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Abstract: In recent years, to infer phylogenies, which are NP-hard problems, more and more
research has focused on using metaheuristics. Maximum Parsimony and Maximum Likelihood
are two effective ways to conduct inference. Based on these methods, which can also be considered
as the optimal criteria for phylogenies, various kinds of multi-objective metaheuristics have been
used to reconstruct phylogenies. However, combining these two time-consuming methods results in
those multi-objective metaheuristics being slower than a single objective. Therefore, we propose a
novel, multi-objective optimization algorithm, MOEA-RC, to accelerate the processes of rebuilding
phylogenies using structural information of elites in current populations. We compare MOEA-RC
with two representative multi-objective algorithms, MOEA/D and NAGA-II, and a non-consensus
version of MOEA-RC on three real-world datasets. The result is, within a given number of iterations,
MOEA-RC achieves better solutions than the other algorithms.
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1. Introduction

With the rapid growth of the number and size of biological molecular sequences discovered,
inferring phylogenetic tree that describes evolutionary relationship between given molecular sequences
is getting more important and harder in field of bioinformatics. The computational methods for
inferring a phylogenetic tree have been split into the following three categories: (1) distance-matrix
methods, such as NJ [1] and BIONJ [2], generate trees stepwise using genetic distance information
obtained from multiple sequence alignments under the assumption that the tree with the smallest sum
of branch lengths is the best; (2) Maximum Parsimony (MP) [3] calculates and minimizes the total
amounts of variation of phylogenetic trees on the hypothesis that, the fewer mutation events occur,
the more authentic they are; and (3) Maximum Likelihood (ML) [3], which estimates phylogenetic
trees based on alternative evolutionary Markov models, such as JC69 [4], HKY85 [5], TN93 [6] and
GTR [7] that describe the rates at which one nucleotide replaces another. One tree, having a high ML
value, indicates the genetic relations between the sequences described in the tree are more realistic.

Inferring phylogenetic tree can be treated as single objective optimization problem or
multi-objective optimization problem (MOP) [8] which we discuss later. When it comes to single
objective problem, the process of inferring phylogenetic tree is guided by one of criteria described
above, such as ML or MP. Phylogenetic trees about same molecular sequences are always comparable
under single criterion. As explained by Lemmon [9], to obtain the optimal solution, using any one of
these two methods, we must rebuild all possible phylogenetic trees from one set of sequences, and that
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becomes difficult or impossible as the number of sequences increases. It becomes a NP-hard problem
that cannot be solved in polynomial time [10]. Thus, to save computational time, a more practical way
to solve this kind of problem is to find an approximate solution which is near optimal solution, instead
of a real optimal solution. The following are three strategies that can be used to find an approximate
solution: (1) Hill-climbing, i.e., repeating branch swapping and parameter optimizing (including
branch length optimizing) until a better solution cannot be obtained after several iterations [11];
(2) divide-and-conquer, such as the quartet puzzling method [12]; and (3) the relative effective
way is to use metaheuristics, such as genetic algorithms [13–15], particle swarm [16], etc. Besides
these algorithms, there is much software, available online, based on a single criterion. For example,
TNT [17] and PHYLIP [11] are based on MP. RAxML [18], IQPNNI [19], MrBays [20], Garli [21],
and MetaPIGA [22] are based on ML. TNT implements different heuristic, such as sectorial and tree
fusing, to address the inference of maximum parsimony trees.

Compared to single objective optimization problem, MOP is more complex, which deals with two
or more objective functions. In MOP, no solution can optimize all objective functions simultaneously
since objective functions are not all compatible. Instead of one optimal solution, each MOP has a
Pareto Front (PF) that is composed by optimal solutions. The Pareto dominance concept is used to
compare two solutions. A solution x dominates a solution y if x is not worse than y in all objectives
and if it is better for at least one. Those optimal solutions in PF are non-dominated. In solving MOP,
we search some Pareto-optimal solutions that must be uniformly approaching to PF. Multi-objective
evolutionary algorithms (MOEAs) is a common way to deal with MOP.

Since two criteria can be the objective functions of MOP and the results of these two criteria are
conflicting [23–25], more and more studies [26] focus on considering the inferring of phylogenetic trees
as a MOP. Besides inferring phylogenetic trees, actually, a wide range of biological problems have been
regarded as MOP [27]. It has been testified [28] that multi-objective genetic algorithms will outperform
single-objective genetic algorithms because multi-objective genetic algorithms are more likely to escape
from local optima. Based on a well-known MOEA called NSGA-II [29], PhyloMOEA [8] was proposed
for phylogenetic inference and it performs well in both ML and MP.

For any MOEAs applied to inferring phylogenetic tree, they must evaluate all trees at each
generation. If ML and MP were chosen as objective functions, computing the result of these
two functions for all trees can be very time-consuming. In general, two kinds of method can be
used to enhance algorithm’s time efficiency: (1) parallelizing algorithm [16,30,31]; and (2) improving
algorithm to achieve fine convergence in fewer generations. Our work is focused on the second one.

Lemmon used the inter-population consensus information to enhance accuracy and speed of
genetic algorithm [9] which is used to infer phylogenetic tree. In this context, consensus information
refers to the consensus branches, obtaining from several elitist phylogenetic trees that can be treated as
common topological features contributing much to the evaluation result of those elitists. Under the
assumption that those consensus branches are correct, Lemmon’s algorithm protects these consensus
branches from any topological mutation. With the help of consensus information, the algorithm avoids
many random searches in solution space and converges in fewer generations. However, only one
criterion, ML, has been considered in Lemmon’s algorithm. Therefore, in this paper, to use consensus
information to speedup MOP in inferring phylogenetic tree, we designed new MOEA—Multi-Objective
Evolutionary Algorithm using Redistribution and Consensus (MOEA-RC)—that fits consensus
branches well.

2. Materials and Methods

In this paper, two classical MOEAs were chosen to try to fit consensus: MOEA/D [32] and
NSGA-II [29]. The main procedure for NSGA-II is as follows: In every generation, NSGA-II generates
new offspring by a genetic operation and then splits the population, including parents and offspring,
into several subsets called non-dominated front that are marked as different fitness levels by a
domination relationship. Then, the better subsets are chosen as the parents of the next generation.
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Because consensus must be computed from several solutions, consensus may be obtained from
NSGA-II’s non-dominated front. As we view inferring phylogenetic tree as MOP, no tree can optimize
the two objectives simultaneously, which is the same as consensus that represents tree’s topological
characteristics. Different consensuses contribute to different objective functions in different degrees.
Those solutions in NSGA-II’s non-dominated front represent diverse topological characteristics and,
usually, are good at one objective function but inferior at another one. Therefore, we cannot compute
right consensus from non-dominated front.

MOEA/D [32] is a MOEA based on decomposition that, via an aggregation function, separates
the MOP into several smaller, single objective sub-problems and then, using a common evolutionary
algorithm, solves the sub-problems. In MOEA/D [32], weight vector is used to aggregates multiple
objective functions to one by aggregation function; therefore, trees owning the same weight vector
have the similar topological characteristics. However, this is not suited for computing consensus,
because every weight vector corresponds to only one solution, while consensus needs to be computed
from more than one solution.

To fit the concept of consensus into MOEAs, we designed a new MOEA called MOEA-RC to
infer phylogenetic tree. The RC in the name of MOEA-RC is an abbreviation of redistribution and
consensus that are core operations in this new MOEA. The range of values of the two objectives,
MP and ML, is different in most cases. Consequently, the following normalization must be applied
when evaluating solutions:

f i =
fi − z∗i

zi
nad − z∗i

(1)

f i is the value after normalize ith function in m objective functions; z∗ =
(
z∗1 , . . . , z∗m

)
is the

reference point; znad =
(
znad

1 , . . . , znad
m

)
is the nadir point; and fi is the original ith objective function

value. z∗ and znad will be dynamically obtained at runtime. We check the best value and worst value
for every objective function and update the value of z∗ and znad at each generation.

2.1. Selection Operator-Redistribution

Our proposed algorithm is composed of two critical components: redistribution and consensus.
Redistribution, which selects survivals and offers a reasonable condition for computing a consensus,
is described as follows. Let P, having size m, denote the parent populations, which survived from the
last selection of the algorithm. S, also having size m, denotes the offspring generated by the genetic
operation from P. C is the union of P and S. As shown in Figure 1, C is the input of redistribution. In the
solution sets, each solution is distributed to the sub-population which most closely related with this
solution. The number of sets, defined by the user, is identical to the number of weights. The method
for measuring relative degree is expressed by Equation (2). R denotes relative degree; f 1 and f 2 are
normalized values of objective functions of individuals; and w1

i is the first dimension value of the ith
weight vector.

Minimize R =

∣∣∣∣ f 1
f 1+ f 2

− w1
i

∣∣∣∣
subject to i ∈ {1, 2, . . , n}

(2)

As mentioned above, redistribution is responsible for selecting survivors from the population.
Therefore, after the above operation, we choose the solution that can survive. The size of C is 2 ×m;
thus, the number of solutions, m, in C are eliminated. Ideally, after selection, each solution set has the
same number of solutions as the other solution sets. To approach the ideal, after sorting the solutions
according to their fitness computed by the Weighted Sum (WS) approach (Equation (3)), we eliminate
the worst solutions in those sets with size exceeding m/n.

Gws(x|wi) =
n

∑
j=1

wj
i f j (3)
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The grey solutions in Figure 1 are eliminated; only those solutions outside the dashed line are
possibly eliminated. The reason for doing this is to keep as sufficient a number of solutions as possible
to improve the validity of the consensus generated in the next step. On the other hand, retaining those
few population solutions enhances the distribution and variety of the populations.
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Figure 1. Illustration of redistribution. Rectangles marked W1–Wn are populations for different weight
vectors. m is the number of defaults of all the individuals. The number of individual cycles is denoted
by 2 ×m. m number of grey cycles are eliminated in each iteration of redistribution.

2.2. Consensus

After selection, we compute the consensus for those solution sets that have a different search
direction. For example, for solution set T, compute the consensus from T and T’s two neighboring
sets, which depend on the distance of their corresponding weight vectors. We implemented the
more efficient method to compute majority rule (+) consensus described in the work [33]. However,
differing from the work [33], instead of consensus trees, we compute the consensus branches of trees.
Those consensus branches are viewed as the most correct branches in the current population. We try
to protect those branches in any subsequent operation, such as crossover and mutation, that would
change the topology of the trees.

Three sets are used to compute the consensus for one set for the following reason: Those solutions
that are involved in computing a consensus are regarded as elites in the population. Moreover, if we
choose all the solutions in the population to compute consensus branches, the result would be that
all the solutions in one direction are exactly the same after a few generations because of consensus.
Therefore, to compute a consensus, we choose prior solutions, rather than all the solutions in the set.
However, the elites in one solution are too few to result in a correct consensus. We fix this problem
by using the idea of the neighbor in MOEA/D [32]. The neighbors of one weight vector are seen as
being in the same direction to some degree. Thus, instead of all the solutions in T, we use the few best
solutions in the three sets neighboring T.

2.3. MOEA-RC

The step-by-step procedure for MOEA-RC is as follows:

Step 1. Population initiation: Two options can be chosen to initialize population: (1) using molecular
sequences, which have been pre-processed, such as alignment, to randomly build N
phylogenetic trees; and (2) using user given trees.

Step 2. Evaluation: Evaluate trees by MP and ML and update reference point at the same time.
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Step 3. Redistribution: As described in Section 2.1, separate the population into several
sub-populations according to Equation (2) and Sort trees in each sub-population by their
fitness computed by Equation (3).

Step 4. Computation of consensus: Generate consensus branches for each sub-population as
described above.

Step 5. Generation of offspring: Randomly select two individuals from the current population and do
a crossover operation to generate two new solutions. Many crossover operators are available
in the literature (Lewis 1998 [13]; Congdon 2002 [34]). We chose Prune–Delete–Graft (PDG),
which is described by Lewis (1998) [13], because it has been successfully applied under
different criteria. Then, use the nearest neighbor interchange (NNI) [35] to mutate the two new
solutions. Repeat this step until N new solutions have been generated.

Step 6. Merging: Merge the offspring with the current population.
Step 7. Repeat: Return to Step 2 and repeat until the stop condition is reached. The stop condition in

this paper is the maximum number of evaluation times set by the user. The stop condition in
this paper is a given specific number of generations.

The major computational costs in MOEA-RC are Steps 2–5. It takes O(N) time to evaluate population
in Step 2. In Step 3, every tree in population needs O(w) time to compute Equations (2) and (3). Thus,
the complexity of this step is O(w×N). For Step 4, as reported by Jansson [33], given an input of k
phylogenetic trees with identical leaf label sets and n leaves each, we can obtain consensus branches in
O(k×n) time. Because we need w sets of consensus branches and the upper bound of k in this context is
3 N/w, Step 5 takes O(n×N) time.

3. Results

To validate our proposed algorithm, we conducted a series of experiments. Firstly, we compare
our algorithm with the two most popular and representative algorithms, MOEA/D and NSGA-II,
on three real-world datasets (See Table 1) using random starting trees as initial population. Likewise,
another algorithm (MOEA-R) without a computing consensus that could testify to the efficacy of
the consensus was used in the experiments. Secondly, we compare our algorithm with PhyloMOEA,
MOEA/D and NSGA-II using same starting trees, which were generated by bootstrap analysis before
running experiments, as initial population for the sake of fairness. The reason for using given tree is
the same as mentioned in [8]: random starting trees are poor estimations of ML and MP. Our proposal
algorithm was also compared with several single-criterion phylogenetic software. All experiments in
this paper were independently run ten times on the same server (Intel(R) Xeon(R) E5-2630 v3 CPU at
2.4GHz and 64G RAM, PowerEdge R730, Dell Inc., Xiamen, China). The server’s operating system is
Ubuntu 5.4.0-6. The common parameters for all evolutionary algorithms in this experiment are listed
in Table 2. Those experiments on same dataset used same substitution model, GTR + GAMMA, with
same specific parameters generated by RAxML. The aggregation function used by MOEA/D in this
paper is Tchebycheff [32].

Table 1. Three datasets for experimentation.

Dataset Number of Sequence Nucleotides per Sequence Data Description

rbcl_55 55 1314 rbcl plastid gene [13]
mtDNA_186 186 16,608 Human mitochondrial DNA [36]
ZILLA_500 500 759 500 rbcL sequences from plant plastids [37]
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Table 2. Common parameters of the algorithms in the experiments.

Parameter Value

Population size 100
Generations 100

Selection method Binary tournament [9]
Crossover method Prune-Delete-Graft [13]

Crossover probability 0.8
Mutation method NNI [35]

Mutation probability 0.2
Substitution model GTR [7]

The Pareto Front (PF) of the four algorithms in the three datasets at a 100 evaluation is shown in
Figures 2–4. Figures 2–4 show the change of MP and ML of the algorithms with various multiples of
evaluation on rbcl_55 and mtDNA_186. In these figures, the results are composed by the best one time
of 10 times independent run for each algorithm and the value of ML have been multiplied by −1 so
that we can simply minimize all objective functions.

As shown in Figure 2, MOEA-RC has a better PF than the three other algorithms at 100 the
evaluation. The non-consensus version of MOEA-RC, MOEA-R, achieved a performance about the
same as that for NSGA-II and MOEA/D. Specifically, MOEA-R performs better than MOEA/D in
mtDNA_186 and ZILLA_500. In dataset mtDNA, the PF of MOEA-R and NSGA-II are mutually
non-dominated. To a certain degree, the advantage of MOEA-RC compared with MOEA-R
demonstrates the efficacy of consensus.

The results (Figure 3) show the convergence of those algorithms. Compared with the other three
algorithms, MOEA-RC has better convergence. Although the curves of MOEA-RC and MOEA-R
are very close, MOEA-RC is better than MOEA-R; the high quality of MOEA-RC is more obvious at
20,000 to 60,000 evaluations. In particular, the shape of the curve of MOEA-RC is smoother than the
shape of the curve of MOEA-R, illustrating that consensus not only accelerates convergence, but also
enhances the stability of the search procedure. On the other hand, the two graphs in Figure 3 also
show that MOEA-RC is superior to MOEA/D and NSGA-II. Because either MP or ML and the result
of convergence were not good enough, MOEA/D almost ceased improving from 40,000 evaluation.
NSGA-II, although better than MOEA/D, still ceased earlier than MOEA-RC. In Figure 4, MOEA-RC
also has better result than other three algorithms.
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Run time 1061.13 65,174.37 12,442.53 

Table 4. The comparison of MOEA-RC and several phylogenetic software packages on three real-
world datasets. The mark of (+) means the value is better than the other algorithms. 

Metrics Algorithm 
Dataset

rbcl_55 mtDNA_186 ZILLA_500 

MP 
MOEA-RC 4977 (+) 2460 17,186 
DNAPARS 4984 2438 (+) 17,055 (+) 

MEGA 7 4978 2457 17,077 

ML 
MOEA-RC −22,156.4 (+) −39,927.6 (+) −84,633.1 (+) 

Raxml −22,188.2 −40,921.0 −95,577.0 
MEGA 7 −22,205.2 −40,957.0 −95,834.0 

4. Conclusions 

In this paper, we proposed a novel MOEA called MOEA-RC for phylogenetic inference. MOEA-
RC can get better convergence in shorter time using consensus information of phylogenetic trees. We 
did comparisons of effectivity and efficiency between several state-of-the-art algorithms and tools for 
inferring phylogenetic tree. The experiments shows that, with help of consensus information, our 
new algorithm has better convergence to some degree. However, due to weak crossover and 
mutation operator, the final result of the algorithm is not ideal. Our algorithm underperforms 

Figure 4. Change of MP and ML of the algorithms with various multiples of evaluation on mtDNA_186:
(a) Maximum Parsimony; and (b) Maximum Likelihood.

We conclude that consensus can help MOEAs converge in less generations. In fact, as we know,
the complexity of NSGA-II is O(N2), thus MOEA-RC will not take more time to run than NSGA-II
while N ≥ n. Table 3 shows MP, ML and execution time of MOEA-RC, MOEA/D, NSGA-II and
PhyloMOEA on three datasets. In this table, MP and ML are the best results of 10 independent runs of
each program and run time is average run time of 10 independent runs. As we can see, MOEA-RC has
the best result among these algorithms. In terms of run time, when the number of taxon (molecular
sequence) is smaller than the size of the population, the run time of MOEA-RC is less than the others.
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This advantage reduces when the number of taxon increases. However, MOEA-RC’s actual run time is
still not longer than the others.

Table 3. The comparison of several multi-objective algorithms on three real-world datasets. The ML
and MP in this table is the best value after 100 generations of each algorithm. The mark of (+) means
the value is better than the other algorithms.

Algorithm Metrics
Dataset

rbcl_55 mtDNA_186 ZILLA_500

MOEA-RC
ML −22,156.4 (+) −39,927.6 (+) −84,633.1 (+)
MP 4977 (+) 2460 (+) 17,186 (+)

Run time 1059.80 66,215.13 13,016.22

MOEA/D
ML −22,169.6 −39,937.5 −84,715.9
MP 4979 2461 17,194

Run time 1302.64 65,620.20 13,082.54

NSGA-II
ML −22,193.3 −39,942.5 −84,719.4
MP 4979 2463 17,192

Run time 1287.07 66,010.94 12,812.62

PhyloMOEA
ML −2200.1 −39,938.2 −84,704.6
MP 4982 2461 17,191

Run time 2163.4 >24 h >24 h

MOEA-R
ML −22,244.7 −39,984.6 −84,714.6
MP 4979 2464 17,196

Run time 1061.13 65,174.37 12,442.53

In addition, we compare our proposal algorithm with DNAPARS, RAxML and MEGA 7 (Table 4).
DNAPARS is one program of PHYLIP that is phylogeny inference package computer programs for
inferring phylogenies. RAxML is one of the state-of-the-art tools for Maximum-likelihood based
phylogenetic inference. MEGA 7, which is sophisticated software suite for analyzing DNA and
protein sequence, can be used to infer maximum parsimony trees and maximum likelihood trees.
The configuration of DNAPARS is as follows, search option is more thorough search, the number of
trees to save is 100. RAxML’s substitution model setting is GTRGAMMA and starting trees are same
as MOEA-RC. The substitution model and starting trees of MEGA 7 are same as RAxML. The other
settings of these software packages are default. Because the evaluation method is diverse in different
software, we reevaluated the optimal trees generated by all algorithm and software using Bio++ and
Phylogenetic Likelihood Library (PPL). In Table 4, we can find MOEA-RC is much better than the other
software in terms of likelihood. However, for parsimony, it is only better for one dataset (rbcl_55).

Table 4. The comparison of MOEA-RC and several phylogenetic software packages on three real-world
datasets. The mark of (+) means the value is better than the other algorithms.

Metrics Algorithm
Dataset

rbcl_55 mtDNA_186 ZILLA_500

MP
MOEA-RC 4977 (+) 2460 17,186
DNAPARS 4984 2438 (+) 17,055 (+)

MEGA 7 4978 2457 17,077

ML
MOEA-RC −22,156.4 (+) −39,927.6 (+) −84,633.1 (+)

Raxml −22,188.2 −40,921.0 −95,577.0
MEGA 7 −22,205.2 −40,957.0 −95,834.0
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4. Conclusions

In this paper, we proposed a novel MOEA called MOEA-RC for phylogenetic inference. MOEA-RC
can get better convergence in shorter time using consensus information of phylogenetic trees. We did
comparisons of effectivity and efficiency between several state-of-the-art algorithms and tools for
inferring phylogenetic tree. The experiments shows that, with help of consensus information, our new
algorithm has better convergence to some degree. However, due to weak crossover and mutation
operator, the final result of the algorithm is not ideal. Our algorithm underperforms MEGA7 and
DNAPARS on two datasets in terms of maximum parsimony. Therefore, in future work, we will find a
more reasonable genetic operator to apply consensus information.
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