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Abstract: Analyzing rare DNA and RNA molecules in limited sample sizes, such as liquid biopsies
and single cells, often requires preamplification, which makes downstream analyses particularly
sensitive to polymerase chain reaction (PCR) generated contamination. Herein, we assessed the
feasibility of performing Cod uracil-DNA N-glycosylase (Cod UNG) treatment in combination with
targeted preamplification, using deoxyuridine triphosphate (dUTP) to eliminate carry-over DNA.
Cod UNG can be completely and irreversibly heat inactivated, a prerequisite in preamplification
methods, where any loss of amplicons is detrimental to subsequent quantification. Using 96 target
assays and quantitative real-time PCR, we show that replacement of deoxythymidine triphosphate
(dTTP) with dUTP in the preamplification reaction mix results in comparable dynamic range,
reproducibility, and sensitivity. Moreover, Cod UNG essentially removes all uracil-containing
template of most assays, regardless of initial concentration, without affecting downstream analyses.
Finally, we demonstrate that the use of Cod UNG and dUTP in targeted preamplification can easily be
included in the workflow for single-cell gene expression profiling. In summary, Cod UNG treatment
in combination with targeted preamplification using dUTP provides a simple and efficient solution to
eliminate carry-over contamination and the generation of false positives and inaccurate quantification.
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1. Introduction

Today, many clinical and scientific studies are dependent on the detection and quantification of
rare analytes in limited sample sizes, such as liquid biopsies, cytological aspirates, and individual
cells. The analysis of DNA and RNA is typically performed using quantitative real-time polymerase
chain reaction (qPCR), digital polymerase chain reaction (dPCR), and next-generation sequencing
(NGS). Preamplification is required to enable analysis of multiple targets and minimize the variability
introduced by allocating few molecules among several individual reactions [1,2]. Preamplification is
successfully applied in numerous applications, such as single-cell transcriptome [3–10], genome [10,11],
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proteome [6], and epigenetic [12] studies, as well as analysis of circulating cell-free DNA in liquid
biopsies [13–16].

Many preamplification strategies are PCR-based and either target-specific [7,17] or global,
targeting all molecules indiscriminately [9,18]. Target-specific preamplification is usually preferred
in qPCR- and dPCR-based workflows, since assays used for downstream quantification can also be
used in the preamplification step. The goal of preamplification is to generate sufficient amount of
target molecules to allow singleplex quantification of multiple targets in a reproducible, specific, and
sensitive manner. As this may require target sequences to be multiplied several orders of magnitude,
subsequent sample handling becomes a potential contamination hazard, where highly concentrated
PCR products potentially cause contamination of downstream reactions, like qPCR, dPCR, and NGS.

In PCR, deoxythymidine triphosphate (dTTP) can be replaced with deoxyuridine triphosphate
(dUTP). Before PCR is initiated, the use of uracil-DNA N-glycosylase (UNG) will degrade any
uracil-containing PCR products, i.e., eliminate carry-over contamination [19]. Consequently, only
thymine-containing target DNA derived from the original biological sample can be amplified. However,
the inability to completely inactive conventional UNG [20,21] makes it unsuitable to workflows
involving preamplification, as any loss of amplicons will cause inaccurate quantification in downstream
analyses. Cod UNG (Cod uracil-DNA N-glycosylase), derived from the Atlantic cod (Gadus morhua), is
produced in a recombinant E. coli strain containing a modified Cod UNG gene that can be completely
and irreversibly heat inactivated.

Here, we studied the feasibility of performing target-specific preamplification using dUTP and
Cod UNG for contamination cleanup (Figure 1). We further show how Cod UNG treatment in
combination with preamplification using dUTP can be used for reliable quantification of rare molecules
even in the presence of PCR generated contamination.
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Figure 1. An experimental workflow. Contamination cleanup with Cod uracil-DNA N-glycosylase 
(Cod UNG) and preamplification can be performed separately or as one combined step. In this study, 
contamination cleanup was performed together with the preamplification step. Samples were UNG 
treated by adding Cod UNG to the preamplification master mix and by subsequently incubating the 
samples for 5 min at room temperature before initiating preamplification. The pre-denaturation step 
at 95 °C for 10 min that activate the polymerase also irreversibly inactivate Cod UNG. dUTP: 
deoxyuridine triphosphate; qPCR: quantitative real-time polymerase chain reaction. 

2. Results 

2.1. Preamplification Using Uracil Is Efficient, Reproducible, and Sensitive 

To test the effect of replacing thymine with uracil in preamplification, we performed target-
specific preamplification using either dTTP or dUTP. To evaluate amplification efficiency, 
reproducibility, and sensitivity, we applied high-throughput qPCR (Figure 1). The overall 
amplification efficiency of preamplification and qPCR was determined using absolute DNA 
standards generated with dTTP, in the range 5 to 5120 molecules per reaction, for 96 individually 
optimized assays. A total of five assays failed in the preamplification or following high-throughput 
qPCR and were excluded from further analysis (Table S1). The average efficiency was significantly 
higher using dTTP (102%) compared with dUTP (94%) for the 91 assays (p < 0.0001) (Figure 2A and 
Table S1). Moreover, 80 of 91 assays showed higher PCR efficiency using dTTP (Figure 2B), where 
E2F1, BCL2L1, and CDKN2C showed the highest differences in comparison (32%, 23%, and 21%, 
respectively). The use of dUTP resulted in higher efficiencies for eleven assays compared to dTTP, 
where GTSE1, CDK7, and IL6ST, displayed the highest differences (12%, 7.3%, and 3.2%, respectively, 
Table S1). The use of dUTP displayed improved reproducibility (p < 0.05) for three of the six 
concentrations tested (Figure 2C). As expected, the variability increased with decreasing molecule 
numbers using both dTTP and dUTP. To investigate whether the sensitivity to amplify few template 

Figure 1. An experimental workflow. Contamination cleanup with Cod uracil-DNA N-glycosylase
(Cod UNG) and preamplification can be performed separately or as one combined step. In this study,
contamination cleanup was performed together with the preamplification step. Samples were UNG
treated by adding Cod UNG to the preamplification master mix and by subsequently incubating
the samples for 5 min at room temperature before initiating preamplification. The pre-denaturation
step at 95 ◦C for 10 min that activate the polymerase also irreversibly inactivate Cod UNG. dUTP:
deoxyuridine triphosphate; qPCR: quantitative real-time polymerase chain reaction.

2. Results

2.1. Preamplification Using Uracil Is Efficient, Reproducible, and Sensitive

To test the effect of replacing thymine with uracil in preamplification, we performed target-specific
preamplification using either dTTP or dUTP. To evaluate amplification efficiency, reproducibility, and
sensitivity, we applied high-throughput qPCR (Figure 1). The overall amplification efficiency of
preamplification and qPCR was determined using absolute DNA standards generated with dTTP, in
the range 5 to 5120 molecules per reaction, for 96 individually optimized assays. A total of five assays
failed in the preamplification or following high-throughput qPCR and were excluded from further
analysis (Table S1). The average efficiency was significantly higher using dTTP (102%) compared
with dUTP (94%) for the 91 assays (p < 0.0001) (Figure 2A and Table S1). Moreover, 80 of 91 assays
showed higher PCR efficiency using dTTP (Figure 2B), where E2F1, BCL2L1, and CDKN2C showed
the highest differences in comparison (32%, 23%, and 21%, respectively). The use of dUTP resulted in
higher efficiencies for eleven assays compared to dTTP, where GTSE1, CDK7, and IL6ST, displayed
the highest differences (12%, 7.3%, and 3.2%, respectively, Table S1). The use of dUTP displayed
improved reproducibility (p < 0.05) for three of the six concentrations tested (Figure 2C). As expected,
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the variability increased with decreasing molecule numbers using both dTTP and dUTP. To investigate
whether the sensitivity to amplify few template molecules was affected, we compared the number of
replicates positive at the lowest template concentration. No difference was observed between using
dTTP and dUTP in preamplification (p > 0.05, Figure 2D). In conclusion, using dUTP instead of dTTP in
target-specific preamplification results in decreased amplification efficiency, increased reproducibility,
and similar sensitivity.
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Figure 2. Targeted preamplification with deoxythymidine triphosphate (dTTP) and deoxyuridine
triphosphate (dUTP). (A) Amplification efficiencies using dTTP and dUTP. Overall amplification
efficiency of preamplification and quantitative real-time polymerase chain reaction (qPCR) was
estimated using DNA standards. Each circle/square represents an individual assay. Dashed lines
correspond to average polymerase chain reaction (PCR) efficiency. Difference in average PCR
efficiency was tested using two-tailed Wilcoxon matched-pairs signed rank test (n = 91 assays).
**** p < 0.0001. (B) Amplification efficiency variability. Difference in PCR efficiencies (E) calculated
as EdTTP − EdUTP. Each circle represents an individual assay. Dashed line corresponds to equal
PCR efficiencies (n = 91 assays). (C) Amplification reproducibility. Standard deviation at six standard
curve concentrations for each assay is shown. Dashed lines correspond to average standard deviation
(S.D.). S.D. ratio is calculated as the ratio between average S.D.dUTP and average S.D.dTTP. Difference
in average standard deviation was tested using two-tailed Wilcoxon matched-pairs signed rank
test (n = 91 assays, each concentration was analyzed as triplicate). ** p < 0.01; **** p < 0.0001.
(D) Amplification sensitivity. Sensitivity was calculated as the percentage of positive preamplification
reactions using 5 DNA standard molecules. Difference in sensitivity was tested with two-tailed Fisher’s
exact test (n = 91 assays). n.s.: not significant.
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2.2. Cod UNG Is Compatible with Preamplification and Removes Carry-Over Contamination

We also evaluated how efficiently Cod UNG degrades thymine- and uracil-containing DNA, if the
enzyme can be completely inactivated, and whether it causes any downstream inhibition. To assess how
efficiently Cod UNG degrades uracil-containing DNA, we generated a pool of 92 purified PCR products,
where half contained thymine and half contained uracil. These were divided into eight groups
including four to six different thymine-containing amplicons and equal number uracil-containing
amplicons. Each group contained 1 to 16,384 target molecules per amplicon and reaction (Table S1).
This PCR product pool was then used as template for preamplification using dUTP with either Cod
UNG, heat inactivated Cod UNG, or water. All reactions were incubated for 5 min at room temperature,
allowing Cod UNG to degrade uracil-containing template, before 20 cycles preamplification and
downstream high-throughput qPCR (Figure 1). Four assays, three for thymine-containing amplicons
and one for a uracil-containing amplicon, failed in the preamplification or following high-throughput
qPCR, and were excluded from further analysis (Table S1). Active and inactivated Cod UNG, as
well as water controls, displayed similar preamplification yield of thymine-containing amplicons
(Figure 3A), indicating that Cod UNG neither degrades thymine-containing template nor inhibits
downstream reactions. Heat inactivated Cod UNG treated samples also performed equally well when
compared to controls that assessed the uracil-containing amplicons. In contrast, sample treatment
with active Cod UNG completely removed all uracil-containing standards in all replicates for 34
of 45 assays (see Figure 3B and Table S1). In five of the remaining eleven assays, only one 1 of
15 replicates was positive for respective DNA assay. In the other six assays, ≥ 3 replicates were
positive. Only 1 assay, E2F1 (Table S1), the shortest uracil-containing assay included in the study,
was positive for all replicates. Still, in average 97% of all uracil-containing template was degraded
prior to preamplification. Analysis of all uracil-containing amplicons displayed a positive correlation
between fraction of positive replicates and number of loaded DNA molecules per uracil (Figure 3C,
Spearman’s correlation coefficient = 0.481, p < 0.001). Consequently, assays that are contaminated
with many molecules and contain few uraciles in their sequences are the ones that still may suffer
from carry-over contamination after Cod UNG treatment. These data show that Cod UNG can be
completely and irreversibly inactivated and that the enzyme can be used to remove uracil-containing
DNA molecules without inhibiting downstream amplification.
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Figure 3. The effect of Cod uracil-DNA N-glycosylase (Cod UNG) treatment on thymine- and
uracil-containing DNA standards. (A) Cod UNG inhibition test: 43 individual thymine-containing
DNA standards were successfully preamplified and analyzed by quantitative real-time polymerase
chain reaction (qPCR). Four to six different assays were amplified at each concentration, ranging from 1
to 16,384 molecules per reaction. Prior to preamplification, samples were treated with Cod UNG (green
squares), heat inactivated Cod UNG (purple diamonds), or water (control, black circles). Numbers on
the x-axis correspond to the number of molecules loaded per reaction, whereas numbers on the y-axis
correspond to the number of molecules measured per reaction. The difference in absolute quantities
was assessed using the nonparametric Friedman test followed by Dunn’s multiple comparisons test,
comparing Cod UNG treatment and heat inactivated Cod UNG treatment with the control group.
No statistical significance between Cod UNG and water, nor between heat inactivated Cod UNG and
control, was observed (n = 15 reactions per treatment). (B) Cod UNG efficiency test: 45 individual
uracil-containing DNA standards were successfully preamplified and analyzed by qPCR. 4 to 6
different assays were amplified at each concentration, ranging 1 to 16,384 molecules per reaction.
Prior to preamplification, samples were treated with Cod UNG (green squares), heat inactivated
Cod UNG (purple diamonds) or water (control, black circles). Numbers on the x-axis correspond
to the number of molecules loaded per reaction. Numbers on the y-axis correspond to the number
of molecules measured per reaction. The difference in absolute quantities was assessed using the
nonparametric Friedman test, followed by Dunn’s multiple comparisons test, comparing Cod UNG
and heat inactivated Cod UNG treatment with the control group. No statistical difference between
heat inactivated Cod UNG and control was observed, whereas Cod UNG displayed significantly lower
yield than control (p < 0.0001, n = 15 reactions per treatment). (C) Uracil-containing DNA standards
positive after Cod UNG treatment. Percentage of positive samples plotted against number of loaded
molecules per uracil, the last calculated at total number of uraciles in the sequence between the primers.
For example, the E2F1 assay was loaded with 16,384 DNA standard molecules and the amplicon
contained 12 uraciles, i.e., 16,384/12 = 1365 loaded molecules per uracil. Each black circle and orange
triangle corresponds to one assay (n = 15 replicates per assay).
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2.3. Single-Cell Gene Expression Profiling Using Preamplification with dUTP and Cod UNG

To demonstrate the use of Cod UNG treatment prior to target-specific preamplification, we
performed single-cell gene expression profiling. We collected 92 human myxoid liposarcoma 402-91
cells in direct lysis buffer using fluorescence-activated cell sorting and subsequently reverse transcribed
all of the RNA. Complementary DNA was treated with Cod UNG (n = 88), or heat inactivated Cod
UNG (n = 4), prior to preamplification with dUTP, in the presence of a uracil-containing artificial DNA
spike, added to mimic a contaminating DNA amplicon. Out of the 97 preamplified targets, including
96 different gene targets and one artificial DNA spike, we quantified the expression of 11 genes
with qPCR. Selected genes were lowly, intermediately, and highly expressed (Figure 4). As expected,
low transcription levels correlated with the low number of positive cells [22,23]. Quantification of
the artificial DNA spike showed that Cod UNG eliminated all uracil-containing template in the 88
preamplification reactions, where the enzyme was active. On the contrary, high yield was evident
in the four reactions where Cod UNG had been heat inactivated. This demonstrates that, with the
addition of Cod UNG and the replacement of dTTP with dUTP in the preamplification, an accurate
quantification of multiple rare target sequences in a limited sample size was possible, even in the
presence of PCR generated contamination.
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were treated with heat inactivated Cod UNG (red), while the remaining 88 cells were treated with
active Cod UNG (grey).

3. Discussion

Biological and clinical analyses are increasingly dependent on accurate detection and
quantification of DNA and cDNA biomarkers and are therefore sensitive to contamination, which can
fabricate false-positives and inaccurate quantification. Analyses of multiple non-abundant nucleic acid
biomarkers in limited sample sizes require preamplification. These studies are especially sensitive
to sample-to-sample contamination since handling of large molecule numbers after preamplification
is required before final analysis. Contamination can originate from three sources: (i) other test
samples, (ii) experimental reagents and materials, and (iii) PCR products generated in previous
amplification steps, i.e., carry-over contamination [24]. The risk of contaminations can be minimized by
different means. For example, carry-over contamination can be reduced by following good laboratory
practice. This involves physical separation of the individual experimental steps, where locations and
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equipment used in sample preparation, reaction setup, template loading, and post-PCR, are kept
strictly apart. If material and equipment needs to be transferred, it should only be downstream in the
experimental workflow, never in the reverse direction. Frequent change of gloves, use of laminar flow
hoods, and disposable and DNA-free filter tips, reagents and plastics also minimize the likelihood
of contamination. However, if contamination does occur, it needs to be eliminated [25]. This can be
achieved by irradiation, enzymatic treatment, and the use of various chemicals [26].

Here, we have demonstrated the feasibility to perform target-specific preamplification with dUTP
in the presence of Cod UNG in order to remove PCR generated contamination using DNA standards
and single-cell gene expression profiling. While the enzyme did not succeed in complete degradation
of all uracil-containing template, particularly for highly abundant amplicons with few uraciles, it
did eliminate all amplicons for a majority of the assays. Therefore, Cod UNG should sufficiently
degrade all uracil-containing amplicons from all but severe contaminations. Contaminations at these
magnitudes are highly unlikely to occur following good laboratory practice, as discussed above.
The Cod UNG degrading efficiency could potentially be optimized by increased enzyme concentration,
temperature and/or time during which the template is incubated with Cod UNG [27], but that has not
been evaluated here.

4. Materials and Methods

4.1. DNA Standards

Two types of DNA standards were used: one containing thymine and one containing uracil.
The 96 thymine-containing DNA standards were generated as previously described [17]. Briefly, cDNA
was used as a template in qPCRs to generate specific purified PCR products. DNA concentration was
determined with a Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and converted to molecules per
microliter. Each uracil-containing DNA standard was generated using a pool containing 100 molecules,
using all 96 thymine-containing DNA standards as template, or solely 100 copies of Universal DNA
Spike I (TATAA Biocenter, Gothenburg, Sweden) in 15 µL qPCR reactions containing 1X Custom
PreAmp Master Mix containing neither UNG nor dNTPs (Applied Biosystems, Foster City, CA, USA),
400 µM dATP, dCTP, dGTP, and 1200 µM dUTP (Roche Applied Science, Penzberg, Germany), 1X SYBR
Green I (Invitrogen), and 400 nM mix of forward and reverse primers (Sigma-Aldrich, St. Louis, MO,
USA, and TATAA Biocenter). Detailed primer information is provided in Table S1. Quantitative PCRs
that generated uracil-containing PCR products were tested in 384-well plates (4titude, Wotton, UK),
applying the following thermal protocol: 95 ◦C for 10 min, 45 cycles of 95 ◦C for 15 s, 60 ◦C for 60 s,
followed by melt curve analysis:65 ◦C to 95 ◦C at 0.5 ◦C, per 5 s on a CFX384 Touch Real-Time PCR
Detection System (Bio-Rad, Hercules, CA, USA). Correct PCR product formation for each assay was
verified with a melt curve analysis and agarose gel electrophoresis. Each specific PCR product was
purified with a MinElute PCR purification Kit and eluted in EB buffer (both Qiagen, Hilden, Germany).
DNA concentration was quantified with the Qubit dsDNA HS Assay Kit (Invitrogen) on a Qubit
Fluorometer and converted to molecules per microliter [28], and finally adjusted to 1010 molecules per
microliter in nuclease-free water (Invitrogen) and stored at −20 ◦C.

4.2. Target-Specific Preamplification

Target-specific preamplification of purified DNA standards was executed in 10 µL reactions,
which contained 1X Custom PreAmp Master Mix containing neither UNG nor dNTPs., 40 nM of
each primer (all Sigma-Aldrich), 400 µM dATP, dCTP, dGTP, and either dTTP or dUTP (all Roche
Applied Science), in addition to a 2 µL template. Ninety-six assays were used, where target-specific
preamplification and downstream qPCRs were performed with identical primer pairs (Table S1).
The following thermal profile was applied: 95 ◦C for 10 min, 20 cycles of 95 ◦C for 20 s, 60 ◦C for 4 min,
followed by a final step at 60 ◦C for 10 min.
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During the final elongation, step samples were moved immediately to dry ice. The samples were
then slowly thawed on the ice, diluted 1:20 in 10 mM Tris, 1 mM EDTA, pH 8.0 (Invitrogen), and stored
at −20 ◦C until analysis. For assessment of amplification efficiency, reproducibility, and sensitivity,
the preamplification reactions were performed in 384-well plates on a CFX384 Touch Real-Time PCR
Detection System. To analyze the effect of Cod UNG, the preamplification reactions were performed in
96-well plates (Sarstedt, Nümbrecht, Germany) on a T100 Thermal Cycler (Bio-Rad).

4.3. Cod UNG Treatment

Cod UNG treatment was performed by adding 0.01 U Cod UNG (ArcticZymes, Tromsø, Norway)
per microliter final reaction volume, followed by an incubation at room temperature for 5 min prior
to target-specific preamplication. For assessment of heat inactivated Cod UNG, the enzyme was
incubated at 95 ◦C for 2 min.

4.4. High-Throughput Quantitative Real-Time PCR

High-throughput qPCR was performed on the BioMark system (Fluidigm, South San Francisco,
CA, USA), using the 96.96 Dynamic Array Chip for Gene Expression (Fluidigm). Each 6 µL sample
reaction contained 1.5 µL diluted preamplification product as template, 3.3 µL 2X TATAA EvaGreen
GrandMaster Mix Low Rox (TATAA Biocenter), 0.3 µL 20X DNA Binding Dye Sample Loading Reagent
(Fluidigm), 0.33 µL 20X EvaGreen (Biotium, Fremont, CA, USA), and 0.57 µL water. The 6 µL assay
reaction mix contained 3 µL of Assay Loading Reagent (Fluidigm), 2.7 µL of 10 µM mix of reverse
and forward primers, and 0.3 µL of water. Priming and loading of the dynamic array was performed
according to the manufacturer’s instructions. The temperature profile was: thermal mixing at 50 ◦C
for 2 min, 70 ◦C for 30 min, and 25 ◦C for 10 min, followed by polymerase activation at 95 ◦C for 60 s
and 40 cycles of amplification; 95 ◦C for 10 s, 60 ◦C for 20 s, and 72 ◦C for 20 s. The melt curve analysis
was performed in the range of 65 to 98 ◦C at 1 ◦C, per 3 s. Amplification data were analyzed with
the Fluidigm Real-Time PCR Analysis software (ver. 4.1.3, Fluidigm), applying the linear derivative
baseline subtraction method and a user-defined global threshold to obtain cycle of quantification
(Cq) values. Melt curve analysis was performed on all samples in order to eliminate samples with
non-specific PCR products. All high-throughput qPCR experiments were conducted in accordance with
the Minimum Information for Publication of Quantitative Real-Time PCR Experiments guidelines [29].

Individual assay amplification efficiencies and intercepts were determined using standard
curves in triplicate (5120, 1280, 320, 80, 20, and 5 molecules per reaction) for amplification using
dTTP and dUTP, respectively. Outliers were identified and removed by Grubbs’ test using GenEx
(version 6.1.0.757, MultiD, Gothenburg, Sweden). The individual assay amplification efficiencies and
intercepts were subsequently used to calculate number of molecules per sample and log2-transformed.
Missing data and outliers were replaced by the average of remaining replicates. For standard samples
with ≤5 molecules, missing data and outliers were replaced with 0.5X the minimum value of remaining
replicates. For the Cod UNG treated dUTP-containing assays, all missing data and outliers were
replaced with 0.5 copies. The rationale for handling missing data are the following: at >5 molecules
missing data and outliers are likely due to technical failures, whereas at ≤5 molecules missing data
and outliers are likely due to no molecules present in the reaction [1,30]. Sensitivity was calculated as
the percentage of reactions loaded with 5 molecules, which were positive for correct product formation
and after outlier removal.

4.5. Single-Cell Quantitative Real-Time PCR

Human myxoid liposarcoma cell line 402-91 was cultured in RPMI 1640 GlutaMAX medium
supplemented with 5% fetal bovine serum, 50 U/mL penicillin and 50 mg/mL streptomycin (all Gibco,
Grand Island, NY, USA) at 37 ◦C and 5% CO2. Cells were washed with 1X PBS, pH 7.4, supplemented
with 3 mM EDTA, and enzymatically dissociated with 0.25% Trypsin supplemented with 0.5 mM
EDTA (all Gibco). Cells were then resuspended in 1X PBS, pH 7.4 (Gibco), supplemented with 2%
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bovine serum albumin (Sigma-Aldrich), and kept on ice until sorting. Cell aggregates were removed
by filtering through a 70 µm cell strainer (BD Biosciences, Franklin Lakes, NJ, USA). Individual cells
were then sorted into 96-well PCR plates, using a BD FACSAria II (BD Biosciences). Cells were sorted
directly into 5 µL lysis buffer containing 1 mg/mL bovine serum albumin and 2.5% glycerol (Thermo
Scientific, Waltham, MA, USA) [31]. The flow cytometry instrument was manually calibrated to
deposit single cells in the center of each well and 7-Aminoactinomycin D (Sigma-Aldrich) was used as
viability marker in the sorting procedure. Sorted plates were immediately frozen on dry ice and stored
at −80 ◦C.

Single-cell cDNA synthesis was performed on 92 individual cells using TATAA GrandScript
cDNA Synthesis Kit (TATAA Biocenter). Briefly, 2 µL 5X TATAA GrandScript RT Reaction Mix, 0.5 µL
TATAA GrandScript RT Enzyme, and 2.5 µL nuclease-free water were added to the lysed cells for a
final volume of 10 µL. The following thermal program was used: 22 ◦C for 5 min, 42 ◦C for 30 min,
85 ◦C for 5 min on a T100 Thermal Cycler, and samples were stored at −20 ◦C.

Target-specific preamplification of single-cell cDNA was carried out in 50 µL reactions on a T100
Thermal Cycler in 96-well plates containing 1X Custom PreAmp Master Mix containing neither UNG
nor dNTPs, 40 nM of each primer, 400 µM dATP, dCTP, dGTP and dUTP, either 0.5 U Cod UNG, or
0.5 U heat inactivated Cod UNG, 100 molecules uracil-containing Universal DNA Spike I and 5 µL
cDNA. The primer pool contained all 97 primer pairs (Table S1) including the primers for Universal
DNA Spike I. The same protocols for thermal cycling, dilution and storage was applied as described
above for DNA standards.

Single-cell qPCR was performed in 6 µL reactions containing 1X TATAA SYBR GrandMaster Mix
(TATAA Biocenter), 400 nM of forward and reverse primers (Table S1), and 2 µL preamplified cDNA.
Quantitative PCRs were carried out in 384-well plates applying the following thermal protocol: 95 ◦C
for 2 min, 35 cycles of 95 ◦C for 5 s, 60 ◦C for 20 s, 70 ◦C for 20 s, followed by a melt curve analysis: 65 ◦C
to 95 ◦C at 0.5 ◦C per 5 s on a CFX384 Touch Real-Time PCR Detection System. Melt curve analysis
was performed on all samples to eliminate any samples with non-specific PCR products. The cycle
of quantification value was determined by the second derivative maximum method. All single-cell
qPCR experiments were conducted in accordance with the Minimum Information for Publication of
Quantitative Real-Time PCR Experiments guidelines [2,29]. Single-cell data were pre-processed using
GenEx, as previously described [30]. Briefly, a Cq-value of 24 was chosen as cut-off value and missing
data were replaced with Cq-value 25. Cq-values were converted to relative quantities assuming 100%
PCR efficiency and log2-transformed.

4.6. Statistical Analyses

All statistical tests, except Grubbs’ test, were performed using the GraphPad Prism software
(version 7.02, GraphPad Software, La Jolla, CA, USA) and were considered significant if p < 0.05.

5. Conclusions

In conclusion, we show that, prior to targeted preamplification with dUTP, the use of Cod
UNG efficiently removes PCR generated contamination. Cod UNG is completely compatible
with downstream preamplification and can be completely inactivated, a prerequisite for successful
quantification, as any loss of amplicons results in quantification biases. We also show that using
dUTP instead of dTTP in the preamplification reaction yields similar sensitivity, possibly improved
reproducibility, but somewhat lower amplification efficiency. If needed, decreased amplification
efficiency can be compensated by additional cycle(s) of preamplication [18]. Preamplification generated
contamination is a concern in all clinical and biological applications, but with good laboratory practice
and preamplification using dUTP in the presence of Cod UNG, the problems can be minimized.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/10/3185/s1.
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