 subfields, the DG and
the hilus [224]. This was also observed in the post-mortem human DG, suggesting the possibility of
population-specific GABAergic neuronal loss in the AD brain [224].
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Bell et al. reported the relative resistance of GAD65-positive GABAergic neurites in APP/PS1
(18-month-old) and TgCRND8 (4-month-old) mice to dystrophy, even in regions of high Aβ load
(in contrast to glutamatergic and cholinergic neurites, which were significantly dystrophic in these
regions) [220]. Furthermore, it appears that the extent of GABAergic dystrophy in TgCRND8 mice is
not influenced by plaque size, whereas larger plaques seem to cause greater dystrophy in glutamatergic
and cholinergic neurons [221]. This led to the suggestion by this group that GABAergic terminals
are more resistant to Aβ pathology than glutamatergic and cholinergic terminals, and likely become
dysfunctional later in the course of the disease. However, in a study by Garcia-Marin et al., it was
observed that there was a complete absence of GAT1 and vGAT-positive processes surrounding the
soma of pyramidal cells in regions that were in contact with Aβ plaques, in both the AD human cortex
(multiple regions) and in that of APP/PS1 (12-month-old) transgenic mice (multiple regions), while
pyramidal cells which did not contact plaques exhibited perisomatic GAT1/vGAT labeling [225].
This could possibly result in hyperexcitability in pyramidal cells in the absence of GABAergic
inhibition [225]. It could also be the case that the examination of the total change in presynaptic
density masks more localized GABAergic terminal loss related to Aβ pathology. This could explain the
observation by Mitew et al. that vGAT-positive boutons are preserved in the human AD cortex [182].

Some have theorized a specific role for GABAergic interneuron dysfunction in the early stages of
AD. It has been found that a subpopulation of small calbindin-positive GABAergic interneurons in
the hippocampus and temporal cortex upregulate nitric oxide synthase (NOS) expression in early AD,
especially in areas of early tau pathology [226]. The authors point out that this could result in increased
nitric oxide–induced apoptosis and neurodegeneration in pyramidal cells, and suggest that the NOS
reactivity in these interneurons could serve as a marker of cortical dysfunction and neurofibrillary
pathology in very early stages of AD [226]. Indeed, a correlation was observed between the numbers of
these interneurons and the apoptotic marker caspase-3 [226]. In another recent study, it was found that
a long variant of the Munc18-1 protein (M18L) is important for presynaptic GABA function, and that
expression of this protein is reduced in the AD frontal cortex [227]. The extent of this loss seemed to be
correlated with greater cognitive decline and more severe AD pathology, and a statistical regression
model suggested that M18L loss was correlated with a higher likelihood of developing dementia. Based
on this, and the fact that lowered M18L levels seem to increase cognitive sensitivity to AD pathology
(and vice versa), the authors theorized that lowered levels of this GABAergic interneuron–specific
protein may contribute to early cognitive decline. This could implicate biochemical changes at the
GABAergic presynapse in the early pathogenesis of AD.

It is important to note at this stage that experimental results from transgenic AD mouse models,
while informative, are very unlikely to accurately model the complex pathological, biochemical and
behavioral changes inherent in the human condition. For instance, the APP/PS1 and TgCRND8
transgenic mouse models of AD do not display the tau pathology seen in human AD [222].
Considering the theorized contribution of tau pathology to the pathogenesis of AD, it is likely that
these models do not accurately represent the synaptic pathology of the disease [228,229]. Indeed,
these models display differences in behavior and disease progression, indicating differing functional
consequences for the differing models of pathology [222]. In addition, there are significant differences
in cortical circuitry, neuroarchitecture and neurochemistry between healthy humans and wild-type
mice [230–232]. Thus, while such results are no doubt informative, one must be cautious in drawing
too close a correlation between synaptic changes in animal models and the diseased human brain.

3.3. Alterations in GABA Receptor Distribution and Subunit Composition in AD

Several biochemical and molecular changes in the GABAergic system have also been reported in
the AD brain, in particular in the structures, distributions and compositions of GABAARs in various
brain regions (summarized in Table 2). It has been reported that GABABR densities are reduced in the
superior frontal gyrus of the AD cortex, despite the binding affinity remaining unchanged [233]. In this
study, a modest but non-significant decrease in GABAAR sites was also noted [233]. The GB1 subunit
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in particular has been observed to be transiently upregulated with increasing tau pathology (i.e., later
Braak stages) in the human AD hippocampus before being returned to relatively normal levels at
later stages of the disease, perhaps indicating some kind of short-term compensatory change [234].
Of interest, studies have demonstrated potential changes in the protein and mRNA expression levels
of specific GABAAR subunits in various regions of the AD brain. The α1 subunit, for example, has
been found through immunohistochemistry to show decreased expression in the CA1, CA2 and
prosubiculum fields of the human AD hippocampus [235]. Rissman et al. examined plasticity in
the expression of hippocampal GABAARs at different stages of disease progression [236]. In this
study, it was found that there were no significant changes in the protein expression levels of α1,
β1 or β2 subunits in post-mortem tissue examined between Braak stages I to VI in any of the
hippocampal regions studied [236]. However, it was observed that there was a modest decrease
in α5 subunit expression in the CA1, CA2 and CA3 regions of the hippocampus when comparing
between mild/moderate and severe AD cases [236]. In a subsequent study, the same group reported
moderate the downregulation of α1 and α5 subunit mRNA in the post-mortem hippocampi of patients
with probable AD [237]. However, an autoradiography study demonstrated that α5 subunit–containing
GABAARs are relatively spared in the human AD hippocampus, with moderate decreases in density
seen only in the CA1 region and the entorhinal and perirhinal cortices [238]. Mizukami et al. reported
the preservation of β2/3 immunohistochemical labeling in all regions of the AD hippocampus at all
stages of the disease, using an antibody recognizing both subunits, but this group also reported
that hippocampal β2 mRNA was preserved and β3 mRNA reduced in late-stage AD [239,240].
Possible increases in γ1/3 protein levels in the hippocampus, using an antibody recognizing both
proteins, have also been demonstrated in end-stage AD, with γ2 levels reportedly well-preserved [241].
Changes in GABAAR subunit expression have been observed in the human cerebral cortex as well.
Luchetti et al. reported a decrease in GABAAR α1, α2, α4, β2 and δ subunits, the GABABR R2 subunits
and GAD1 mRNA levels in the mid-/late-stage AD prefrontal cortex, but no changes in GABAAR
γ2, ε and θ subunits and the GABABR R1 subunits [242]. Changes in the mRNA expression level and
electrophysiological characteristics of a range of GABAAR subunits have been demonstrated in the
post-mortem human AD temporal cortex (Braak stage IV to VI) compared with controls (Braak stage 0
to III). Significant decreases were observed in the mRNA expression of the α1, α2, α5, β2, β3, γ2, and δ
subunits in the AD temporal cortex, and decreases in protein expression were observed in a Western
blot study for the α1 and γ2 subunits; β1 and γ1 were unaffected at the mRNA or protein levels [243].
Independent of the observed downregulation in the absolute mRNA levels of these subunits, it was
demonstrated that a higher proportion of GABAARs in the AD temporal cortex incorporated the α2,
β1 and γ1 subunits compared with GABAARs in control temporal cortices, and a lower proportion of
the GABAARs in the AD temporal cortex incorporated the α1 and γ2 subunits [243]. Considering the
fact that some of the control cases in this study had stage II and III Braak pathology, it is possible the
changes observed would have been larger had controls without neurofibrillary tangle (NFT) pathology
been utilized.

Table 2. Alterations in GABAergic signaling component expression in the human Alzheimer’s
disease brain.

Component Methodology Subregion Change Comments References

Hippocampal Formation

GABAAR α1

IHC
CA1, CA2, prosubiculum ↓

[235]DG, subiculum,
presubiculum ↔

WB CA1, CA2, CA3, DG,
subiculum ↔ [236]

ISH CA1/subiculum, CA2,
CA3, CA4, DG ↓ [237]
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Table 2. Cont.

Component Methodology Subregion Change Comments References

GABAAR α5

WB
CA1, CA2, CA3 ↓ Significant change from

mild/moderate to severe AD [236]

DG, subiculum ↔

ISH CA1/subiculum, CA2,
CA3, CA4, DG ↓ [237]

Autoradiography

CA1 ↓

[238]CA2, CA3, DG, subiculum,
presubiculum,
parasubiculum

↔

GABAAR β1 WB CA1, CA2, CA3, DG,
subiculum ↔ [236]

GABAAR
β2Subunit

WB CA1, CA2, CA3, DG,
subiculum ↔ [236]

ISH CA1, CA2, CA3, CA4, DG ↔ [240]

GABAAR β3
Subunit

ISH
CA1, CA2, CA3, DG ↓

[240]
CA4 ↔

GABAAR
β2/3 Subunit IHC CA1, CA2, CA3,

subiculum ↔ Antibody specific for both β2 and
β3

[239]

GABAAR γ2
Subunit IHC CA1, CA2/3, CA4, DG ↔ Qualitative study [241]

GABAAR
γ1/3 Subunit IHC CA1, CA2/3, CA4/DG ↑ Antibody specific for both γ1 and

γ3, Qualitative study [241]

GABABR R1
Subunit

IHC
DG, CA2/3, CA4 ↑↓

Antibody primarily recognizes
R1a isoform, increase observed
from control to moderate AD, but
no change from control to severe
AD—transient upregulation

[234]

CA1, DG, subiculum ↔ Non-significant but trend as in
other regions

GAD65/2 IHC DG ↓ [215]

GAT1

[3H]tiagabine
radioligand

binding
DG ↔ [244]

IHC CA1, CA2, CA3, DG,
subiculum ↔ [218]

GAT3 IHC

DG ↑ Significant increase in reactive
astrocytes [181]

CA1, CA3 ↓
Observed in stratum pyramidale
and also in astrocytes specifically

[218]Subiculum Observed across region and in
astrocytes specifically

CA2, DG ↔ Large, non-significant
downregulation observed

BGT1 IHC

CA2, CA3 ↑

Observed in stratum radiatum
and also in CA3 astrocytes
specifically

[218]DG Observed in all layers

CA1, subiculum ↔ Increase observed in astrocytes
specifically
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Table 2. Cont.

Component Methodology Subregion Change Comments References

Cerebral Cortex

GABAAR

Autoradiography
[3H] GABA
radioligand

binding

Superior frontal gyrus ↔ GABABR blocked with baclofen [233]

GABAAR α1
Subunit

qPCR Prefrontal cortex ↓ [242]

Temporal cortex [243]

WB Temporal cortex ↓ [243]

GABAAR α2
Subunit

qPCR Prefrontal cortex ↓
No change when patients
classified by Aβ plaque load [242]

Temporal cortex [243]

GABAAR α4
Subunit qPCR Prefrontal cortex ↓ [242]

GABAAR α5
Subunit

Autoradiography
Entorhinal cortex,
perirhinal cortex ↓

[238]

Temporal cortex ↔
qPCR Temporal cortex ↓ [243]

GABAAR β1
Subunit

qPCR Temporal cortex ↔ [243]
WB

GABAAR β2
Subunit qPCR Temporal cortex ↓ [243]

GABAAR β3
Subunit qPCR Temporal cortex ↓ [243]

GABAAR γ1
Subunit

qPCR Temporal cortex ↔ [243]
WB

GABAAR γ2
Subunit

qPCR Prefrontal cortex ↔ [242]

Temporal cortex ↓ [243]

WB Temporal cortex ↓ [243]

GABAAR δ
Subunit

qPCR Prefrontal cortex ↓ [242]

Temporal cortex [243]

GABAAR ε
Subunit qPCR Prefrontal cortex ↔ [242]

GABAAR θ
Subunit qPCR Prefrontal cortex ↔ [242]

GABABR R1
Subunit qPCR Prefrontal cortex ↔ [242]

GABABR R2
Subunit qPCR Prefrontal cortex ↓ Patients classified by Aβ plaque

load [242]

GABABR

Autoradiography
[3H]GABA
radioligand

binding

Superior frontal gyrus ↓ GABAAR blocked with
isoguvacine [233]

GAD67/1
qPCR Prefrontal cortex ↓ Patients classified by Aβ plaque

load [242]

WB Middle temporal gyrus ↔ Only 2 AD and 2 control cases [215]

GAD65/2 IHC
Middle temporal gyrus ↓ Layers II/III and IV

[215]
Primary visual cortex ↔ Trend towards reduction

WB Middle temporal gyrus ↓ Only 2 AD and 2 control cases [215]

GATs
[3H]nipecotic

acid radioligand
binding

Temporal cortex ↓ Nipecotic acid is a GABA
reuptake inhibitor [219]

Frontal cortex ↔
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Table 2. Cont.

Component Methodology Subregion Change Comments References

GAT1

[3H]tiagabine
radioligand

binding

Frontal cortex
↔ [244]

Temporal cortex

IHC
Superior temporal gyrus ↓ Observed across both regions,

and also in astrocytes specifically [218]
Entorhinal cortex

GAT3 IHC
Superior temporal gyrus ↔ Large, non-significant

downregulation observed [218]

Entorhinal cortex ↓ Observed across region, and also
in astrocytes specifically

BGT1 IHC
Superior temporal gyrus ↑

[218]

Entorhinal cortex ↔ Increase observed in astrocytes
specifically

Subcortical Structures

GAD67/1

ISH
Hypothalamus

(superchiasmatic nucleus
and retrochiasmatic area)

↔ [214]

ISH
Caudate nucleus, putamen ↑

Attributed to increase in neuron
number, but no increase per
neuron [216]

Ventral striatum ↔

GAD65/2
ISH

Hypothalamus
(superchiasmatic nucleus
and retrochiasmatic area)

↔ [214]

IHC
Putamen ↓

[215]
Globus pallidus ↔

GATs
[3H]nipecotic

acid radioligand
binding

Caudate nucleus,
putamen, globus pallidus ↔ Nipecotic acid is a GABA

reuptake inhibitor [219]

↑ Increase,↔ No change, ↓ Decrease, ↑↓ Increase or decrease depending on conditions/procedures. Abbreviations:
γ-aminobutyric acid (GABA), GABAA receptor (GABAAR), GABAB receptor (GABABR), dentate gyrus (DG), cornu
ammonis (CA), glutamic acid decarboxylase (GAD), GABA transporter (GAT), immunohistochemistry (IHC),
Western blot (WB), in situ hybridization (ISH), quantitative polymerase chain reaction (qPCR), Alzheimer’s disease
(AD), amyloid-β (Aβ).

Thus, it is clear that even within the human hippocampus and cerebral cortex, studies of receptor
subunit mRNA and protein expression levels are difficult to interpret, and often contradictory. It is
worth noting that modest changes in subunit mRNA expression, as noted by some studies, may not
translate to significant changes in protein expression. This could well explain some of the disagreement
between mRNA and protein expression studies, as well as the variability in the resulting data when
expression changes are modest or minor. This has been proposed by Rissman et al. as an explanation
for the fact that α1 and α5 downregulation at the mRNA level seem to be far greater than the observed
corresponding change in protein [236,237]. Similarly, Mizukami et al. have noted a decrease in β3

mRNA levels in one study, but unaltered β3 protein expression in another [239,240]. This could also
partially explain the relative sparing of the hippocampal α5 subunit in some studies and the modest
mRNA downregulation in others [237,238]. Another interesting theory, proposed by Armstrong et al.,
is that the unchanged receptor subunit expression levels between healthy and advanced AD cases
may represent an upregulation of the receptors, as neuronal loss would be expected in terminal
stages of the condition [245]. Similarly, modest reductions in receptor mRNA or protein levels in
late-stage AD may simply represent neuronal loss. Such considerations are very important when
attempting to interpret this data, and it is thus important that immunohistochemical studies control
for cell death, particularly in later stages of AD pathology; it is unclear from the results of many
studies whether subunit changes represent changing neuronal density, changes in receptor subunit
compositions or compensatory changes in GABAA receptor and/or subunit density. For instance,
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Mizukami et al. observed that reductions in β3 mRNA levels occurred in both regions with little and
significant neuronal loss, making it possible that some subunit changes occur before cell dysfunction
and are predictive of vulnerability, whereas the preservation of β2 mRNA even in severely affected
regions might indicate that β2-containing GABAARs are upregulated in surviving neurons or that
early upregulation has a neuroprotective effect in neuronal subpopulations. Thus far, there have only
been a few studies attempting to elucidate patterns of GABA receptor expression change in the human
AD cortex and hippocampus, and further studies with good case control strategies will need to be
conducted to provide more concrete answers here.

In addition to the direct measurement of GABA receptor density using immunohistochemical,
autoradiographic and mRNA-based methods, radioligand binding studies have been conducted in
which radiolabeled ligands for the allosteric BZ binding site on the GABAAR were used to estimate
changes in BZ affinity in AD post-mortem tissue. A decrease in tissue affinity for BZs could indicate
a downregulation of the α and/or γ subunits that constitute the BZ-binding interface. A number of
these studies have been comprehensively surveyed by Lanctôt et al. [183]. The most commonly utilized
radioligand in such studies has been [3H]flunitrazepam, and these studies have shown significant
decreases in BZ binding affinity in the posterior middle temporal gyrus (layers I–V) [246], the frontal
cortex [247], the temporal cortex [247–249], and the hippocampus [247]. Some of these studies have
also reported the preservation of BZ affinity in the primary visual cortex and visual association
cortex [246], the orbitofrontal cortex [246], layer II of the entorhinal area of the parahippocampus [250],
and the stratum pyramidale-radiatum of the hippocampus [250]. While a study by Greenamyre et
al. demonstrated a general preservation of BZ binding affinity within the parahippocampus [251],
Jansen et al. demonstrated a decrease in affinity in layers III and IV of the entorhinal area of the
parahippocampus and no changes in affinity within layer II [250]. The decrease in affinity observed
by Shimohama et al. was not reported by Greenamyre et al. [251] and Jansen et al. [250], however
Greenamyre and colleagues did observe a decreased Bmax, potentially indicating a loss of receptor
density in this region, and Jansen and colleagues considered only the stratum pyramidale-radiatum.
In the subcortical region, no changes in BZ binding affinity were observed in any of the studies
that examined this [247,252]. It should be noted that none of the three studies of BZ affinity in
the AD cerebral cortex examined regional differences within the temporal cortex, and unpublished
observations from our lab have indicated regional differences in GABAAR subunit distribution in the
temporal cortex, and region-specific alterations in AD.

It is important to note that there exist two different forms of the human BZ receptor. Apart from
their function as allosteric modulators of the GABAAR, so-called peripheral benzodiazepine receptors
(pBZR) are also present in mitochondrial membranes in all tissue types, including neurons and glial
cells [253]. Thus, the affinity of BZ drugs such as flunitrazepam at the mitochondrial membrane is
dependent on three components of the pBZR complex—the mitochondrial voltage-dependent anion
channel (VDAC) [254,255], the adenine-nucleotide carrier (ADC) [254,255] and the mitochondrial
translocator protein (TSPO) [256]; it is known that the number (Bmax) of these binding sites may be
altered in conditions such as hypertension [257], and in response to kainate-induced injury [258],
increases in VDAC1 mRNA expression have been observed in some brain regions in post-mortem
human patients [259,260] and in an APP transgenic mouse model of AD [260], and astrocytic and
vascular TSPO levels are disturbed in the AD brain [261]. Diorio et al. also demonstrated that pBZR
binding sites (Bmax) are increased to a highly significant extent in the post-mortem AD temporal
cortex, and also observed a similar increase in the frontal cortex that approached significance.
They did not observe any changes in affinity in either region as measured by [3H]flunitrazepam
binding [262]. Such changes in mitochondrial pBZRs in AD are perhaps not surprising, given the extent
of mitochondrial dysfunction observed in this disorder. Appropriate plasma membrane extraction is
essential in studies of BZ binding properties in AD, to avoid the contribution of mitochondrial pBZR
alterations as a confounding factor.
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The aforementioned binding studies are complemented by four neuroimaging studies (two
positron emission tomography (PET) and two single-photon emission computed tomography (SPECT)
studies) that have also attempted to investigate changes in GABA receptor affinity in the AD brain in
live patients. These studies represent our only readout of GABA receptor changes in AD prior to death.
The PET studies, utilizing 11C-flumazenil (a BZR inverse agonist) as a radioligand, measured binding
as the difference between uptake in the brain and loss in washout fractions. Both studies seemed to
indicate that BZR binding sites are well-preserved in AD [263,264]. Two SPECT studies have utilized
123I-iomazenil (a BZR partial inverse agonist) to measure BZR binding in the same manner. Wyper et al.
noted that iomazenil binding was preserved in the frontal and temporal cortices and basal ganglia, but
observed a small decrease in binding in the parietal cortex [265]. Fukuchi et al. observed the same in
the temporal and occipital cortices, but noted a moderate decrease in iomazenil binding in the frontal
and parietal cortices [266]. These studies seem to indicate that BZR density is not severely affected at
the level of broader cortical regions, but a limitation of these studies is the inability to measure changes
in more localized areas—the previously described post-mortem radioligand binding studies seem to
indicate that sub-regional distributions may be altered. Nonetheless, these studies are still valuable
as they avoid potential confounding factors introduced in the agonal state (e.g., the upregulation or
downregulation of receptor subunits in response to agonal stresses in the brain). It is important to
note, however, that these studies were often conducted with small sample groups, without controlling
appropriately for factors such as age, gender, and concurrent medications or comorbidities [183].

Thus, although there have been conflicting reports on the specific changes in GABAAR subunit
composition in AD brains, there is evidence to suggest that such alterations do occur. This would likely
influence the pharmacological properties and sensitivities of the GABAAR, and thus the inhibitory
neurotransmission in the AD brain. It is also possible that such changes occur in other brain regions
that have not yet been studied. Previous studies have been inconsistent due to large variations in the
quality of cases, different experimental techniques and conditions utilized. In addition, differences in
agonal state changes between cases must be considered when comparing diseased and control cohorts,
as well as uniformity of PMIs between cases. PMI may have a significant effect on the RNA expression
of a range of different genes [267]. More uniform testing procedures and appropriate case-matching
will thus be of significant benefit in this area.

3.4. GABA Transporter Alterations

Nägga et al. conducted a study in which they measured the displacement of the selective GAT1
radiolabel [3H]tiagabine by GABA in the human frontal and temporal cortices and the caudate nucleus;
it was reported in this study that the total number of presynaptic GAT1 transporters and affinity for
GABA were both unaffected in the AD tissue [244]. Another study presented immunohistochemical
evidence in human AD brains and in an AD mouse model (5xFAD) for a significant increase in
GAT3 in dentate gyrus reactive astrocytes [181]. An early study also reported the downregulation of
high-affinity GABA reuptake sites in temporal cortex synapses but not in the frontal cortex or basal
ganglia, measured by the binding of a GABA reuptake inhibitor, [3H]nipecotic acid [219]. This could
indicate that GAT1 transporters may possibly be downregulated in this region, but could alternatively
be a consequence of neuronal or synaptosomal loss. It should be noted, however, that nipecotic acid
has been discovered to potentially interact with GABAARs [268], which may call into question the
reliability of [3H]nipecotic acid binding as a measure of GABA transporter alteration.

There is currently only a single study in the literature examining concurrent changes in
the expression of the three most common GABA transporters in post-mortem human AD tissue.
Fuhrer et al. demonstrated that GABA transporter expression was differentially altered in various
brain regions, and that differential expression could be observed in a layer-specific manner within
the same brain region [218]. Utilizing fluorescence immunocytochemistry, it was demonstrated that
BGT-1 density was significantly increased in the stratum radiatum of the CA2 and CA3 regions of
the AD hippocampus and in all layers of the dentate gyrus, as well as in the superior temporal
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gyrus; no significant changes were observed in the CA1 hippocampal region, the subiculum or the
entorhinal cortex [218]. It was also observed that GAT1 density was significantly reduced in the
entorhinal cortex and superior temporal gyrus, with no significant changes observed in the CA1,
CA2 or CA3 hippocampal regions, the dentate gyrus or the subiculum [218]. GAT3 staining was
shown to be significantly decreased in the stratum pyramidale of the CA1 and CA3 regions of the
hippocampus, the subiculum and the entorhinal cortex, with large but non-significant decreases
in the CA2 hippocampus, dentate gyrus and superior temporal gyrus [218]. These changes did
not appear in most cases to be strongly correlated with neuronal death, tau load or β-amyloid
load, which may suggest a mechanism independent of these common measures of AD progression.
Fuhrer et al. also examined GABA transporter expression in astrocytes in the aforementioned regions,
and reported increased BGT-1 expression and a decrease in GAT3 density on astrocyte dendrites,
processes and throughout the neuropil in the stratum pyramidale of the CA1 and CA3 hippocampal
regions, the subiculum and entorhinal cortex; GAT1 exhibited a decreased expression profile in
astrocytes within the superior temporal gyrus and entorhinal cortex [218]. The results of this study
complement those of Nägga et al., as decreased GAT1 density was observed in hippocampal and
cortical regions that were not examined in their study. The results of Fuhrer et al. regarding GAT1
downregulation in superior temporal cortex astrocytes are also in agreement with the previous study
showing decreased synaptic GABA uptake sites in the temporal cortex [219]. However, the decreased
GAT3 expression observed in the dentate gyrus by Fuhrer et al. is in opposition to the large increase in
expression observed by Wu et al. [181]. Reported changes in GABA transporter expression levels in
the AD brain are summarized in Table 2.

Considering the important role of GABA transporters in synaptic GABA clearance and the
maintenance of extrasynaptic GABA levels, these reported changes in GABA transporter expression in
AD could well contribute to the altered level of the neurotransmitter measured in human post-mortem
and antemortem studies in various brain regions, potentially resulting in altered neuronal excitability
patterns. Altered GABA transporter expression may result in the dysfunctional regulation of cellular
osmolarity, in particular BGT1, which is also involved in the transport of osmotic regulators such
as taurine and betaine [269]. One striking finding by Fuhrer et al. was the apparent potential
for co-regulation in the expression of these transporters in some brain regions. It was found that
decreased GAT1 expression in the superior temporal gyrus and decreased GAT3 expression in the CA3
hippocampus were accompanied by an increase in BGT1 density in these regions, and the authors
of this study theorize that this could represent a compensatory mechanism for the maintenance of
GAT activity in the AD brain [218]. A previous study demonstrated a similar pattern of GABA
transporter expression changes in the healthy rat hippocampus following neuronal injury by kainate
injection—they suggest that this may be a mechanism by which astrocytes respond to hyperosmotic
stress, but which may result in excessive water intake as a result of prolonged upregulation [270].
This is an interesting hypothesis, considering the fact that BGT1 expression levels are generally lower
than those of GAT1 and GAT3 in the mouse and human brain [271], that BGT1 appears to be more
commonly expressed in the leptomeninges than in brain tissue [272,273], and that BGT1 has the lowest
affinity for GABA among the three transporters [99,274]. It has thus been suggested that this might
diminish the importance of this transporter in synaptic GABA clearance. The widespread localization
of BGT1 has been reported at non-GABAergic sites, and it has been demonstrated by the co-application
of a GAT1/BGT1 inhibitor with an extrasynaptic GABAAR-targeting anticonvulsant drug (gaboxadol)
resulting in a decrease in the efficacy of this drug [275], suggesting a role for BGT1 in the regulation
of tonic GABA stimulation at extrasynaptic sites. Thus, given the differing functional characteristics
of BGT1 compared with GAT1 and GAT3, it is perhaps unclear whether the upregulation of BGT1
in certain brain regions in AD represents a compensatory response to GAT1/3 downregulation or
osmotic stress. It should be noted here that Kempson et al. have pointed out that BGT1 control of
osmolarity is suspect, due to the low concentration of betaine in the brain, the maintenance of steady
betaine levels with osmotic stress, and the presence of other more powerful osmolyte transporters
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such as SMIT in astrocytes [276]. Keeping in mind the current uncertainty over the function of brain
BGT1, further studies will be required to clarify the effect of changing GABA transporter expression
patterns and the relevance of any potential compensatory mechanisms in the maintenance of synaptic
and extrasynaptic GABA levels and cellular osmoregulation in AD.

3.5. Tau Pathology and GABA Signaling

Tau is a common microtubule-stabilizing protein in the mammalian brain, and plays a key role
in regulating the stability of axonal microtubule structures [277]. These proteins are often found
to be overexpressed and hyperphosphorylated in AD and related dementias, forming so-called
neurofibrillary tangles (NFTs) within neurons. This can result in a loss of microtubule stability
and neuronal death. Proponents of the tau hypothesis of AD pathogenesis hold that this abnormal
aggregation and hyperphosphorylation is responsible for much of the neuronal death and dysfunction
observed in AD, and much evidence points to tau as a central or important player in the pathogenesis of
AD and related diseases [278–280]. A relationship between NFT formation and GABAergic dysfunction
in AD has been suggested in several studies. NFT proliferation has been associated with changing
the GABAAR subunit distribution within the human AD hippocampus. It has been reported in
immunohistochemical studies that γ1/3 subunit density is reduced and α1 labeling is increased in
Braak stages V to VI, while mean γ2 and β2/3 labeling appear to be preserved even at this advanced
stage of NFT pathology [235,241]. Hippocampal β2 mRNA levels are reportedly stable in Braak stages
V to VI, while β3 mRNA levels are reduced in Braak stages V to VI [240]. However, it is unclear whether
such changes are due directly to tau pathology or some other aspect of disease progression. Indeed,
it was reported that γ subunit–expressing hippocampal interneurons do not contain NFTs, which could
potentially indicate that observed changes in γ1/3 density in this study are independent of tau
pathology [241]. Alternatively, it could mean that these receptors are protective against NFT formation,
or that neurons containing these receptors are more sensitive to NFTs and die early in the disease,
or even that tau pathology in other nearby cells causes the downregulation of γ receptors in these
interneurons through some indirect means such as signaling alterations at synapses. In considering the
results of studies that have correlated the Braak stage with changes in the expression of specific GABA
system components, it is not possible to determine whether worsening NFT pathology is responsible
for these changes or some other progressive aspect of disease pathogenesis.

Some evidence for tau-modulated disturbance in the GABA signaling system has been derived
from tau pathology–expressing animal models. It has been found in a triple transgenic mouse
model (TauPS2APP), overexpressing tau genes, that GABAergic septo-hippocampal projection
neurons underwent increased degeneration, along with the cells that these neurons contacted [281].
This degeneration in target cells was present in all areas that were examined, but interneurons of
different classes and in different sub-regions appeared to be differentially susceptible [281]. It is
important to note here that the relative contributions of the three gene mutations involved cannot be
determined, and they likely interact in a complex manner. However, another study utilizing JNPL3
(BL6) tau-mutant mice demonstrated again the degeneration of GABAergic interneurons in aged
mice [282]. In both studies, it was found that the mice exhibited enhanced long-term potentiation
(LTP) in hippocampal slices, which in JNPL3 (BL6) mice could be rescued with the use of the GABAAR
agonist zolpidem [281,282]. Aged JNPL3 (BL6) mice also displayed memory deficits [282], and both
models displayed sensorimotor disturbances [281,282]. Another tau-mutant mouse model, P301L,
expressing the long human tau40 isoform displayed disturbances in glutamate and GABA metabolism,
with an increase in GABA turnover in cortical astrocytes and glutamate turnover in glutamatergic and
GABAergic neurons [283].

Aside from the aforementioned animal studies, Nykänen et al. demonstrated that tau
phosphorylation may be modulated directly by the activation of the GABAAR [284]. It was found
that the treatment of GABAAR-expressing mouse Neuro-2A cells with BZs or barbiturates appeared
to promote the interaction of tau with Pin1—a key regulator and facilitator of PP2A-mediated tau
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dephosphorylation [284]. Furthermore, treatment with the GABAAR agonist muscimol generated
a similar increase in the tau-Pin1 association, which could be blocked with the administration of the
GABAAR antagonist picrotoxin [284]. This group went on to show in mature DIV 21 rat cortical neurons
that GABAAR-mediated signaling actually promotes phosphorylation at the Ser199/Ser202/Thr205 site
in the tau protein through the action of the Cdk5 kinase [284]. However, in these cells, treatment with
GABAAR modulators elicited a decrease in the tau-PP2A association [284]. Interestingly, the authors
point out that phosphorylation of the GABAAR β3 subunit is important in the desensitization of
GABAARs containing this subunit, and that this subunit is dephosphorylated by PP2A, potentially
recruiting PP2A away from sites of tau phosphorylation. Indeed, some previous studies seem to have
found a link between GABAergic anesthetic use and tau phosphorylation. For instance, sevoflurane,
an anesthetic thought to act as both a positive allosteric modulator and antagonist at allosteric and
orthosteric sites on the GABAAR [285], has been found to increase tau phosphorylation in C57B16/J
mice, which was reversible with chronic administration and persistent with clear memory impairment
after repeated administration [286]. Other anesthetics with confirmed or suspected GABAAR-targeted
activity have also been associated with increased tau hyperphosphorylation, including propofol [287]
and pentobarbital [288,289].

Taken together, the results of the aforementioned studies seem to indicate a clear role for GABAAR
signaling in tau hyperphosphorylation in AD and related disorders, albeit one that needs to be
investigated further.

4. Disruption of the Excitatory/Inhibitory (E/I) Balance in AD

Brain homeostasis and learning and memory formation depend on the maintenance of a dynamic
balance between the GABAergic and glutamatergic systems, respectively the main inhibitory and
excitatory neurotransmitter systems in the brain. In addition to atrophic changes in brain regions
such as the hippocampus and temporal cortex [290], early aberrant excitatory neurotransmission is
a well-attested phenomenon in both AD animal models [291,292] and AD patients [293,294]. However,
as presented earlier in this review, GABAergic remodeling may be a previously overlooked feature of
the disease, and may potentially contribute to pathogenesis.

Given that an optimal balance between excitatory and inhibitory network activity is necessary for
learning and memory formation in cortical regions (the default network) and the hippocampus [295],
and with our current understanding of the importance of GABAergic signaling in the synchronization
of cortical network activity, it is possible that glutamatergic signaling changes are accompanied by
GABAergic alterations in the AD brain, with both contributing to the E/I imbalance that underlies
cognitive impairment in the disease. It has been shown that, in addition to the modulatory effect
of GABA on glutamate release [296], signaling through glutamate and NMDA receptors can also
exert a reciprocal effect on GABA release [297]. With the significant remodeling apparent in the
glutamatergic system in AD, it is likely that this has a downstream effect on the GABAergic system.
Reciprocal GABAergic responses to glutamate dysfunction could potentially account for the changes
in GABAergic signaling and network activity that have been observed in AD and possibly contribute
to the previously described molecular remodeling of the GABAergic system. Changing GABA levels
could in turn have a significant impact on glutamate-induced excitotoxic cell death. Erdő et al. showed
that 1–5 µM concentrations of GABA significantly accelerated excitotoxic cell death in cultures of rat
cortical neurons [298], demonstrating the sensitivity of glutamatergic cells to ambient GABA levels.
However, the mechanisms underlying these changes are not well understood.

As per the cholinergic hypothesis of AD, the dysfunction of the cholinergic system is
also associated with early AD pathogenesis and the development of cognitive deficits [299,300].
Muscarinic receptors, specifically the M1 subtype, have been broadly related to AD. The M1
receptor is widely distributed in the brain and is expressed post-synaptically in the cortex and
hippocampus [301,302]. Thus, early disruptions in GABAergic signaling, in association with
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impairments in glutamatergic and cholinergic excitatory signaling, could underlie the E/I imbalance
in the AD brain, leading to subsequent network disruption [147,183].

Disruptions or alterations in GABA levels, GABA currents, GABAARs and GABA transporters,
broadly covered earlier in this review, may have a great impact on hippocampal and cortical function,
and thus in the progression of the disease. In addition to the previously described studies of total
GABA level alterations in various post-mortem human brain regions, there is evidence from animal
studies of altered extracellular GABA levels in AD. One study by Li et al. found that GABA release in
hippocampal slices from mice expressing apoE4 (the main genetic risk factor for AD) was found to
be diminished [303]. In addition, extrasynaptic GABA levels, dependent on synaptic spillover and
the activity of GABA transporters, have been demonstrated to be altered in a 5xFAD AD mouse
model [181]. Extracellular GABA levels have also been found to stimulate enhanced synthesis
of APP, disruptions in neuronal membrane function and the promotion of neurodegeneration in
the basal forebrain [298,304]. The pathological processing of APP and the aberrant deposition
of Aβ is a well-known phenomenon in AD [1]. In past decades, much effort has been put into
understanding Aβ-associated glutamate excitotoxicity involving the dysfunction of calcium-permeable
glutamate receptors in the neuron [305,306]. Aβ has been implicated in the inhibition of glutamate
uptake in the synaptic cleft [307], overstimulation of NMDA receptors, the subsequent disruption of
calcium-dependent intracellular pathways [308] and cell death [309]. Neuronal cell death is preceded
by mitochondrial fragmentation and impairments in energy metabolism, membrane lipid peroxidation,
increased formation of reactive free radical species and oxidative stress [309–311].

Studies suggest that Aβ pathology has a direct functional effect on GABAAR-mediated currents,
but such results have often been contradictory, likely as a result of vastly different study conditions
and the different animal models and brain regions assessed. In combination with the effects of
Aβ on glutamate-mediated excitatory currents [312], Aβ-associated alterations in GABA inhibitory
neurotransmission could represent a key mechanism whereby network activity is impaired. It was
found in one study that acute pre-treatment of rat hippocampal CA1 neurons with Aβ25–35 and Aβ31–35

actually enhanced GABA-induced electrical activity while suppressing glutamate-induced NMDA
currents [313]. However, another study that measured GABA currents in AD human temporal
cortex GABAARs that had been transplanted into Xenopus laevis oocytes demonstrated a ~70%
suppression of GABAAR-mediated currents when compared with controls, similar to the AD-associated
downregulation of glutamate currents [243]. It is interesting to note that hippocampal long-term
potentiation (LTP)—a phenomenon associated with learning and memory—is demonstrably reduced
or blocked by soluble Aβ1–40 oligomers that appear to exert their effect through both glutamatergic and
GABAergic disruption [314]. In a recent study, acute Aβ1–42 administration resulted in the reduced
generation of inhibitory post-synaptic currents (IPSCs) and a decreased post-synaptic response to
acute GABA application [315]. The finding that this could be prevented with an inhibitor of GABAAR
endocytosis led the author to conclude that Aβmay cause postsynaptic GABAAR downregulation [315].
However, given the fact that previous studies report preserved GABAAR density in post-mortem
human AD cortical tissue, it is questionable whether this mechanism is relevant to alterations in
GABA-induced electrical activity in human AD. It has also been found that Aβ25–35 treatment
depresses GABABR-mediated inhibitory post-synaptic potentials (IPSPs) in rat CA3 neurons, most
likely through its effect on GABABR-modulated inward rectifier potassium (GirK) channels [316]
which play an important role in the regulation of neuronal excitability [317]. It has been shown recently
that AD is associated with a ~10-fold upregulation within the neocortex of a non-coding RNA termed
17A, located within the GPR51 gene (coding for GABABR subunit GB2) [318]. The 17A expression was
shown in SHSY5Y neuroblastoma cells to induce the expression of the GB2b splice variant and decrease
the expression of GB2a, ablating GABABR-mediated signaling in these cells [318]. Thus, GABABR
signaling may be severely impaired in the human AD cortex. There have not been any investigations
into whether 17A is expressed in wild-type or AD rodents, but this could represent another mechanism
by which GABABR-mediated IPSPs are impaired.
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During neuronal communication and memory processing, GABAergic activity plays an important
role in neuronal synchronization during theta and gamma activity in certain brain regions [319,320].
Specifically, gamma conductance disruption has been proposed as a potential mechanism of network
hyperactivity, thus contributing to the (E/I) imbalance in AD [321–323]. A few groups have studied
such network alterations in mouse models of AD, and the role of pathological Aβ. It was found that the
brains of APP transgenic mice exhibited network hypersynchrony, especially during periods of reduced
gamma oscillations [324]. Similar spontaneous epileptiform activity is often observed in early-onset
heritable forms of AD, and less frequently in later-onset sporadic cases [325]. The authors propose
that this network dysfunction could be caused by deficits in parvalbumin (PV)-positive interneurons,
as the synaptic firing of these neurons underlies the generation of gamma oscillations [324]. Indeed,
it was found that both hAPP mice, with high Aβ load, and human AD patients expressed less
Nav1.1 compared with controls [324]. Nav1.1 is a voltage-gated sodium channel found primarily on
PV-positive interneurons which contributes to the synaptic activity of these cells. The same group found
that the restoration of Nav1.1 levels improved memory deficits in hAPP mice [324], leading the authors
to suggest that behavioral or pharmacological therapies that reduce network hyperactivity or increase
gamma activity could have potential in the treatment of Aβ-associated cognitive deficits in patients
with AD [324]. hAPP mice exhibiting this spontaneous cortical and hippocampal epileptiform activity
also show increased sprouting of GABAergic terminals, greater synaptic inhibition, and abnormalities
in short- and long-term synaptic plasticity within the hippocampal dentate gyrus region; this network
remodeling to potentiate GABAergic function is likely a response to Aβ-induced hyperexcitation [291].
It is possible that GABA release by neurons under network hyperactivity conditions might be
a compensatory mechanism to overcome the glutamatergic overactivation induced by Aβ [326].
Notably, reduced GABA-induced Cl− currents have been recorded in response to the application of
Aβ1–40 and Aβ25–35 in Aplysia kurodai (a species of sea slug) [327]. This suggests that Aβ could have
direct effects on GABAAR-mediated currents, and that GABAergic dysfunction could encompass both
compensatory elements and direct pathological responses to Aβ. Indeed, chronic exposure to Aβ
increases GABA activity, and as a compensatory mechanism, several GABAAR subunits seem to be
upregulated or downregulated [313]. Conversely, acute Aβ effects might be related to an inhibitory
deficit; specifically, a decrease in the GABA-immunoreactive neuron number has been observed after
three days of Aβ incubation in rat basal forebrain cell cultures [328], indicating that GABAergic
neurons might respond differently to acute or chronic Aβ exposure. Thus, despite some convincing
evidence suggesting GABAergic vulnerability to Aβ in the early stages of AD [312,313,315,327,328],
the relationship between GABA and the amyloid cascade hypothesis remains unclear.

Given the large body of compelling evidence related to changes in the two main neurotransmission
systems in the AD brain, it is likely that these alterations underlie aberrant synaptic function and E/I
imbalance, leading to deficits in learning and memory and synaptic vulnerability in AD.

Many neuroprotective compounds have been previously described with the ability to ameliorate
glutamate-dependent excitotoxicity through the binding of GABAARs, possibly modulating and
restoring E/I network balance [329–331]. Intriguingly, GABA itself, in combination with other
compounds that bind to GABAARs, might prevent Aβ-induced neurotoxicity [329,330,332,333],
and GABAA agonists have demonstrated neuroprotective and anti-amyloidogenic effects in aged
mice and cultured rat cortical neurons [331,334,335]. Various GABAergic drugs have been studied
in relation to Alzheimer’s disease, and a small number of these have reached clinical trials [336].
Drugs targeting extrasynaptic GABAARs are currently being explored, with some being tested in
pre-clinical and clinical studies for their potential to improve cognition [336–338]; these might offer
a promising route in the symptomatic treatment of the disease. The possibility of targeting other
GABA-mediated pathways is also being explored, with the GABAAR-targeting drug etazolate having
been tested in Phase II clinical trials for its neuroprotective and anti-amyloidogenic effects in AD
patients [336,339–342]. Attention is also increasingly being paid to the relationship between BZ use
and the risk of developing AD [343,344].
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Taken together, these point to the GABAergic system as a key regulatory factor, the therapeutic
targeting of which might improve E/I balance in the AD brain, hence ameliorating the neurotoxic
effect of Aβ and potentially restoring cognition in early or later stages of AD. The investigation of
substances that act at GABAergic targets, and which protect directly or indirectly against neurotoxic
Aβ by themselves and/or in combination with other drugs, is one promising direction for therapeutic
research into AD. To better assess the suitability of the GABAergic system as a drug target in this
disease, GABAergic dysfunction and its contribution to AD pathogenesis must be further elucidated.

5. Conclusions

In the past few decades, many studies have implicated the disruption of cholinergic and
glutamatergic neurotransmission in AD. As described in this review, increasing attention is also being
paid to the role of GABAergic dysfunction in this disease. Despite some controversy in the field, there
is much evidence to suggest that GABAergic remodeling is a feature of AD, being potentially initiated
at early stages of disease pathogenesis. There is evidence that alterations in various components of
the GABAergic system, including GABA levels, GAD activity, GABA currents, and the distribution
and subunit composition of GABARs and GABA transporters, might not be occurring simply as
a compensatory mechanism in response to glutamate excitotoxicity. Indeed, some alterations might
also be caused by the direct effect of Aβ. Thus, the Aβ-induced disruption of GABAergic inhibitory
neurotransmission could represent a key mechanism whereby network activity is impaired in AD.
In this manner, GABAergic remodeling may be involved in E/I balance disruptions that lead to
early cognitive deterioration in the AD brain. A novel idea emerging from this body of research is
the suggestion that the GABAergic system is an important factor in both the early and later stages
of disease progression, and is not simply altered as a secondary pathological response. It is thus
important to consider both direct and compensatory alterations in GABAergic activity in AD. Due to
the limitations of previous studies discussed in this review, and the inconsistency of previous results,
the consequences of these alterations on neural network activity and behavior/cognition are not yet
well understood. It is also important to take into account the huge translational gap between animal
and in vitro models of AD and human clinical trials, and to consider the possibility that currently
available AD models fail to capture key characteristics of the human disease.

Therefore, there is an urgent need to pursue further research in this area, to enhance our
understanding of AD-associated alterations in the GABAergic system. Evidence for AD-associated
GABAergic remodeling along with the failure of anti-glutamatergic and acetylcholinesterase inhibitor
therapies to halt the progression of the disease could point to the GABAergic system as a promising
therapeutic target for AD. In this review, we have presented a large body of evidence potentially
supporting this assertion. Further research will be important to shed light on the implications of
GABAergic alterations in the disease, in order to assess the potential of GABAergic modulation to slow
or stop disease progression and protect or restore cognition in AD patients.
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298. Erdő, S.; Michler, A.; Wolff, J.R. GABA accelerates excitotoxic cell death in cortical cultures: Protection by
blockers of GABA-gated chloride channels. Brain Res. 1991, 542, 254–258. [CrossRef]

299. Sims, N.R.; Bowen, D.M.; Allen, S.J.; Smith, C.C.; Neary, D.; Thomas, D.J.; Davison, A.N. Presynaptic
cholinergic dysfunction in patients with dementia. J. Neurochem. 1983, 40, 503–509. [CrossRef] [PubMed]

300. Nyakas, C.; Granic, I.; Halmy, L.G.; Banerjee, P.; Luiten, P.G. The basal forebrain cholinergic system in aging
and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behav. Brain Res.
2011, 221, 594–603. [CrossRef] [PubMed]

301. Levey, A.I.; Kitt, C.A.; Simonds, W.F.; Price, D.L.; Brann, M.R. Identification and localization of muscarinic
acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 1991, 11, 3218–3226.
[PubMed]

302. Levey, A.I.; Edmunds, S.M.; Koliatsos, V.; Wiley, R.G.; Heilman, C.J. Expression of m1-m4 muscarinic
acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J. Neurosci.
1995, 15, 4077–4092. [PubMed]

303. Li, G.; Bien-Ly, N.; Andrews-Zwilling, Y.; Xu, Q.; Bernardo, A.; Ring, K.; Halabisky, B.; Deng, C.; Mahley, R.W.;
Huang, Y. GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein
E4 knockin mice. Cell Stem Cell 2009, 5, 634–645. [CrossRef] [PubMed]

304. Choi, D.W. Ionic dependence of glutamate neurotoxicity. J. Neurosci. 1987, 7, 369–379. [PubMed]
305. Cowburn, R.F.; Wiehager, B.; Trief, E.; Li-Li, M.; Sundstrom, E. Effects of β-amyloid-(25–35) peptides on

radioligand binding to excitatory amino acid receptors and voltage-dependent calcium channels: Evidence
for a selective affinity for the glutamate and glycine recognition sites of the NMDA receptor. Neurochem. Res.
1997, 22, 1437–1442. [CrossRef] [PubMed]

306. Roselli, F.; Tirard, M.; Lu, J.; Hutzler, P.; Lamberti, P.; Livrea, P.; Morabito, M.; Almeida, O.F.X. Soluble
β-amyloid1–40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses.
J. Neurosci. 2005, 25, 11061–11070. [CrossRef] [PubMed]

307. Fernández-Tomé, P.; Brera, B.; Arévalo, M.-A.; de Ceballos, M.L. β-Amyloid25–35 inhibits glutamate uptake
in cultured neurons and astrocytes: Modulation of uptake as a survival mechanism. Neurobiol. Dis. 2004, 15,
580–589. [CrossRef] [PubMed]

308. Zhao, D.; Watson, J.B.; Xie, C.-W. Amyloid β prevents activation of calcium/calmodulin-dependent protein
kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J. Neurophysiol.
2004, 92, 2853–2858. [CrossRef] [PubMed]

309. Mattson, M.P. Calcium and neurodegeneration. Aging Cell 2007, 6, 337–350. [CrossRef] [PubMed]
310. Shankar, G.M.; Bloodgood, B.L.; Townsend, M.; Walsh, D.M.; Selkoe, D.J.; Sabatini, B.L. Natural oligomers of

the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate
receptor-dependent signaling pathway. J. Neurosci. 2007, 27, 2866–2875. [CrossRef] [PubMed]

311. De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Aβ oligomers
induce neuronal oxidative stress through an N-Methyl-D-aspartate receptor-dependent mechanism that is
blocked by the Alzheimer drug memantine. J. Biol. Chem. 2007, 282, 11590–11601. [CrossRef] [PubMed]

312. Talantova, M.; Sanz-Blasco, S.; Zhang, X.; Xia, P.; Akhtar, M.W.; Okamoto, S.; Dziewczapolski, G.;
Nakamura, T.; Cao, G.; Pratt, A.E.; et al. Aβ induces astrocytic glutamate release, extrasynaptic NMDA
receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. USA 2013, 110, E2518–E2527. [CrossRef]
[PubMed]

313. Zhang, J.; Hou, L.; Gao, X.; Guo, F.; Jing, W.; Qi, J.; Qiao, J. Amyloid β-protein differentially affects NMDA
receptor- and GABAA receptor-mediated currents in rat hippocampal CA1 neurons. Prog. Nat. Sci. 2009, 19,
963–972. [CrossRef]

314. Lei, M.; Xu, H.; Li, Z.; Wang, Z.; O’Malley, T.T.; Zhang, D.; Walsh, D.M.; Xu, P.; Selkoe, D.J.; Li, S. Soluble
Abeta oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol. Dis.
2016, 85, 111–121. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1471-4159.1983.tb12683.x
http://www.ncbi.nlm.nih.gov/pubmed/6129289
http://dx.doi.org/10.1016/0006-8993(89)90238-2
http://dx.doi.org/10.1016/0006-8993(91)91575-L
http://dx.doi.org/10.1111/j.1471-4159.1983.tb11311.x
http://www.ncbi.nlm.nih.gov/pubmed/6822833
http://dx.doi.org/10.1016/j.bbr.2010.05.033
http://www.ncbi.nlm.nih.gov/pubmed/20553766
http://www.ncbi.nlm.nih.gov/pubmed/1941081
http://www.ncbi.nlm.nih.gov/pubmed/7751967
http://dx.doi.org/10.1016/j.stem.2009.10.015
http://www.ncbi.nlm.nih.gov/pubmed/19951691
http://www.ncbi.nlm.nih.gov/pubmed/2880938
http://dx.doi.org/10.1023/A:1021942109490
http://www.ncbi.nlm.nih.gov/pubmed/9357007
http://dx.doi.org/10.1523/JNEUROSCI.3034-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/16319306
http://dx.doi.org/10.1016/j.nbd.2003.12.006
http://www.ncbi.nlm.nih.gov/pubmed/15056466
http://dx.doi.org/10.1152/jn.00485.2004
http://www.ncbi.nlm.nih.gov/pubmed/15212428
http://dx.doi.org/10.1111/j.1474-9726.2007.00275.x
http://www.ncbi.nlm.nih.gov/pubmed/17328689
http://dx.doi.org/10.1523/JNEUROSCI.4970-06.2007
http://www.ncbi.nlm.nih.gov/pubmed/17360908
http://dx.doi.org/10.1074/jbc.M607483200
http://www.ncbi.nlm.nih.gov/pubmed/17308309
http://dx.doi.org/10.1073/pnas.1306832110
http://www.ncbi.nlm.nih.gov/pubmed/23776240
http://dx.doi.org/10.1016/j.pnsc.2008.11.006
http://dx.doi.org/10.1016/j.nbd.2015.10.019
http://www.ncbi.nlm.nih.gov/pubmed/26525100


Int. J. Mol. Sci. 2017, 18, 1813 40 of 41

315. Ulrich, D. Amyloid-β impairs synaptic inhibition via GABAA receptor endocytosis. J. Neurosci. 2015, 35,
9205–9210. [CrossRef] [PubMed]

316. Nava-Mesa, M.; Jimenez-Diaz, L.; Yajeya, J.; Navarro-Lopez, J. Amyloid-β induces synaptic dysfunction
through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse.
Front. Cell. Neurosci. 2013, 7, 117. [CrossRef] [PubMed]

317. Lüscher, C.; Slesinger, P.A. Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK)
channels in health and disease. Nat. Rev. Neurosci. 2010, 11, 301–315. [CrossRef] [PubMed]

318. Massone, S.; Vassallo, I.; Fiorino, G.; Castelnuovo, M.; Barbieri, F.; Borghi, R.; Tabaton, M.; Robello, M.;
Gatta, E.; Russo, C.; et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling
in response to inflammatory stimuli and in Alzheimer disease. Neurobiol. Dis. 2011, 41, 308–317. [CrossRef]
[PubMed]

319. Somogyi, P.; Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the
hippocampus. J. Physiol. 2005, 562, 9–26. [CrossRef] [PubMed]

320. Gong, N.; Li, Y.; Cai, G.Q.; Niu, R.F.; Fang, Q.; Wu, K.; Chen, Z.; Lin, L.N.; Xu, L.; Fei, J.; et al.
GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced
long-term potentiation. J. Neurosci. 2009, 29, 15836–15845. [CrossRef] [PubMed]

321. Palop, J.J.; Mucke, L. Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: From synapses
toward neural networks. Nat. Neurosci. 2010, 13, 812–818. [CrossRef] [PubMed]

322. Sperling, R.A.; Laviolette, P.S.; O’Keefe, K.; O’Brien, J.; Rentz, D.M.; Pihlajamaki, M.; Marshall, G.;
Hyman, B.T.; Selkoe, D.J.; Hedden, T.; et al. Amyloid deposition is associated with impaired default
network function in older persons without dementia. Neuron 2009, 63, 178–188. [CrossRef] [PubMed]

323. Busche, M.A.; Eichhoff, G.; Adelsberger, H.; Abramowski, D.; Wiederhold, K.H.; Haass, C.; Staufenbiel, M.;
Konnerth, A.; Garaschuk, O. Clusters of hyperactive neurons near amyloid plaques in a mouse model of
Alzheimer’s disease. Science 2008, 321, 1686–1689. [CrossRef] [PubMed]

324. Verret, L.; Mann, E.O.; Hang, G.B.; Barth, A.M.; Cobos, I.; Ho, K.; Devidze, N.; Masliah, E.; Kreitzer, A.C.;
Mody, I.; et al. Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in
Alzheimer model. Cell 2012, 149, 708–721. [CrossRef] [PubMed]

325. Palop, J.J.; Mucke, L. Epilepsy and cognitive impairments in alzheimer disease. Arch. Neurol. 2009, 66,
435–440. [CrossRef] [PubMed]

326. Vignes, M. Regulation of spontaneous inhibitory synaptic transmission by endogenous glutamate via
non-NMDA receptors in cultured rat hippocampal neurons. Neuropharmacology 2001, 40, 737–748. [CrossRef]

327. Sawada, M.; Ichinose, M. Amyloid β proteins reduce the GABA-induced Cl− current in identified Aplysia
neurons. Neurosci. Lett. 1996, 213, 213–215. [CrossRef]

328. Pakaski, M.; Farkas, Z.; Kasa, P., Jr.; Forgon, M.; Papp, H.; Zarandi, M.; Penke, B.; Kasa, P., Sr. Vulnerability
of small GABAergic neurons to human β-amyloid pentapeptide. Brain Res. 1998, 796, 239–246. [CrossRef]

329. Paula-Lima, A.C.; Louzada, P.R.; De Mello, F.G.; Ferreira, S.T. Neuroprotection against Aβ and glutamate
toxicity by melatonin: Are GABA receptors involved? Neurotox. Res. 2003, 5, 323–327. [CrossRef] [PubMed]

330. Louzada, P.R.; Paula Lima, A.C.; Mendonca-Silva, D.L.; Noel, F.; De Mello, F.G.; Ferreira, S.T. Taurine
prevents the neurotoxicity of β-amyloid and glutamate receptor agonists: Activation of GABA receptors and
possible implications for Alzheimer’s disease and other neurological disorders. FASEB J. 2004, 18, 511–518.
[CrossRef] [PubMed]

331. Lee, B.Y.; Ban, J.Y.; Seong, Y.H. Chronic stimulation of GABAA receptor with muscimol reduces amyloid
β protein (25–35)-induced neurotoxicity in cultured rat cortical cells. Neurosci. Res. 2005, 52, 347–356.
[CrossRef] [PubMed]

332. Mattson, M.P.; Kater, S.B. Excitatory and inhibitory neurotransmitters in the generation and degeneration of
hippocampal neuroarchitecture. Brain Res. 1989, 478, 337–348. [CrossRef]

333. Alagiakrishnan, K. Melatonin based therapies for delirium and dementia. Discov. Med. 2016, 21, 363–371.
[PubMed]

334. Shao, H.; Zhang, Y.; Dong, Y.; Yu, B.; Xia, W.; Xie, Z. Chronic treatment with anesthetic propofol improves
cognitive function and attenuates caspase activation in both aged and Alzheimer’s disease transgenic mice.
J. Alzheimers Dis. 2014, 41, 499–513. [PubMed]

http://dx.doi.org/10.1523/JNEUROSCI.0950-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26085642
http://dx.doi.org/10.3389/fncel.2013.00117
http://www.ncbi.nlm.nih.gov/pubmed/23898239
http://dx.doi.org/10.1038/nrn2834
http://www.ncbi.nlm.nih.gov/pubmed/20389305
http://dx.doi.org/10.1016/j.nbd.2010.09.019
http://www.ncbi.nlm.nih.gov/pubmed/20888417
http://dx.doi.org/10.1113/jphysiol.2004.078915
http://www.ncbi.nlm.nih.gov/pubmed/15539390
http://dx.doi.org/10.1523/JNEUROSCI.4643-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/20016099
http://dx.doi.org/10.1038/nn.2583
http://www.ncbi.nlm.nih.gov/pubmed/20581818
http://dx.doi.org/10.1016/j.neuron.2009.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19640477
http://dx.doi.org/10.1126/science.1162844
http://www.ncbi.nlm.nih.gov/pubmed/18802001
http://dx.doi.org/10.1016/j.cell.2012.02.046
http://www.ncbi.nlm.nih.gov/pubmed/22541439
http://dx.doi.org/10.1001/archneurol.2009.15
http://www.ncbi.nlm.nih.gov/pubmed/19204149
http://dx.doi.org/10.1016/S0028-3908(00)00213-6
http://dx.doi.org/10.1016/0304-3940(96)12847-0
http://dx.doi.org/10.1016/S0006-8993(98)00358-8
http://dx.doi.org/10.1007/BF03033152
http://www.ncbi.nlm.nih.gov/pubmed/14715451
http://dx.doi.org/10.1096/fj.03-0739com
http://www.ncbi.nlm.nih.gov/pubmed/15003996
http://dx.doi.org/10.1016/j.neures.2005.04.008
http://www.ncbi.nlm.nih.gov/pubmed/15896866
http://dx.doi.org/10.1016/0006-8993(89)91514-X
http://www.ncbi.nlm.nih.gov/pubmed/27355332
http://www.ncbi.nlm.nih.gov/pubmed/24643139


Int. J. Mol. Sci. 2017, 18, 1813 41 of 41

335. Zhang, Y.; Shao, H.; Dong, Y.; Swain, C.A.; Yu, B.; Xia, W.; Xie, Z. Chronic treatment with anesthetic propofol
attenuates β-amyloid protein levels in brain tissues of aged mice. Transl. Neurodegener. 2014, 3, 8. [CrossRef]
[PubMed]

336. Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic neurotransmission in
Alzheimer’s disease. Front. Aging Neurosci. 2016, 8, 31. [CrossRef] [PubMed]

337. Atack, J.R. Preclinical and clinical pharmacology of the GABAA receptor α5 subtype-selective inverse agonist
α5IA. Pharmacol. Ther. 2010, 125, 11–26. [CrossRef] [PubMed]

338. Atack, J.R. GABAA receptor subtype-selective modulators. II. a5-selective inverse agonists for cognition
enhancement. Curr. Top. Med. Chem. 2011, 11, 1203–1214. [CrossRef] [PubMed]

339. Clinical Trials.gov [Internet]. Identifier NCT00880412, A Study to Determine the Clinical Safety/Tolerability
and Exploratory Efficacy of EHT 0202 as Adjunctive Therapy to Acetylcholinesterase Inhibitor in Mild to
Moderate Azheimer’s Disease (EHT0202/002). National Library of Medicine (US): Bethesda, MD, USA, 2009.
Available online: https://clinicaltrials.gov/ct2/show/NCT00880412 (accessed on 13 July 2017).

340. Drott, J.; Desire, L.; Drouin, D.; Pando, M.; Haun, F. Etazolate improves performance in a foraging and
homing task in aged rats. Eur. J. Pharmacol. 2010, 634, 95–100. [CrossRef] [PubMed]

341. Siopi, E.; Llufriu-Dabén, G.; Cho, A.H.; Vidal-Lletjós, S.; Plotkine, M.; Marchand-Leroux, C.;
Jafarian-Tehrani, M. Etazolate, an α-secretase activator, reduces neuroinflammation and offers persistent
neuroprotection following traumatic brain injury in mice. Neuropharmacology 2013, 67, 183–192. [CrossRef]
[PubMed]

342. Vellas, B.; Sol, O.; Snyder, P.J.; Ousset, P.J.; Haddad, R.; Maurin, M.; Lemarie, J.C.; Desire, L.; Pando, M.P.
EHT0202 in Alzheimer’s disease: A 3-month, randomized, placebo-controlled, double-blind study.
Curr. Alzheimer Res. 2011, 8, 203–212. [CrossRef] [PubMed]

343. De Gage, S.B.; Moride, Y.; Ducruet, T.; Kurth, T.; Verdoux, H.; Tournier, M.; Pariente, A.; Bégaud, B.
Benzodiazepine use and risk of Alzheimer’s disease: Case-control study. BMJ 2014, 349, g5205. [CrossRef]
[PubMed]

344. Fastbom, J.; Forsell, Y.; Winblad, B. Benzodiazepines may have protective effects against Alzheimer disease.
Alzheimer Dis. Assoc. Disord. 1998, 12, 14–17. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/2047-9158-3-8
http://www.ncbi.nlm.nih.gov/pubmed/24725331
http://dx.doi.org/10.3389/fnagi.2016.00031
http://www.ncbi.nlm.nih.gov/pubmed/26941642
http://dx.doi.org/10.1016/j.pharmthera.2009.09.001
http://www.ncbi.nlm.nih.gov/pubmed/19770002
http://dx.doi.org/10.2174/156802611795371314
http://www.ncbi.nlm.nih.gov/pubmed/21050171
https://clinicaltrials.gov/ct2/show/NCT00880412
http://dx.doi.org/10.1016/j.ejphar.2010.02.036
http://www.ncbi.nlm.nih.gov/pubmed/20223232
http://dx.doi.org/10.1016/j.neuropharm.2012.11.009
http://www.ncbi.nlm.nih.gov/pubmed/23178198
http://dx.doi.org/10.2174/156720511795256053
http://www.ncbi.nlm.nih.gov/pubmed/21222604
http://dx.doi.org/10.1136/bmj.g5205
http://www.ncbi.nlm.nih.gov/pubmed/25208536
http://dx.doi.org/10.1097/00002093-199803000-00002
http://www.ncbi.nlm.nih.gov/pubmed/9539405
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The -Aminobutyric Acid (GABA) Signaling System 
	GABA Synthesis 
	GABA Metabolism and Homeostasis 
	Mechanisms of GABA Transport and Synaptic Uptake 
	GABA Receptors 

	GABA System Changes in Alzheimer’s Disease (AD) 
	Alterations in GABA Levels and Glutamic Acid Decarboxylase (GAD) Enzyme Activity 
	GABAergic Neurons and Synaptic Dysfunction in AD 
	Alterations in GABA Receptor Distribution and Subunit Composition in AD 
	GABA Transporter Alterations 
	Tau Pathology and GABA Signaling 

	Disruption of the Excitatory/Inhibitory (E/I) Balance in AD 
	Conclusions 

