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Abstract: Fed-batch animal cell culture is the most common method for commercial production
of recombinant proteins. However, higher cell densities in these platforms are still limited due
to factors such as excessive ammonium production, lactic acid production, nutrient limitation,
and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly
overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid
production—termed Lactate Supplementation and Adaptation (LSA) technology—through the use of
CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a
reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium
production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid
production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells
per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among
the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of
LSA technology in animal cell culture is worthy of further consideration and may lead to process
conditions more favorable for advanced industrial applications.
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1. Introduction

1.1. Summary of Methods to Reduce Lactic and Ammonium Production

In the field of animal cell culture, many researchers have observed lactic acid and/or
ammonium accumulate to levels that inhibit cell growth and/or productivity [1–12]. For over
60 years, a number of methods have been developed to minimize lactic acid and/or ammonium
production [1–4,10–38]. A summary of the common methods is shown in Table 1. Over roughly the
last 35 years, the challenges regarding lactic acid and ammonium accumulation have substantially
increased, as the biopharmaceutical industry and its partners in academia have moved from low density
batch culture to high density fed-batch culture [3–6,10–12,24,27–30]. An ideal method for use in the
manufacture of human therapeutics through industrial animal cell culture would:

(1) Be universally effective—across all industrially-relevant cell lines and processes—at reducing
both lactic acid and ammonium production to sufficiently low levels so as to have no negative
impact on cell growth and product quality,

(2) Lead to no increase and possibly even a decrease in process complexity, as discussed further
below, and

(3) Be commonly implemented in large-scale industrial operations run according to current Good
Manufacturing Practices (cGMPs), with a solid track record of success over many years.
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Table 1. Common methods to reduce lactic acid and/or ammonium production in animal cell culture.

Method References Effect on Lactic Acid
(Lac A) Production

Effect on
Ammonium

(NH4
+) Production

Likely Universally
Reduces Lac A and
NH4

+ Production?

No Change or
Decrease in Process

Complexity?

Commonly ImplemenTed
in cGMP Operations?

Replacement of glucose (gluc),
glutamine (gln), or both with

alternative sugars and/or
amino acids

[1,2,13–16] (gluc only) Reduced NR No Yes No
[17,18] (gln only) NR Reduced No Yes No

[3,19,20] (gluc only) Reduced Increased No Yes No
[21] (gluc only) Reduced Unchanged No Yes No

[20] (both) Reduced Reduced Possibly Yes No

On-line feedback control of glucose
and/or glutamine at very low levels

using glucose sensor, glutamine
sensor, and/or other sensors and

concentrated feeds

[22–24] (gluc only) Reduced Increased No No No
[23] (gln only) Reduced Reduced No No No

[4,22–26] (both) Reduced Reduced Yes No No
[3,27] (gluc only with other sensors) Reduced Increased No No 27 at Pfizer

[28] (both with other sensors) Reduced Unchanged Yes No Not in completely full form

Copper supplementation [12,29–32] Reduced NR No Yes Yes

Reduction in temperature [33] Reduced Unchanged No Yes Yes
[34] Reduced Reduced No Yes Yes

Reduction in pH [34–36] Reduced Unchanged No Yes Yes
[37] Reduced Increased No Yes Yes

Selection of clones with lactate
consumption phenotype [10–12,27,30,38] Reduced Mixed No Yes Yes

NR—not reported
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As shown in Table 1 and discussed further below, none of the current methods meet all three of
these criteria.

Many of the earliest methods shown in Table 1, such as replacement of glucose with alternative
sugars, were developed to reduce lactic acid accumulation. At the time, it was not widely recognized
that ammonium accumulation could be an issue, and thus data regarding ammonium levels was not
reported (NR). In fact, many of the earliest methods, along with many of the current methods, reduce
lactic acid production but increase ammonium production or, at best, certainly have not been proven to
universally reduce ammonia production. When tested for use in fed-batch cultures, alternative sugars
such as galactose sometimes lead to similar growth as with glucose [3] but often do not [27].

Relatively low levels of ammonium, typically between 2 to 10 mM, may have negative effects
on cell growth and productivity, as well as the glycosylation and possibly even the biological
activity, stability, and/or immunogenicity of certain recombinant glycoproteins [4,39–46]. Changes
in post-translational processing are believed to be related to intracellular pH increases, which are
brought on by ammonia transport into the Golgi [41] and/or energy depletion [47]. For these reasons,
ammonium is one of the most important inhibitory metabolites in animal cell culture [48]. Negative
effects from ammonium are often attained at concentrations approximately ten-fold less (e.g., 2–4 mM)
than for lactate (e.g., 20–40 mM) [42,43,49]. Thus, decreasing lactic acid at the expense of even a small
increase in ammonia is certainly not desirable.

Control of glucose at low levels in the culture medium—so as to limit the supply of glucose to the
cells—has been employed for over three decades to reduce lactic acid production (Table 1). This can
be achieved through various means, such as direct measurement and automatic or manual feedback
control of glucose levels. When glucose but not glutamine is controlled at low levels, a desirable
decrease in glucose uptake and lactic acid production typically occurs, but this often goes hand-in-hand
with an undesirable increase in glutamine uptake and ammonium production [22–24,27,50]. Thus, to
minimize both lactic acid and ammonium production, glucose as well as glutamine may need to be
simultaneously controlled [4,24,25,45] or replaced [20].

1.2. Process Complexity and Lack of Industrial Implementation

Since the time of the pioneering work of Fleischaker [3]—wherein it was found that glucose levels
of as low as 0.1 mM were needed to largely eliminate lactic acid production—there have been several
refinements in the systems used for automatic feedback control of glucose and/or glutamine. This has
resulted in a long series of interesting publications from academic or industrial process development
groups. That said, many feedback control approaches require the following four components:

(1) Frequent sample withdrawal, often using an automatic sampling system,
(2) Sample testing for glucose and/or glutamine levels using an external sensor system,
(3) Transmission of the test result into a computer control system for processing, and
(4) Frequent culture additions from a glucose and/or glutamine reservoir, using a pump and

transfer line.

When one adds the four components above to a culture system, there is a very substantial increase
in process complexity.

Although complex systems with the four components above have been successfully used many
times in laboratory-scale bioreactors, and have repeatedly shown substantial benefits at the lab scale
in both academia and industry, they have never, to our knowledge, been implemented as part of a
licensed, large-scale animal cell culture process. Even for E. coli production cultures, with durations of
only 1–2 days, there are substantial challenges around continuous feeding of nutrients in large-scale,
cGMP operations [51,52]. For animal cell production cultures, with durations that are typically at least
10–15 days, these challenges increase, as the system must perform continuously without problems for
a much longer period. The chance of run failure is considered too high, not only due to the complexity
of the system, but also due to the resulting risks around contamination and robust feedback control at
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“near failure” nutrient levels. Glucose depletion can lead to apoptosis and premature cell death [53] or
affect product quality by reducing glycosylation [39,54]. Accordingly, glucose levels for most industrial
fed-batch processes are held above 1 g/L or higher [31,38], well above the much lower range required
to reduce lactic acid production.

A recent approach, coined HI-end pH-controlled Delivery of Glucose (HIPDOG) by
Gagnon et al. [27], has been shown to dramatically reduce lactic acid production and also substantially
increase titers without the use of an external sensor system and frequent sample withdrawal.
This strategy relies on the pH control loop to deliver glucose when the pH rises. The method requires
the use of a pH sensor, feed transfer line, pump, and glucose feed reservoir for every culture, adding to
the complexity of each culture system. It is thus quite difficult to implement for a large number of very
small-scale cultures, such as those used for cell line screening. However, it does not require frequent
sampling of culture fluid for glucose and/or glutamine analysis and thus does not add those associated
contamination and sensor failure risks. For large-scale cultures, the increase in performance provided
by HIPDOG is apparently worth the increase in complexity. It has been implemented in industrial
cGMP cell cultures, has been used to substantially improve legacy processes, and has provided
some of the best published fed-batch culture performance to date. There are no published reports of
implementation by firms other than Pfizer. Like many other low-glucose control systems, however, the
approach results in an increase in peak ammonium levels [27]. The success of the HIPDOG approach
may thus be enhanced if used in combination with Glutamine Synthetase transfected Chinese Hamster
Ovary (GS-CHO) lines. Glutamine synthetase (GS) transfection works with both CHO and NSO
lines [55] and may well work universally. It not only provides cell lines with high specific productivities,
but is also a metabolic engineering method to reduce ammonia production [56,57]. When used in
combination with HIPDOG, GS technology may often keep ammonium within acceptable ranges.

There are also other approaches to dynamic nutrient feeding, such as ones that rely on
the frequent measurement of oxygen uptake rate and numerous other culture parameters [3,28].
These measurements are used in combination with various stoichiometric and/or other mathematical
models to determine optimum feed quantities and/or formulations. Although these methods do not
require frequent sampling for measurement and feedback control of glucose and/or glutamine, they
still add a substantial degree of process complexity, and are thus rarely if ever fully implemented in
cGMP operations. Certain aspects, such as stoichiometric design of medium and feeds, are commonly
employed in modern processes.

1.3. Metabolic Engineering

Many researchers have attempted to develop metabolic engineering methods to reduce lactic acid
and/or ammonium production. To limit the scope of this introduction, these methods are not cited
in Table 1. None meet all three criteria specified in the first paragraph of this subsection. The reader
is referred to Young [58], Kim et al. [59], and Dietmair et al. [60], who all present excellent reviews
and analyses of these methods. In general, improvement of metabolic phenotypes through genetic
engineering has proven more difficult than originally envisioned back in the 1980’s. Beyond the GS
approach, none of the other metabolic engineering methods to reduce lactic acid and/or ammonia
production have found widespread adoption in industry to date [58,60,61].

1.4. Common Simple Methods

Lastly, Table 1 presents four simple and common methods to reduce lactic acid and/or ammonium
production: (1) lowering culture temperature, (2) lowering culture pH, (3) supplementation of the
medium with copper, and (4) selection of clones with lactate-consumption (LC) phenotype. Although
all of these methods are commonly employed, none have been proven to universally reduce both lactic
acid and ammonia production. Temperature and pH shifts are generally optimized on case-by-case
basis and can negatively or positively impact cell growth and/or product quality [10,11,27,33–38,62].
Although a drop in pH will very often reduce lactic acid production [35–37,63,64], it can also lead
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to an increase in glutamine consumption and ammonium production [37]. Copper supplementation
is a simple approach but does not reduce lactic acid production for all relevant cell lines [12,30] and
can also positively or negatively impact product quality [12,29,31,65,66]. Selection of clones with a
lactate-consumption (LC) phenotype is inherently not universal, as the clone with the best specific
productivity, product quality, or otherwise greatest potential might be discarded due to lack of the LC
phenotype. For certain clones, the LC phenotype may be occasionally lost due to unknown factors,
even in validated cGMP processes making commercial products [11]. Such changes in phenotype are
reasonably common but rarely reported in the literature [67]. Problems persist [11,68] even though
a combination of approaches to maximize cell growth and productivity while minimizing lactic
acid and/or ammonium production, such as stoichiometric design of medium and feeds, have been
employed for over 35 years [3–6,26,28,38,42–46,68–74].

1.5. Lactate Supplementation and Adaptation (LSA) Technology

In response to the limitations of the methods discussed above, a doctoral research project was
undertaken to invent and develop a new method to reduce both lactic acid and ammonium production
in industrial animal cell culture. Ideally, it would be a simple, robust method that could be readily
and quickly employed across multiple scales, from small multi-well plate cultures used for cell line
screening to large stirred tank cultures used for commercial manufacturing. Ideally, it would not
increase or possibly even decrease culture complexity, with no need for additional equipment, such
as that needed for new feed-back control loops. Ideally, it would work universally for all relevant
cell lines and processes. This paper covers the initial feasibility and proof-of-concept studies for this
new method.

Our new method was inspired partly by the observation that many fed-batch processes
exhibit periods of lactate consumption or no net lactate production [11,12,27,30,32,38,50,70,75–78].
These periods generally occur later in culture, after the exponential growth phase, often after lactate
has accumulated to levels of at least 2–4 g/L or higher. The goal was to extend this behavior throughout
the culture, including the exponential growth phase.

Conceptually, the overall production of lactic acid from glucose can be written as [79]:

Glucose + 2 HPO4
−2 + 2 ADP→ 2 Lactate− + 2 H+ + 2 ATP (1)

Lactic acid has a pKa value of 3.87 and will dissociate under physiological conditions to lactate
and a hydrogen molecule. Although the entire reaction path to lactate involves multiple steps through
glycolysis, a branch point exists at pyruvate, which can either flux toward the tricarboxylic acid (TCA)
cycle for the continued production of ATP or be reduced to lactate and contribute to culture acidity [80],
as shown in Equation (2):

Pyruvate− + NADH + H+ ↔ Lactate− + NAD+ (2)

Although the equilibrium balance highly favors lactic acid production (∆G′◦ = −25.1 kJ/mol) this
flux can hypothetically be stopped or reversed by high levels of lactate as explained by the actual free
energy change, ∆G, of the reaction [80], as shown in Equation (3):

∆G = ∆G′◦ + RT ln

([
LAC−

]
·
[
NAD+

][
PYR−

]
· [NADH]

)
(3)

where
∆G′◦ = RT ln K′eq = −25.1 kJ/mol (4)

Note that H+ is not included in the ratio according to convention [81].
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Our proposed mechanism of action, as well as the rationale behind our approach, centers on the
law of mass action. Lactate concentrations that increase the stoichiometric ratio in Equation (3) so
as to match the equilibrium constant in Equation (4), K′eq, should generate a zero ∆G and eliminate
net lactate production. This approach rests on the assumptions that (1) increased lactate levels in the
medium lead to increased lactate levels inside the cell (i.e., higher intracellular lactate), and (2) in
response to increases in intracellular lactate, the stoichiometric ratio in Equation (4) will increase, even
though the levels of the four individual chemical species may change. If these assumption are true,
the reaction path from pyruvate to lactate can potentially be controlled over one reaction, via simple
lactate supplementation of the culture medium, even though other phenomena may be coming into
play, such as inhibition of phosphofructokinase by lactate.

Ideally, an increase in intracellular lactate will not only increase the stoichiometric ratio in
Equation (3), but also increase levels of sodium pyruvate as well as the flux of pyruvate into the TCA
cycle [79]. If so, it could lead to increased levels of TCA cycle intermediates, such as α-ketoglutarate,
and possibly reduce the production of ammonium, again through the laws of mass action, by slowing or
eliminating the conversion of glutamate to α-ketoglutarate via glutamate dehydrogenase. Alternatively
or in addition, increased levels of intracellular pyruvate may slow or eliminate the conversion of
alanine to pyruvate via alanine dehydrogenase, and as proposed by Li et al. [38], thereby reduce
ammonium production. This possible mechanism is again based upon the law of mass action.

In support of this approach, others have separately found that lactate supplementation can reduce
lactate production [7,8] and, even when targeted at relatively low levels, can reduce ammonium
production [38].

The proposed mechanisms of action presented above, centered on the laws of mass action, are
provided only to show the rationale behind our proposed new method. They will not be directly
investigated per se in this paper. Many others have investigated the mechanism(s) of action behind
metabolic shifts from lactate production to lactate consumption [30,32,38,55,82]. If the results of this
feasibility study are promising, similar mechanisms of action studies would be appropriate for our
new method.

To apply this new method, cultures are first inoculated into fresh medium supplemented with
various levels of sodium lactate. The changes in lactate levels are monitored. A sufficient level of
lactate supplementation is identified that nearly or totally eliminates the net production of lactate, i.e.,
holds lactate levels constant. Cells are then grown in that level of lactate for multiple passages until
their growth rate matches that of the original cells grown in medium not supplemented with lactate.

In previous studies, lactate supplementation of medium has been performed to study the impact
of lactate on cell growth and/or productivity [7,8,27,83], to derive lactate-tolerant cell lines [84], or
to eliminate lactate depletion during the lactate consumption phase [38]. Lactate supplementation
levels in these studies were selected to reflect maximum or normal levels that arise naturally in a
culture system or to reflect minimum levels to avoid depletion. In contrast, in this work, lactate
supplementation levels were chosen to specifically eliminate the net production of lactate through the
law of mass action. Furthermore, lactate is supplemented into the initial culture medium, rather than
as a feed during the lactate consumption phase. The intent is to control cell metabolism from time zero,
from inoculation through the full culture duration. If lactate is substantially consumed, it may become
necessary to implement lactate supplementation of feeds and/or the use of lactic acid to control pH,
such as performed by Li et al. [38].

2. Results

2.1. Adaptation and Reduced Lactic Acid Production in Shaker Flask Cultures

As described in the Materials and Methods section, a native control CHO cell line was adapted
in shakers to high-lactate in standard Opti-CHO base medium (Invitrogen, Carlsbad, CA, USA)
supplemented with sodium L-lactate. The shaker flask cultures were passaged every 3–4 days in
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lactate-supplemented medium. Figure 1 shows the average specific net growth rate for each passage,
along with the native control target, for lactate supplementation levels of roughly 35 mM. As will be
presented later, lactate supplementation at 35 mM was sufficient to nearly eliminate the net production
of lactic acid. The native control target line in Figure 1 was the average specific net growth rate of the
native control cells over many passages.
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Figure 1. Specific net growth rate in lactate-supplemented medium as a function of adaptation time for
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As shown in Figure 1, when the cells were cultured in the lactate-supplemented medium, they
exhibited a reduced specific net growth rate for the first several passages. However, the cells eventually
adapted to this culture medium over approximately 40 days, and were subsequently referred to as
Lactate-Adapted (LA) cells. Separate native control cultures were adapted to 410 mOsm (via sodium
chloride supplementation) and were subsequently referred to as Osmo-Adapted (OA) cells.

Beyond the adaptation period of 40 days, the LA and OA cells were passaged in shakers in
lactate-supplemented or NaCl-supplemented medium, respectively, for an additional 80 days. Both cell
types maintained stable growth and phenotype over this time period. The average characteristics are
summarized in Table 2. The average specific net growth rates (µn) were similar. Statistically significant
differences were observed in specific lactic acid production rate (qLac), specific glucose uptake rate
(qGluc), and observed yield of lactate on glucose (Yl/g), with p values less than 0.001.

Table 2. Average net growth and metabolic rates of adapted cells in batch shaker flask cultures.

Cell—Line µn (p ≈ 0.01)
(1/h)

qLac (p < 0.001)
(µmol/106 Cell-h)

qGluc (p < 0.001)
(µmol/106 Cell-h)

Yl/g (p < 0.001)

Lactate Adapted 0.025 ± 0.001 0.022 ± 0.018 0.054 ± 0.006 0.388 ± 0.344
Osmo Adapted 0.027 ± 0.002 0.112 ± 0.032 0.078 ± 0.012 1.411 ± 0.284

µn—specific net growth rate, qLac—specific lactic acid production rate, qGluc—specific glucose consumption rate,
Yl/g—lactate produced per glucose consumed.

For the Lactate-Adapted cells, as well as the native control cells, increasing levels of L-lactate
substantially reduced the specific productivity of lactate, driving it to zero at approximately 40 mM
L-lactate (Figure 2). This occurred even though the cells were maintained in exponential growth in
shakers at relatively high glucose levels (typically > 10 mM).



Int. J. Mol. Sci. 2018, 19, 385 8 of 22Int. J. Mol. Sci. 2018, 19, x  8 of 22 

 

 

Figure 2. Effect of initial lactate concentration on specific lactic acid production rate in batch shaker 
flask cultures. 

2.2. Growth Performance of Adapted Cells in Fed-Batch Bioreactor Cultures  

Fed-batch cultures were grown in duplicate 3-L bioreactors using LSA technology (with LA 
cells) along with control cultures using OA cells. The growth and viability curves for the extended 15 
day cultivations are shown in Figures 3 and 4. LA cultures began to outperform OA cultures after 
the first feed and achieved significantly improved viable cell densities, increasing over 
one-hundred-fold to reach a maximum cell density of 35 million cells per ml. In contrast, the OA 
cultures reached a maximum cell density of 22 million cells per ml. The LA cells exhibited 
substantially higher viabilities during the later stages of culture (Figure 4), followed by a slow death 
phase. In contrast, the OA cells entered a more rapid death phase after the last feed, ending with a 
low harvest viability of 30 percent, 40 percentage points below the LA cells. The combination of 
increased maximum cell density and slow death phase led to a near doubling in Integrated Viable 
Cell Days (IVCD) for the LA cells as compared to OA cells (Figure 3). The maximum cell density of 
35 million cells per ml, as well as the IVCD of 273 million cell-days per ml, as achieved with the LSA 
technology, are both among the highest values reported in the literature, as will be covered further 
in the Discussion section. 

 

Figure 3. Viable cell concentrations for fed-batch bioreactor cultures. 
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2.2. Growth Performance of Adapted Cells in Fed-Batch Bioreactor Cultures

Fed-batch cultures were grown in duplicate 3-L bioreactors using LSA technology (with LA cells)
along with control cultures using OA cells. The growth and viability curves for the extended 15 day
cultivations are shown in Figures 3 and 4. LA cultures began to outperform OA cultures after the
first feed and achieved significantly improved viable cell densities, increasing over one-hundred-fold
to reach a maximum cell density of 35 million cells per mL. In contrast, the OA cultures reached a
maximum cell density of 22 million cells per mL. The LA cells exhibited substantially higher viabilities
during the later stages of culture (Figure 4), followed by a slow death phase. In contrast, the OA cells
entered a more rapid death phase after the last feed, ending with a low harvest viability of 30 percent,
40 percentage points below the LA cells. The combination of increased maximum cell density and slow
death phase led to a near doubling in Integrated Viable Cell Days (IVCD) for the LA cells as compared
to OA cells (Figure 3). The maximum cell density of 35 million cells per mL, as well as the IVCD of
273 million cell-days per mL, as achieved with the LSA technology, are both among the highest values
reported in the literature, as will be covered further in the Discussion section.
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2.3. Lactic Acid Production, Base Addition, and Osmolality Profiles in Fed-Batch Bioreactor Cultures

For the fed-batch cultures shown in Figures 3 and 4, Figure 5 shows the total L-lactate
concentration, including the initial lactate supplementation level for the LA cells. LSA technology
largely eliminated the increase in lactate levels (peak minus initial), from 94 mM for the OA cells
down to only 10 mM for the LA cells (9.4-fold decrease). It substantially decreased specific lactic acid
production rates from day 0 to day 9 (Figure 6).
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As shown in Figure 9, pH levels were well maintained to within 0.1 units of the 7.05 target, after
inoculation at 7.05–7.2 and the initial drift down to the dead-band control point. The data is from
off-line readings using the Nova BioProfile.
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Figure 9. pH levels for fed-batch bioreactor cultures.

LSA technology dramatically reduced the amount of base needed for pH control, from 345–350 mL
for the OA cultures down to only 40–45 mL for the LA cultures (Figure 10). This eight-fold reduction
in base usage approximately matched the 9.4-fold reduction in lactate increase (peak vs. starting)
previously discussed with regard to Figure 5.
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At least partly through the dramatic reduction in lactic acid production and associated base
additions, LSA technology avoided the excessive increase in osmolality seen for the OA control
cultures (Figure 11), likely accounting for at least part of the differences seen in the cell concentration
and viability profiles.
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2.4. Ammonium Production and Glutamine Consumption in Fed-Batch Bioreactor Cultures

LSA technology also resulted in a substantial reduction in ammonium levels (Figure 12), even
though cell densities were higher, due to a ~50% reduction in specific ammonium production rates
(Figure 13). Average specific glutamine uptake rates were equivalent between the two cell lines. Due to
experimental issues, reliable glutamine and ammonium data was available only to day 11, the limit
of the data shown in Figures 12 and 13. Error bars shown on Figures 3–13 represent the standard
deviation between duplicates.
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3. Discussion

This paper covers the initial feasibility and proof-of-concept studies for a proposed new method
to reduce both lactic acid and ammonium production in industrial cell culture. It is a simple
method, involving supplementation of culture medium with lactate and adaptation of cells to this
medium. For ease of reference, the method has been termed Lactate Supplementation and Adaptation
(LSA) technology.

Using this technology, fed-batch cultures were grown to maximum viable cell density of 35 million
cells per mL. This compares well to published values by industry leaders of 5–45 million cells
per mL [10,11,27,55,85,86]. Similarly, the achieved IVCD value of 273 million cell-days per mL also
compares well to published values by industry leaders of 30–275 million cell-days per mL [11,85,86].

Although LSA technology certainly looks promising, it has only begun to be tested, scrutinized,
and optimized. Results were presented in this paper for only one cell line. The technology needs to be
tested with more cell lines, including ones that have been genetically engineered to make a monoclonal
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antibody or other recombinant protein. The impact on specific productivity and product quality needs
to be determined for a well-engineered cell line. If the results look promising, it should be tested at
larger scales. Combinations of the technology with other promising techniques, such as use of lactate
in feed or the use of lactic acid for pH control [38], need to be tested.

Furthermore, proposed mechanisms of action, involving the laws of mass action, were provided
to show the rationale behind this new method. Experiments were not conducted to specifically test
the proposed mechanisms of action. Such experiments need to be conducted and may lead to further
improvement of the method. There may be inhibition of phosphofrutokinase by lactate, as found by
Mulukutla et al. [82] for their cultures.

For over 25 years, fed-batch culture of animal cells has been used to manufacture monoclonal
antibodies and other recombinant proteins for clinical trial and commercial sales. Over that time period,
improvements in the technology and resulting titers have been dramatic [10,87–90]. Nonetheless,
problems with lactic acid and ammonium production persist, in terms of both sporadic problems
with current processes [11] and limitations on future progress. Further improvements in fed-batch
technology may allow production titers to reach in excess of 20 g/L, thereby permitting economical
commercial production of many biopharmaceuticals in single use bioreactors with volumes of only
1000 to 2000 L.

4. Materials and Methods

4.1. Native Control Cells, Flask Cultures, and General Culture Methods

Experiments were conducted with a dihydrofolate reductase deficient (DHFR−) Chinese Hamster
Ovary cell line, DG44 CHO, ordered from Invitrogen (Invitrogen, Carlsbad, CA, USA) Prior to
experimentation, the cells were transfected with a pOPTI-Vec TOPO plasmid vector containing the
gene for a recombinant monoclonal ScFv-Fc1 protein fragment. Transfected cells were grown in
selective OptiCHO medium (Invitrogen, Carlsbad, CA, USA) and the recombinant gene copy number
was further amplified by supplementing the medium with 250 nM methotrexate. The amount of
recombinant antibody fragment expressed was less than 10 mg/L and not subsequently measured.
This cell line was used to test the feasibility of the proposed method in terms of cell growth, death,
and metabolism, but not recombinant protein productivity or product quality. Cells were frozen down
and hereafter referred to as “Native Control” (NC) cells. All subsequent experiments were performed
without methotrexate.

Flask cultures were grown at 30 mL working volume in 125-mL shaker flasks (Corning, Lowell,
MA, USA) placed in an incubator at 37 ◦C, 135 rpm, and 8% CO2. Continuous passages were performed
every 3 to 4 days in duplicate shaker flasks inoculated at a seeding density of 1.0 × 106 cell/mL.
Cell concentration and viability were measured by the trypan blue exclusion method using a ViCell
analyzer (Beckman Coulter, Fullerton, CA, USA). Off-line measurements were taken with a Bioprofile
400 (Nova Biomedical, Waltham, MA, USA) for glucose, glutamine, lactate, ammonium concentration
and pH levels. Osmolality was measured by freezing point depression on a Model 3250 Osmometer
(Advanced Instruments, Norwood, MA, USA).

4.2. Adaptation of Cells

Basal medium was commercially available, serum-free, chemically-defined OptiCHO medium
(Invitrogen, Carlsbad, CA, USA), purchased as sterile liquid ready for use, supplemented with 8 mM
glutamine (Invitrogen). For use in adaptation, this standard basal medium was supplemented with
sodium lactate or sodium chloride, in powder form, prior to sterile filtration. Adaptation to high
lactate levels was achieved by continuously passaging the cells in basal medium supplemented with
35 mM sodium lactate (Sigma, Lowell, MA, USA). The starting lactate levels in the culture post seeding
as measured by the Bioprofile 400 were 35 ± 10 mM. The measured variability of 10 mM was due to
the precision of the Bioprofile measurements as well as differences in lactate levels carried over from
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seed cultures. Ninety sequential passages over 9 months were performed to monitor stability and run
parallel experiments. The cells grown in medium supplemented with roughly 35 mM lactate over a
period of at least 40 days, with specific net growth rates during continuous passaging that matched
or exceeded the rates for Native Control cells in medium without lactate, are referred to as “Lactate
Adapted” (LA) cells. Osmolality levels were 400–410 mOsmo. Lactate levels specified throughout this
paper, including those measured by the Nova Bioprofile 400, are only for the L-isomer.

35 mM lactate was ultimately chosen as the target supplementation during adaptation sufficient
to drive lactic acid production to near zero. A range of 0 to 40 mM was investigated, based on the
typical peak amounts produced in fed-batch culture for the cell line used and observation of the
lactate-consumption phenotype in the later stages of such cultures. Supplementation above 40 mM
was not studied as the desired effect was achieved within the range tested.

In a similar fashion, a cell line adapted to high osmolality was derived through continuous
passaging in medium supplemented with sodium chloride (Sigma, Lowell, MA, USA). The level of
sodium chloride was chosen to provide a matching osmolality level of 400–410 mOsmo. The cells
grown in medium supplemented with this sodium chloride level over a period of at least 40 days, with
specific net growth rates during continuous passaging that matched or exceeded the rates for Native
Control cells, are referred to as “Osmo Adapted” cells.

4.3. Bioreactor Cultures

Bioreactor cultures were grown in 3 L Applikon bioreactors (Foster City, CA, USA) with an
initial working volume of 1.6 L. All conditions were tested in duplicate. Each bioreactor consisted
of a round-bottom glass vessel and stainless steel head plate configured with sparging, overlay, and
exhaust ports, five medium addition ports, a sampling port, base and antifoam inlet ports, and pH,
dissolved oxygen (DO) and temperature probe ports. A 3-bladed, pitched-blade impeller (called a
marine impeller by Applikon) was set at 250 rpm between days 0 and 3 then increased to 300 rpm
on day 4. Temperature was controlled at 37 ◦C through the use of a heating blanket, while pH was
controlled at 7.05 with a dead band of 0.03 using sparged CO2 gas or 1.0 N (0.5 M) sodium carbonate
(Ricca Chemical Company, Arlington, TX, USA). Dissolved oxygen (DO) was maintained at 50% air
saturation through the use of the standard Applikon drilled tube sparger. The sparge gas was air
between days 0–4 and then switched to oxygen on day 5. Solenoid valves were used for on/off control
of the sparge gas. Air sparge gas flow rate was controlled at 500 mL/min while oxygen sparge was
controlled at 100 mL/min, both with rotameters. An air overlay was also used.

As determined through readings from the Nova Bioprofile for days 0–7, prior to sporadic issues
with such measurements from day 8 onward, pCO2 levels were comparable between the LA and OA
bioreactors, dropping from roughly 90 mm Hg on day 1 down to roughly 10 mm Hg on days 4–5, then
back up to roughly 50 mm Hg on day 7. From roughly day 11 onward, pCO2 levels were elevated
up to 90–140 mm Hg due to the use of CO2 sparging for pH control. There was very little to no base
addition to either set of cultures from day 9 onward.

To initiate cultures, bioreactors were first batched with basal medium, allowed to reach
temperature and DO set points, and then inoculated at a seeding density of 0.3 × 106 cells/mL.
Antifoam B (Sigma, Lowell, MA, USA) was added as needed to eliminate foaming, in increments of
1 mL/L at 10% concentration.

4.4. Fed-Batch Experiments

To reduce starting osmolality and thus allow for more additions of concentrated fed-batch feeds,
a custom version of the OptiCHO basal medium was used. This custom medium was ordered free
of glucose and NaCl and then supplemented with 8 mM glutamine and 5.8 g/L glucose (Invitrogen,
Carlsbad, CA, USA). It was further supplemented with 40 mM Na-lactate for the LA cell line or 40 mM
NaCl (Sigma, Lowell, MA, USA) for the OA cell line. For both cell lines, the resulting osmolality of the
basal medium was 315 mOsmo.
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Table 3 details the concentrated nutrient feed solutions used for the fed-batch experiment. One set
of nutrient feeds was prepared by adding CD CHO AGT complete medium powder (Invitrogen) to 1×
Efficient Feed B liquid formulation (Invitrogen). For feed solutions HCD-1 and HCD-2, CD CHO AGT
powder was added at levels of 12 and 24 g/L, respectively, to Efficient Feed B. An additional 40 mL/L
of 200 mM glutamine was also added to each feed solution. The resulting glucose levels were 21 g/L
and 24 g/L, respectively, for HCD-1 and 2. Two additional feed solutions, HCD-3 and HCD-4, were
prepared, as shown in Table 3. Sodium lactate was not added to the feeds.

Table 3. Concentrated nutrient feed solutions.

Feed Solution
Component Levels in Given Feed Solution Measured (*) or Theoretical

(+) OsmolalityEfficient Feed B CD CHO AGT Glutamine Glucose

HCD-1 1× 12 g/L 8 mM 21 g/L 540 mOsmo *
HCD-2 1× 24 g/L 8 mM 24 g/L 700 mOsmo *
HCD-3 - - 200 mM - 200 mOsmo +

HCD-4 - - 300 mM 500 g/L 3080 mOsmo +

Table 4 describes the feeding schedule of the solutions listed in Table 3. The schedule was based on
the assumption that the proprietary Efficient Feed B and CD CHO AGT formulations from Invitrogen
were stoichiometrically-balanced, wherein the nutrient levels are present in proportion to their relative
uptake rates. Accordingly, feed volumes were selected upon the basis of maintaining a sufficient
concentration of glucose, a key nutrient readily measured with the Nova Bioprofile device. Every 24 h
the cultures were sampled and glucose levels measured. A sufficient volume of concentrated nutrient
feeds was added so that the glucose levels would ideally remain above 10 mM over the next 24 h period.
In practice, glucose levels occasionally dropped slightly below 10 mM, but were never below 5 mM.
On any given day, the same feeds and feed volumes were added to all four bioreactors, according to
the schedule shown in Table 4. Glucose uptake in the OA cultures was often higher than in the LA
cultures, and thus the glucose levels in the OA cultures were used to determine the feed volumes.
Feeds were continued until the maximum practical working volume of nearly 3 L was reached on day
9 for the OA cultures. By that time, over 11% of the volume (345–350 mL) in the OA cultures was due
to base addition. Although there was still ~300 mL of space available in each LA culture, no additional
feeds were added.

Table 4. Concentrated nutrient feed schedule.

Feed Solution Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

HCD-1 80 mL 80 mL 80 mL 160 mL
HCD-2 320 mL 185 mL 80 mL
HCD-3 16 mL 16 mL 32 mL
HCD-4 20 mL 20 mL

4.5. Calculation of Specific Rates

Specific rates were determined on a time-interval basis by measuring daily viable and total cell
density (VCD or TCD) and metabolite concentrations. Specific net growth rate (µN), was calculated as
change in VCD over a time interval t1 to t2 using Equation (5):

µN =
ln
[

VCD2
VCD1

]
t2 − t1

(5)
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Specific total growth rate (µT) and death rate (Kd) were determined in the same time interval
using Equations (6)–(8):

µT = µN

(
TCD2 − TCD1

VCD2 −VCD1

)
for VCD1 6= VCD2 (6)

µT =

( TCD2−TCD1
VCD1

t2 − t1

)
for VCD1 = VCD2 (7)

Kd = µT − µN (8)

Metabolic flux was calculated as specific nutrient consumption rate or specific metabolite
production rate (qp) using Equations (9) and (10), where P is nutrient (glucose or glutamine) or
metabolite (lactic acid or ammonium) concentration:

qP = µN

(
P2 − P1

VCD2 −VCD1

)
for VCD1 6= VCD2 (9)

qP =

( P2−P1
VCD1

t2 − t1

)
for VCD1 = VCD2 (10)

Integral Viable Cell Days [87] was calculated via the trapezoid method. Error bars shown on
graphs indicate one standard deviation each direction. JMP® software was used for statistical analysis.

5. Patents

The two authors are co-inventors on a patent covering LSA technology (U.S. 8,470,552 B2).
Interested parties are encouraged to contact Professor Croughan regarding (a) its availability for
license, and (b) results from studies conducted beyond the work shown in this publication.
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Abbreviations

cGMP current Good Manufacturing Practice(s)
CHO Chinese Hamster Ovary
gln glutamine
gluc glucose
GS Glutamine Synthetase
GS-CHO Glutamine Synthetase transfected Chinese Hamster Ovary
HIPDOG HI-end pH-controlled Delivery of Glucose
IVCD integrated viable cell days
LA lactate adapted cells
Lac lactate
Lac A lactic acid
Laci initial lactate
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LC lactate consumption
LSA Lactate Supplementation and Adaptation
NH4

+ ammonium
OA osmolality adapted cells
NR not reported
P nutrient or metabolite
qGln specific glutamine uptake rate in µmol/106 cells-h
qGluc specific glucose uptake rate in µmol/106 cells-h
qLac specific lactic acid production rate in µmol/106 cells-h
qNH4

+ specific ammonium production rate in µmol/106 cells-h
TCA tricarboxylic acid
TCD Total Cell Density
VCD Viable Cell Density
Yl/g lactate produced per glucose consumed (mole/mole)
Kd specific death rate in h−1

µN specific net growth rate in h−1

µT specific total growth rate in h−1
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