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Abstract: Signal peptides are N-terminal presequences responsible for targeting proteins to the
endomembrane system, and subsequent subcellular or extracellular compartments, and consequently
condition their proper function. The significance of signal peptides stimulates development of new
computational methods for their detection. These methods employ learning systems trained on
datasets comprising signal peptides from different types of proteins and taxonomic groups. As a
result, the accuracy of predictions are high in the case of signal peptides that are well-represented in
databases, but might be low in other, atypical cases. Such atypical signal peptides are present
in proteins found in apicomplexan parasites, causative agents of malaria and toxoplasmosis.
Apicomplexan proteins have a unique amino acid composition due to their AT-biased genomes.
Therefore, we designed a new, more flexible and universal probabilistic model for recognition of
atypical eukaryotic signal peptides. Our approach called signalHsmm includes knowledge about the
structure of signal peptides and physicochemical properties of amino acids. It is able to recognize
signal peptides from the malaria parasites and related species more accurately than popular programs.
Moreover, it is still universal enough to provide prediction of other signal peptides on par with the
best preforming predictors.
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1. Introduction

1.1. Roles and Features of Signal Peptides

Eukaryotic proteins encoded in the nuclear genome are synthesized on free ribosomes in the
cytosol or on ribosomes attached to the endoplasmic reticulum, and are subsequently transported to
specific subcellular or extracellular compartments. The appropriate localization of a protein is essential
for its proper function, and this information is contained in the protein as a short amino acid sequence
called a targeting or sorting signal.

An N-terminal signal peptide (SP) is responsible for targeting proteins to the endomembrane
system, including the endoplasmic reticulum and the Golgi apparatus, in which proteins
undergo folding and posttranslational modifications such as glycosylation and phosphorylation [1].
The SP-bearing proteins can either stay inside these compartments, be inserted into cellular membranes
or exported outside the cell. Proteins equipped with SPs play a crucial role in metabolism
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(β-galactosidase, pepsins) [2], maintenance of tissue structure (collagen) [3], immune response
(interferons, interleukins) [4] and regulation of other organismal functions (prolactin, glucagon) [5].

Despite the low sequence similarity [6], a general structure of the SP was proposed and it includes
three main parts: n-region, h-region and c-region (Figure 1) [7,8]. The SP starts with the n-region that
is composed of a positively charged stretch of 5–8 amino acid residues. This part probably enforces
the proper topology on a polypeptide during its translocation through the endoplasmic reticulum
membrane based on the positive-inside rule [9]. The n-region is followed by the h-region, a stretch
of 8–12 hydrophobic amino acids, which constitutes the core of the SP and usually forms an α-helix.
The third component of the SP is the polar and uncharged c-region. This part is usually six residues
long and ends with a cleavage site, at which a signal peptidase cuts the SP off during or after protein
translocation into the lumen of the endoplasmic reticulum [10]. The cleavage site is characterized by
a variable amino acid composition but typically contains small and neutral residues at −3 and −1
positions [11]. The cleavage site is, however, absent from some membrane proteins, in which the SP
also acts as the first transmembrane domain. Such an uncleavable SP is sometimes referred as a signal
anchor [12,13]. The amino acid composition and the length of these three characteristic regions vary
between SPs and they influence the efficiency of protein translocation [14].

Figure 1. Organization of a typical signal peptide (SP). The lengths of SP regions are not drawn in scale.

Understanding the structure of SPs and improving their prediction is of great importance in
search of novel drugs and therapies. Equipping proteins with appropriate SPs or their modification can
influence protein targeting to various subcellular or extracellular compartments, including substantial
increase in their secretion [4,15]. SPs may also participate in tumour immunity, for example the
presequence from midkine (a protein contributing to tumour progression) contains epitopes that
are recognized by CD4+ T cells [16]. SPs can be potential medication targets in particular for
malaria parasites belonging to the genus Plasmodium (family Plasmodiidae, phylum Apicomplexa) [17].
Their SPs differ in amino acid composition from typical SPs due to the strongly AT-biased genomes [18].
As a result, we can design therapies that target only these unique presequences and avoid interference
with human host SPs. By acting on the malarian SPs, we can disturb many metabolic processes as the
plasmodial SPs not only direct proteins into the endomembrane system and outside the cell but also into
a digestive vacuole and a unique organelle characteristic only of Apicomplexa, i.e., apicoplast [19–22].
The apicoplast is a reduced four-membrane plastid that lost the photosynthetic function but
still plays an important role in synthesis of lipids, heam and iron-sulphur clusters [20,21,23].
These Apicomplexa-specific compartments and their metabolic pathways are further potential targets
for antimalarial drugs [24–27], which are intensively searched for due to increasing resistance of
malaria parasites to the current drugs [28–32]. However, the existing software for SP prediction,
trained and tested on proteins well-represented in available databases, does not perform satisfactorily
in the case of Apicomplexa proteins.

1.2. Software Predicting Signal Peptides

Since experimental methods for identification of targeting sequences are time-consuming
and laborious, different computational approaches predicting targeting signals were developed.
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The software for SP prediction incorporates ’black-box’ models, such as: neural networks [33], support
vector machines [34], Bayesian networks [35] or k-nearest neighbours [36], for which the decision
rules are unknown to the user. More transparent algorithms are based on position matrices or
their variants [34,37]. Others, e.g., Phobius, Philius and SignalP 3.0, use hidden Markov models
(HMMs) [38–40] that try to reflect the structure of SP regions in their limited probabilistic frameworks.
HMMs, however, imply a geometric distribution of the lengths of SP regions. Interestingly, we studied
the distribution for the SP regions from the first work applying HMMs in SP prediction [41] and found
that the length distribution for each region was not geometric (Figure 2).
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Figure 2. Distribution of lengths for SPs (A) and their regions (B) expressed in the number of amino
acid residues for sequences with the representatives of the Plasmodiidae family (Plasmodium) and
without them (Other). Yellow bars represent a fitted geometric distribution.

The majority of SP predicting software uses the full amino acid alphabet of typical 20 residues.
However, this approach treats all residues as separate entities and does not take into account the
similarities between amino acids in terms of physicochemical properties. It may result in harmful
oversimplification as the SP regions are in fact characterized by specific features of amino acid residues
and not by the occurrence of particular amino acids. The only exception is BLOMAP [42], which uses a
reduced alphabet of amino acids based on substitution matrices.

Moreover, the existing algorithms require a large number of sequences to be successfully learned.
Although the learning sets are constructed to be as diverse as possible, the most frequent sequences
dominate the creation of the decision rules. Consequently, the predictors usually accurately identify
the most common SPs, but are ineffective in more atypical cases that are less represented in the training
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datasets. The commonly used rigid scheme of the SP organization (Figure 1) also does not characterize
extremely long or short presequences, which constitute a substantial fraction of all SPs.

Therefore, we elaborated a new approach called signalHsmm. In order to enable the prediction of
SPs with atypical amino acid composition, as in Plasmodiidae, we grouped amino acids based on their
physicochemical properties. Instead of looking for patterns consisting of specific residues, we focused
on more general features that are necessary for SPs to function properly. This approach was supported
by the recent advancements in proteomics suggesting that the reduction of the amino acid alphabet
could lead to better fold recognition [43,44]. Considering that one of the key features of SPs is α-helix,
the use of a shorter amino acid alphabet may indeed improve the SP recognition.

In addition to the alphabet reduction, our algorithm is also based on hidden semi-Markov models.
This flexible probabilistic framework does not assume the geometric distribution of the lengths of
SP regions, but rather learns the distribution from the training dataset. Therefore, signalHsmm with
hidden semi-Markov models and the reduced amino acid alphabet should be more general than
its counterparts.

2. Results and Discussion

2.1. Performance of SignalHsmm Algorithm

In order to evaluate the efficiency of our algorithm, we calculated four performance measures
after 5-fold cross-validation procedure for all amino acid encodings: specificity, sensitivity, Matthew’s
Correlation Coefficient (φ coefficient) and Area Under the Curve (AUC). The measures were
characterized by very small variance (see for example Table 1), which indicates the credibility of
the applied cross-validation with 60 repetitions. All the encodings of amino acids showed very
good and quite narrow range of AUC (0.93–0.97) and specificity (0.92–0.96). However, the sensitivity
was characterized by much wider variation and ranged from 0.66 to 0.94 (Figure 3). For the final
signalHsmm algorithm, we selected the encoding that yielded the highest sensitivity and the largest
Matthew’s Correlation coefficient as well as the second best AUC (Table 2).
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Figure 3. Sensitivity and specificity of amino acid encodings after cross-validation. (1) encoding
providing the best sensitivity (AUC = 0.9683, MCC = 0.8677), (2) encoding providing the best
specificity (AUC = 0.9338, MCC = 0.6474). These encodings are shown in Tables 2 and 3, respectively.
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Table 1. Performance measures for the amino acid encoding with the highest sensitivity calculated for
60 repetitions of cross-validation.

Measure Mean SD

AUC 0.9682 0.0023
Sensitivity 0.9407 0.0008
Specificity 0.9272 0.0050

MCC 0.8681 0.0049

Table 2. The encoding of amino acids with the best sensitivity.

Group Amino Acids

1 D, E, H, K, N, Q, R
2 G, P, S, T, Y
3 F, I, L, M, V, W
4 A, C

2.2. Comparison of Amino Acid Encodings

We examined in detail the composition of encodings and properties of their amino acids with the
best sensitivity and specificity (Tables 2 and 3 and Figure 4). In both cases, group 1 tends to contain
generally average-sized polar amino acids. This group is more uniform in the best sensitivity encoding
because it includes all charged amino acids, both acidic and basic and also weakly basic histidine,
whereas in the best specificity encoding, it does not have histidine, aspartic acid and its amide but
contains alanine. These amino acids are nearly absent from the h-region and provide a very good
distinction between the SP regions (Figure 4). In the best specificity encoding, for which the polar and
charged character of group 1 is not so explicit, the difference in their distribution between the regions
is also less visible.

Table 3. The encoding of amino acids with the best specificity.

Group Amino Acids

1 A, E, K, Q, R
2 D, G, N, P, S, T
3 C, H, I, L, M, V
4 F, W, Y

Amino acids belonging to group 2 generally show quite a low probability of occurrence in α-helix.
The best sensitivity encoding comprises two types of amino acids: all three hydroxylated residues
as well as aliphatic glycine and proline known to break α-helices. The best specificity encoding lacks
tyrosine but additionally includes aspartic acid and its amide, which increase the polar character of the
group. Despite these differences, the occurrence of group 2 in both encodings is very similar in all SP
regions (Figure 4). This group is the rarest in h-region and the most frequent in c-region.

Both encodings have strongly non-polar and aliphatic amino acids in group 3, such as: isoleucine,
leucine, methionine and valine. The hydrophobic property of this group is pronounced in the best
sensitivity encoding by the presence of aromatic tryptophan and phenylalanine, whereas the group
3 in the best specificity encoding includes also hydrophobic cysteine and slightly basic but aromatic
histidine. Because of the hydrophobic character, this group dominates in the h-region in both amino
acid classifications (Figure 4).



Int. J. Mol. Sci. 2018, 19, 3709 6 of 16A Group 1 Group 2 Group 3 Group 40.000.250.500.751.00
a-helix Hydroph. Polarity Size a-helix Hydroph. Polarity Size a-helix Hydroph. Polarity Size a-helix Hydroph. Polarity SizeCriterionValue Encoding: Bestsensitivity BestspecificityB Group 1 Group 2 Group 3 Group 40.00.20.40.6 n-region h-region c-region Matureprotein n-region h-region c-region Matureprotein n-region h-region c-region Matureprotein n-region h-region c-region MatureproteinRegionFrequency Encoding: Bestsensitivity Bestspecificity

Figure 4. Comparison of amino acids classified into four groups providing the best sensitivity and
specificity in the SP recognition. Normalized value of properties for particular amino acids represented
by points (A). Frequencies of amino acids from the four groups in different regions of signal peptide
and mature proteins (B).

Group 4 is the most diverse in both encodings. In the case of the best sensitivity encoding,
this group comprises only alanine and cysteine, which are rather small amino acids and tend to appear
in α-helices. This very unique composition seems to be the most typical of the SP c-region. In contrast,
group 4 in the best specificity encoding contains large aromatic amino acids: phenylalanine, tryptophan
and tyrosine without special preference to the SP regions.

The encodings of amino acids play a crucial role in the recognition of SPs but do not affect
to such an extent the identification of proteins without the SP. The change in the specificity for
different encodings is seven times smaller than for sensitivity (Figure 3). It results from more uniform
distribution of different residues in the mature protein than in the SP regions.

2.3. Benchmark Tests

In order to provide fair comparison of our algorithm with the previous software, we trained our
model on 2311 SP-bearing sequences deposited in Uniprot until 2010 (the iteration of signalHsmm
called signalHsmm-2010) (Figure 5). The set corresponded to the data used to train SignalP 4.1,
the newest classifier present in the benchmark. In addition, we prepared a smaller dataset,
covering only 336 sequences collected until 1987, which is the year the first method predicting SPs
was published [45]. The signalHsmm-1987 iteration had to extract the SP model from the dataset more
limited than the training sets used by all the classifiers included in the benchmark.
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Figure 5. Data selection, training, testing and evaluation of signalHsmm.

Together with signalHsmm, we evaluated several SP predicting algorithms in terms of recognition
of atypical SPs from malaria parasites: SignalP 4.1, PrediSi, Phobius and Philius (see Table 4 for the
most common performance measures, and Supplemental Table S1 for 23 performance measures).
The older version of SignalP, i.e., SignalP 3.0, was also incorporated in the analysis because it is often
chosen over SignalP 4.1 in the analysis of sequences belonging to the Apicomplexa due to its larger
sensitivity [46,47]. In this comparison, our algorithm obtained the greatest AUC, MCC and maximal
sensitivity. For 15 of 23 performance measures, signalHsmm was the best of all (Supplemental Table S1).
PrediSi received the best specificity but at the expense of significantly reduced sensitivity.

Table 4. Comparison of Sensitivity, Specificity, Matthews Correlation Coefficient (MCC) and Area
Under the Curve (AUC) for different classifiers and signal peptide-bearing proteins from members
of Plasmodiidae. The abbreviations ’tm’ and ’no tm’ indicate version considering and not considering
transmembrane domains, whereas ’ident. 50%’ means removal from the learning set sequences with
the sequence identity larger than 50%.

Sensitivity Specificity MCC AUC

SignalP 4.1 (no tm) [33] 0.8235 0.9100 0.6872 0.8667
SignalP 4.1 (tm) [33] 0.6471 0.9431 0.6196 0.7951
SignalP 3.0 (NN) [40] 0.8824 0.9052 0.7220 0.8938

SignalP 3.0 (HMM) [40] 0.6275 0.9194 0.5553 0.7734
PrediSi [37] 0.3333 0.9573 0.3849 0.6453
Philius [39] 0.6078 0.9336 0.5684 0.7707

Phobius [38] 0.6471 0.9289 0.5895 0.7880
signalHsmm-2010 0.9804 0.8720 0.7409 0.9262

signalHsmm-2010 (ident. 50%) 1.0000 0.8768 0.7621 0.9384
signalHsmm-2010 (raw aa) 0.8431 0.9005 0.6853 0.8718

signalHsmm-1987 0.9216 0.8910 0.7271 0.9063
signalHsmm-1987 (ident. 50%) 0.9412 0.8768 0.7194 0.9090

signalHsmm-1987 (raw aa) 0.7647 0.9052 0.6350 0.8350
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We trained several iterations of signalHsmm described above to check improvements introduced
to our software, i.e., the new probabilistic model (hidden semi-Markov model) and the simplified
alphabet of amino acids. The latter was compared with the version trained on raw amino acid
sequences, denoted as ‘raw aa’ in Table 4. The performance of this iteration was mostly worse
than the performance of its counterpart trained on the reduced alphabet. The version with the
amino acid encodings outperformed the version with simple amino acids in 17 of 23 measures
(Supplemental Table S1). The obtained results confirm that the function of the SP does not depend
on specific amino acids but on more general features, and our simpler model is able to recognize the
unique structure of the SP more accurately. The advantage of the hidden semi-Markov model over
normal Markov model was presented through the comparison of signalHsmm with SP predictors
utilizing HMM: Phobius, Philius and SignalP 3.0 (HMM)—Table 4. For 17 of 23 measures including
AUC, MCC and sensitivity, our algorithm outperformed all of them (Table 4, Supplemental Table S1).

In order to check the susceptibility of our model to overfitting, we trained it on a dataset with
50%-sequence identity reduction. We discovered that our model, probably thanks to its relative
simplicity, did not overfit and versions trained on the set with and without the restrictive sequence
identity reduction were comparable. Moreover, the former was slightly better in 21 measures than the
model based on all sequences.

The overall simplicity of our approach does not hinder its capabilities to recognise SPs from
other organisms. We benchmarked signalHsmm iterations and other software on the set of 127
eukaryotic proteins with and without SPs that were added to the UniProt database after 2010.
Their sequence identity in the testing set was also reduced as described above. SignalHsmm-2010
performed comparably to SignalP (see Supplemental Table S2 for all performance measures). Its AUC
was 0.94 compared to 0.95 and 0.96 of the two SignalP versions. For 20 measures, it was the second in
the ranking just after SignalP programs and, for five parameters (sensitivity, recall, true positive rate,
the number of true positives and false negatives), it outperformed the newest version of SignalP.

2.4. Specific Composition of Plasmodiidae Signal Peptides

The plasmodial genomes are characterized by a large excess of adenine and thymine [18], and
this strongly influences the amino acid composition of their encoded proteins including SPs (Figure 6).
SPs differ significantly between Plasmodiidae and other taxa in composition of 13 amino acids (Wilcoxon
test, p < 0.05 corrected by the Benjamini–Hochberg method in the multiple testing). The plasmodial
SPs are especially abundant in amino acids coded by codons rich in adenine and thymine, such as:
phenylalanine (TTY), isoleucine (ATH), lysine (AAR) and asparagine (AAY), whereas they are poor in
amino acids coded by guanine and cytosine rich codons: alanine (GCN), glycine (GGN) and proline
(CCN). Leucine is coded by a set of codons with mixed composition (TTR, CTN) but also discriminates
the two sets of SPs.

Figure 6. Mean frequency of amino acids that significantly discriminate SPs from Plasmodiidae and
other organisms. Amino acids were arranged according to the difference in the mean values.
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As a result, plasmodial SPs separate from other SPs according to raw amino acid composition
in Principal Component Analysis (Figure 7A). Mature proteins of Plasmodiidae are also shifted in the
plot from other mature proteins. Therefore, algorithms that consider only particular amino acids
may not have decision rules appropriate for such composition and consequently fail to identify SPs.
Interestingly, the amino acid encoding employed by signalHsmm reduces this difference and unifies
all SPs into one set (Figure 7B). Similarly, when the reduced amino acid alphabet is considered, mature
proteins are also inseparable in the plot. It should be emphasized that the reduction of the amino acid
alphabet used by our algorithm does not weaken the difference between SPs and mature proteins,
which still create distinguishable groups. These analyses indicate that the applied amino acid encoding
enables capturing a general composition of many SPs keeping simultaneously their difference from
mature proteins. The use of physicochemical properties of amino acids instead of raw sequences also
improved the prediction of protein function in four representative model organisms: Homo sapiens,
Arabidopsis thaliana, Saccharomyces cerevisiae and Mycobacterium tuberculosis [48].

Figure 7. Principal Component Analysis performed on raw amino acid composition (A) and amino
acids encoding into groups (B) for SPs and mature proteins from Plasmodiidae and other organisms.
SPs from Plasmodiidae create a set, which is quite distinct from other SPs according to raw amino acid
composition. However, the application of amino acid encoding chosen in cross-validation makes these
sets similar but still supporting a significant difference between SPs and mature proteins. Concentration
ellipses cover 95% of points from a given set.
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3. Materials and Methods

3.1. Overview

Since the functionality of SPs depends on the physicochemical properties of residues in a given SP
region, we clustered amino acids into several groups based on this criterion. The pre-processed
sequences were further analysed by an enhanced version of a heuristic algorithm employed in
SignalP 2.0, which determines borders between the three SP regions [41]. We also refined some
criteria for recognition of the regions to attune the algorithm to atypical SPs. Next, two models were
trained to detect proteins with and without the SP. The first one was a hidden semi-Markov model, in
which each of the three SP regions was represented by a different hidden state. The additional fourth
hidden state represented the mature protein. Each state was described by its frequencies of amino acid
groups. The distribution of hidden states durations, i.e., the number of amino acids, was based on the
empirical distribution of region lengths from the training set. Furthermore, the hidden semi-Markov
model was enriched with n-grams representing SP cleavage sites. The second model was a simple
probabilistic approach in which no association between amino acids was assumed and the probability
of presence of amino acids groups was determined by their frequencies in mature proteins.

3.2. Data Selection

The final predictor was trained on 2438 experimentally confirmed SPs from eukaryotic proteins,
which sequences and annotations were downloaded from the UniProt database release 2015_06.
We removed sequences with more than one cleavage site, an unknown cleavage site and ambiguous
symbols of amino acid residues: X, J, Z, B and U (selenocysteine). Sequences without the SP were
randomly selected in the same number as the positive set. Moreover, we created a learning subset of
2311 sequences deposited in the database until 2010 to perform fair comparison of our algorithm with
older software that was trained on smaller number of sequences (Figure 5). We also used a subset of
336 sequences present in the database until 1987, which is the year the first method predicting the SP
was published, to check susceptibility of our algorithm to a limited amount of information.

The main testing set consisted of proteins from the Plasmodiidae family (Figure 5). The positive set
contained 102 sequences with a putative SP with the annotated start and cleavage site. The corresponding
negative set comprised 358 sequences without any SP information. The other testing set consisted of
127 eukaryotic proteins with an SP included in the UniProt database after 2010.

3.3. Sequence Identity Reduction in Studied Sequence Sets

In order to reduce the set according to identity of collected protein sequences, we filtered them
using cd-hit [49]. SP sequences and the first 70 amino acid residues of proteins without the peptide
were subjected to sequence identity reduction according to Nielsen et al. [50]. We prepared two
reduced learning datasets with sequences deposited until 2010 and 1987 by removing sequences with
identity larger than 50% threshold (word length 2). After this procedure, the sets contained 748 and
132 sequences with SPs, respectively. The main Plasmodiidae set was filtered in the same manner and
reduced to 51 and 211 sequences with and without the SP, respectively.

3.4. Clustering of Amino Acids into Groups

In order to reduce the alphabet of amino acids, we clustered them into several physicochemical
groups, essentially re-using our methodology from a previous study [51]. It is a different approach
compared to BLOMAP [42], which also uses a reduced alphabet of amino acids, but based on
substitution matrices. We grouped amino acids using four properties relevant for the structure
of the SP: their hydrophobicity, tendency to build α-helices, polarity and size. The high hydrophobicity
is a good determinant of the h-region, which α-helix secondary structure is probably induced by the
positively charged n-region. The high polarity as well as small size are important features of residues
in the c-region and cleavage site [11].
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Table 5. Properties of amino acids used in their clusterization.

Property Name Amino Acid Scale

Size Size [52]
Size Molecular weight [53]
Size Residue volume [54]
Size Bulkiness [55]
Hydrophobicity Normalized hydrophobicity scales for α-proteins [56]
Hydrophobicity Consensus normalized hydrophobicity scale [57]
Hydrophobicity Hydropathy index [58]
Hydrophobicity Surrounding hydrophobicity in α-helix [59]
Polarity Polarity [60]
Polarity Mean polarity [61]
Occurrence in α-helices Signal sequence helical potential [62]
Occurrence in α-helices Normalized frequency of N-terminal helix [63]
Occurrence in α-helices Relative frequency in α-helix [64]

We considered in total 13 amino acid scales present in AAIndex database [65] (Table 5). We selected
one scale per a given property and carried out all possible 96 permutations of them. Based on that,
we created 96 possible clusterings of amino acids using Euclidean distance and Ward’s method. Next,
we cut the clusterings to create four groups of amino acids. In 31% of cases, the groupings were identical.
To compare the usefulness of these encodings, we performed a 5-fold cross-validation training of our
algorithm on every encoding. We created balanced data sets by subsampling proteins without the SP
to equal the number of proteins with the SP. The cross-validation was repeated 60 times to ensure that
every protein without the SP was included in the learning set with the probability higher than 0.5.

3.5. Hidden Semi-Markov Model

Our algorithm is based on a hidden semi-Markov model (HSMM), which is an extension of the
hidden Markov model (HMM) [66–68]. The HMM consists of two stochastic processes. The first is a
discrete Markov chain XT

t=1 on the set of hidden states {S1, . . . Sn}, where t means a step of this process
and T means total duration of the process corresponding to the length of the SP. Hidden states represent
particular SP regions and are ‘the cause’ of the observations, which are amino acid residues in analysed
sequences. In a subsequent step t+ 1, the hidden state might change to another according to a transition
matrix A = (a)n

i,j=1, where ai,j = P(Xt+1 = Sj|Xt = Si) means a probability of being in a state j on

condition that in the previous step was a state i. The second process ET
t=1 is an observation process

defined on the set of possible observations {O1, . . . , Om}. They are assumed to occur independently
but conditionally on the hidden states that emits these observations. Distribution of the observations
are given by a matrix B = (b)m

i,k=1, where bi,k = P(Et = Ok|Xt = Si) means a probability of emission
of observation k on condition that a hidden state was i. The main goal of signalHsmm is to find the
most probable SP regions boundaries for a given sequence. This is achieved with the Viterbi algorithm.

In the regular HMM, the hidden state duration, i.e., the number of observations emitted by the
hidden state, has a geometric distribution. Durbin et al. [69] showed how to extend it for different
distributions without significant increase in computational complexity. Similar ideas were used for
SP recognition, for example by Käll et al. [38]. However, it is still not flexible enough because the
empirical regional length distributions (see Figure 2) are difficult to capture in this way.

In our approach, we used a modification of HMM called hidden semi-Markov model (HSMM) [67].
It extends the HMM by assuming a duration distribution for a given hidden state (Figure 8). Then,
the model includes additionally probabilities of duration in hidden states:

P(duration in state = d|state is Si), i = 1, . . . , n, d = 1, . . . , D,
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where D is the maximum allowed duration. Since our data sets are sufficiently large and D
is small—around 30 amino acid residues, computational effort is not much higher than in the
regular HMM.

S1

O1,1 ... O1,d1

transition
...

transition

...

Sn

On,1 ... On,dn

Duration of length d1 Duration of length dn

Total duration, ∑k
i=1 di = T

Figure 8. General scheme of hidden semi-Markov model. The model consists of hidden states S
representing regions of the SP with the length distribution given by the state duration d. The hidden
states emit observations O which are amino acid residues.

Almost all entries in the transition matrix A are zeros because regions represented by hidden
states are sequential. The possible transitions between them are depicted as arrows in Figure 9.
The probabilities of observations for the hidden states and hidden states durations were estimated
from the training data. The advantage of the HSMM model results not only from its better performance
but also form its straightforwardness and flexibility.

Figure 9. Diagram of signalHsmm showing hidden states which represent the SP regions and mature
protein. Arrows indicate transitions between these states.

4. Conclusions

We proposed a novel solution to the problem of SP prediction, which is very efficient in recognition
of atypical SPs from plasmodial proteins despite the fact that the program was trained on data coming
from all eukaryotes. It indicates that our algorithm is able to describe common features of all SPs
based on the classical division of the SP into three regions. Our software is not limited to very
specific taxonomic group, and is able to compete with state-of-art algorithms in detecting SPs of
other organisms.

One of the most important features of signalHsmm is its stability. The difference in performance
for versions trained on large and small datasets deposited in databases at different times is negligible.
It implies that signalHsmm, thanks to its unique structure, extracts roughly the same general
information from SPs regardless of the size and type of the training dataset. Similarly, iterations
trained on datasets with and without the removal of redundancy, resulting from sequences homology,
showed similar prediction efficiency. For the first dataset, the algorithm was even slightly better.
It suggests that our probabilistic model is quite resistant to overfitting and does not adjust itself to the
most common patterns in the training dataset but retrieves the universal SP model.
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The existing software detecting SPs does not usually reveal decision rules responsible for the
prediction. Our algorithm is the first step to explicitly show features of SPs important in their
recognition, which is interesting from the biological point of view. The applied encoding of amino
acids not only reduces the dimensionality of the problem, but also makes our probabilistic model more
interpretable. Thanks to that, we were able to determine physicochemical properties of amino acids
for particular SP regions. Our model confirmed not only the high hydrophobicity of the h-region and
polarity of the n-region but also found that hydroxylated amino acids are one of the most typical amino
acids in the c-region. In contrast to the h-region, it also contains α-helix breakers: glycine and proline.

The flexibility and efficiency in recovering information makes signalHsmm unique among similar
software. It properly models very specific SPs belonging to narrow taxonomic groups that are
poorly represented in databases and can effectively extract information from very small datasets.
Our approach may lead in future to development of new predictors specialized in recognition of
atypical signals targeting sequences to variuos subcellular compartments.

The prediction of SPs is of great importantance as proteins equipped with these targeting signals
are involved in many processes associated with diseases and disorders. Therefore, better knowledge
and prediction of SPs can enable scientists to discover new drugs and development of more efficient
therapies. Particularly, good drug targets could be proteins containing SPs that are targeted to
plasmodial specific compartments such as apicoplasts.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
3709/s1. Table S1: Benchmark results—Plasmodiidae. Performance measures for benchmark test of SP predictors
using sequences belonging to Plasmodiidae. Table S2: Benchmark results—Eukaryotes. Performance measures
for benchmark test of SP predictors using all eukaryotic sequences. The signalHsmm prediction web-server is
available at: http://smorfland.uni.wroc.pl/shiny/signalHsmm/. SignalHsmm is implemented as an R package
available at: https://cran.r-project.org/package=signalHsmm. The stand-alone version offers prediction and
tools to build, train and test novel SP models.
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Acknowledgments: We want to thank Paweł Błażej (University of Wrocław) for fruitful discussion about hidden
semi-Markov models.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SP Signal Peptide

HSMM Hidden Semi-Markov Model

HMM Hidden Markov Model

AUC Area Under the Curve

MCC Matthews Correlation Coefficient

References

1. Rapoport, T.A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma
membranes. Nature 2007, 450, 663–669. [CrossRef] [PubMed]

2. Hofmann, K.J.; Schultz, L.D. Mutations of the alpha-galactosidase signal peptide which greatly enhance
secretion of heterologous proteins by yeast. Gene 1991, 101, 105–111. [CrossRef]

http://www.mdpi.com/1422-0067/19/12/3709/s1
http://www.mdpi.com/1422-0067/19/12/3709/s1
http://smorfland.uni.wroc.pl/shiny/signalHsmm/
https://cran.r-project.org/package=signalHsmm
http://dx.doi.org/10.1038/nature06384
http://www.ncbi.nlm.nih.gov/pubmed/18046402
http://dx.doi.org/10.1016/0378-1119(91)90230-9


Int. J. Mol. Sci. 2018, 19, 3709 14 of 16

3. Chan, D.; Ho, M.S.P.; Cheah, K.S.E. Aberrant signal peptide cleavage of collagen X in Schmid metaphyseal
chondrodysplasia. Implications for the molecular basis of the disease. J. Biol. Chem. 2001, 276, 7992–7997.
[CrossRef] [PubMed]

4. Zhang, L.; Leng, Q.; Mixson, A.J. Alteration in the IL-2 signal peptide affects secretion of proteins in vitro
and in vivo. J. Gene Med. 2005, 7, 354–365. [CrossRef] [PubMed]

5. Huang, Y.; Wilkinson, G.F.; Willars, G.B. Role of the signal peptide in the synthesis and processing of the
glucagon-like peptide-1 receptor. Br. J. Pharmacol. 2010, 159, 237–251. [CrossRef] [PubMed]

6. Ladunga, I. PHYSEAN: PHYsical SEquence ANalysis for the identification of protein domains on the basis
of physical and chemical properties of amino acids. Bioinformatics 1999, 15, 1028–1038. [CrossRef] [PubMed]

7. Izard, J.W.; Kendall, D.A. Signal peptides: Exquisitely designed transport promoters. Mol. Microbiol. 1994,
13, 765–773. [CrossRef] [PubMed]

8. Voss, M.; Schröder, B.; Fluhrer, R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP)
and SPP-like proteases. Biochim. Biophys. Acta 2013, 1828, 2828–2839. [CrossRef] [PubMed]

9. von Heijne, G.; Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 1988, 174, 671–678.
[CrossRef] [PubMed]

10. Paetzel, M.; Karla, A.; Strynadka, N.C.; Dalbey, R.E. Signal peptidases. Chem. Rev. 2002, 102, 4549–4580.
[CrossRef] [PubMed]

11. Palzkill, T.; Le, Q.Q.; Wong, A.; Botstein, D. Selection of functional signal peptide cleavage sites from a
library of random sequences. J. Bacteriol. 1994, 176, 563–568. [CrossRef] [PubMed]

12. Szczesna-Skorupa, E.; Browne, N.; Mead, D.; Kemper, B. Positive charges at the NH2 terminus convert
the membrane-anchor signal peptide of cytochrome P-450 to a secretory signal peptide. Proc. Natl. Acad.
Sci. USA 1988, 85, 738–742. [CrossRef] [PubMed]

13. Zhang, P.; Tan, S.; Berry, J.O.; Li, P.; Ren, N.; Li, S.; Yang, G.; Wang, W.B.; Qi, X.T.; Yin, L.P. An Uncleaved
signal peptide directs the Malus xiaojinensis iron transporter protein Mx IRT1 into the ER for the PM Secretory
Pathway. Int. J. Mol. Sci. 2014, 15, 20413–20433. [CrossRef] [PubMed]

14. Hegde, R.S.; Bernstein, H.D. The surprising complexity of signal sequences. Trends Biochem. Sci. 2006,
31, 563–571. [CrossRef] [PubMed]

15. Moeller, L.; Taylor-Vokes, R.; Fox, S.; Gan, Q.; Johnson, L.; Wang, K. Wet-milling transgenic maize seed
for fraction enrichment of recombinant subunit vaccine. Biotechnol. Prog. 2010, 26, 458–465. [CrossRef]
[PubMed]

16. Kerzerho, J.; Schneider, A.; Favry, E.; Castelli, F.A.; Maillère, B. The signal peptide of the tumor-shared
antigen midkine hosts CD4+ T cell epitopes. J. Biol. Chem. 2013, 288, 13370–13377. [CrossRef] [PubMed]

17. Neto Ade, M.; Alvarenga, D.A.; Rezende, A.M.; Resende, S.S.; Ribeiro Rde, S.; Fontes, C.J.; Carvalho, L.H.;
de Brito, C.F. Improving N-terminal protein annotation of Plasmodium species based on signal peptide
prediction of orthologous proteins. Malar. J. 2012, 11, 375. [CrossRef] [PubMed]

18. Tonkin, C.J.; Kalanon, M.; McFadden, G.I. Protein targeting to the malaria parasite plastid. Traffic 2008,
9, 166–175. [CrossRef] [PubMed]

19. Foth, B.J.; McFadden, G.I. The apicoplast: A plastid in Plasmodium falciparum and other Apicomplexan
parasites. Int. Rev. Cytol. 2003, 224, 57–110. [PubMed]

20. Lim, L.; McFadden, G.I. The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 2010, 365, 749–763. [CrossRef] [PubMed]

21. McFadden, G.I. The apicoplast. Protoplasma 2011, 248, 641–650. [CrossRef] [PubMed]
22. Heiny, S.R.; Pautz, S.; Recker, M.; Przyborski, J.M. Protein traffic to the Plasmodium falciparum apicoplast:

Evidence for a sorting branch point at the Golgi. Traffic 2014, 15, 1290–1304. [CrossRef] [PubMed]
23. Mazumdar, J.; H Wilson, E.; Masek, K.; A Hunter, C.; Striepen, B. Apicoplast fatty acid synthesis is essential

for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2006,
103, 13192–13197. [CrossRef] [PubMed]

24. Fichera, M.E.; Roos, D.S. A plastid organelle as a drug target in apicomplexan parasites. Nature 1997, 390, 407–409.
[CrossRef] [PubMed]

25. Ralph, S.A.; D’Ombrain, M.C.; McFadden, G.I. The apicoplast as an antimalarial drug target. Drug. Resist. Updat.
2001, 4, 145–151. [CrossRef] [PubMed]

26. Gornicki, P. Apicoplast fatty acid biosynthesis as a target for medical intervention in apicomplexan parasites.
Int. J. Parasitol. 2003, 33, 885–896. [CrossRef]

http://dx.doi.org/10.1074/jbc.M003361200
http://www.ncbi.nlm.nih.gov/pubmed/11115494
http://dx.doi.org/10.1002/jgm.677
http://www.ncbi.nlm.nih.gov/pubmed/15619290
http://dx.doi.org/10.1111/j.1476-5381.2009.00517.x
http://www.ncbi.nlm.nih.gov/pubmed/20002095
http://dx.doi.org/10.1093/bioinformatics/15.12.1028
http://www.ncbi.nlm.nih.gov/pubmed/10745993
http://dx.doi.org/10.1111/j.1365-2958.1994.tb00469.x
http://www.ncbi.nlm.nih.gov/pubmed/7815936
http://dx.doi.org/10.1016/j.bbamem.2013.03.033
http://www.ncbi.nlm.nih.gov/pubmed/24099004
http://dx.doi.org/10.1111/j.1432-1033.1988.tb14150.x
http://www.ncbi.nlm.nih.gov/pubmed/3134198
http://dx.doi.org/10.1021/cr010166y
http://www.ncbi.nlm.nih.gov/pubmed/12475201
http://dx.doi.org/10.1128/jb.176.3.563-568.1994
http://www.ncbi.nlm.nih.gov/pubmed/8300511
http://dx.doi.org/10.1073/pnas.85.3.738
http://www.ncbi.nlm.nih.gov/pubmed/3422456
http://dx.doi.org/10.3390/ijms151120413
http://www.ncbi.nlm.nih.gov/pubmed/25387073
http://dx.doi.org/10.1016/j.tibs.2006.08.004
http://www.ncbi.nlm.nih.gov/pubmed/16919958
http://dx.doi.org/10.1002/btpr.326
http://www.ncbi.nlm.nih.gov/pubmed/19938061
http://dx.doi.org/10.1074/jbc.M112.427302
http://www.ncbi.nlm.nih.gov/pubmed/23553629
http://dx.doi.org/10.1186/1475-2875-11-375
http://www.ncbi.nlm.nih.gov/pubmed/23153225
http://dx.doi.org/10.1111/j.1600-0854.2007.00660.x
http://www.ncbi.nlm.nih.gov/pubmed/17900270
http://www.ncbi.nlm.nih.gov/pubmed/12722949
http://dx.doi.org/10.1098/rstb.2009.0273
http://www.ncbi.nlm.nih.gov/pubmed/20124342
http://dx.doi.org/10.1007/s00709-010-0250-5
http://www.ncbi.nlm.nih.gov/pubmed/21165662
http://dx.doi.org/10.1111/tra.12226
http://www.ncbi.nlm.nih.gov/pubmed/25264207
http://dx.doi.org/10.1073/pnas.0603391103
http://www.ncbi.nlm.nih.gov/pubmed/16920791
http://dx.doi.org/10.1038/37132
http://www.ncbi.nlm.nih.gov/pubmed/9389481
http://dx.doi.org/10.1054/drup.2001.0205
http://www.ncbi.nlm.nih.gov/pubmed/11768328
http://dx.doi.org/10.1016/S0020-7519(03)00133-4


Int. J. Mol. Sci. 2018, 19, 3709 15 of 16

27. Garcia-Estrada, C.; Prada, C.F.; Fernandez-Rubio, C.; Rojo-Vazquez, F.; Balana-Fouce, R. DNA topoisomerases in
apicomplexan parasites: Promising targets for drug discovery. Proc. Biol. Sci. 2010, 277, 1777–1787. [CrossRef]
[PubMed]

28. Vandomme, A.; Fréville, A.; Cailliau, K.; Kalamou, H.; Bodart, J.F.; Khalife, J.; Pierrot, C. PhosphoTyrosyl
phosphatase activator of Plasmodium falciparum: Identification of its residues involved in binding to and
activation of PP2A. Int. J. Mol. Sci. 2014, 15, 2431–2453. [CrossRef] [PubMed]

29. Ng, C.L.; Fidock, D.A.; Bogyo, M. Protein degradation systems as antimalarial therapeutic targets.
Trends Parasitol. 2017, 33, 731–743.[CrossRef] [PubMed]

30. Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; O’Loughlin, K.G.;
Shackleford, D.M.; de Almeida, M.J.; Carrillo, A.K.; et al. (+)-SJ733, a clinical candidate for malaria that
acts through ATP4 to induce rapid host-mediated clearance of Plasmodium. Proc. Natl. Acad. Sci. USA 2014,
111, E5455–E5462. [CrossRef] [PubMed]

31. Vaidya, A.B.; Morrisey, J.M.; Zhang, Z.; Das, S.; Daly, T.M.; Otto, T.D.; Spillman, N.J.; Wyvratt, M.; Siegl, P.;
Marfurt, J.; et al. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in
intraerythrocytic Plasmodium falciparum. Nat. Commun. 2014, 5, 5521. [CrossRef] [PubMed]

32. Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.;
Kokkonda, S.; et al. A Long-Duration Dihydroorotate Dehydrogenase Inhibitor (DSM265) for Prevention
and Treatment of Malaria. Sci. Transl. Med. 2015, 7, 296ra111. [CrossRef] [PubMed]

33. Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from
transmembrane regions. Nat. Methods 2011, 8, 785–786. [CrossRef] [PubMed]

34. Zhang, S.W.; Zhang, T.H.; Zhang, J.N.; Huang, Y. Prediction of signal peptide cleavage sites with
subsite-coupled and template matching fusion algorithm. Mol. Inform. 2014, 33, 230–239. [CrossRef]
[PubMed]

35. Zheng, Z.; Chen, Y.; Chen, L.; Guo, G.; Fan, Y.; Kong, X. Signal-BNF: A Bayesian network fusing approach to
predict signal peptides. J. Biomed. Biotechnol. 2012, 2012, 492174. [CrossRef] [PubMed]

36. Shen, H.B.; Chou, K.C. Signal-3L: A 3-layer approach for predicting signal peptides. Biochem. Biophys.
Res. Commun. 2007, 363, 297–303. [CrossRef] [PubMed]

37. Hiller, K.; Grote, A.; Scheer, M.; Münch, R.; Jahn, D. PrediSi: Prediction of signal peptides and their cleavage
positions. Nucleic Acids Res. 2004, 32, W375–W379. [CrossRef] [PubMed]

38. Käll, L.; Krogh, A.; Sonnhammer, E.L.L. A combined transmembrane topology and signal peptide prediction
method. J. Mol. Biol. 2004, 338, 1027–1036. [CrossRef] [PubMed]

39. Reynolds, S.M.; Kall, L.; Riffle, M.E.; Bilmes, J.A.; Noble, W.S. Transmembrane topology and signal peptide
prediction using dynamic bayesian networks. PLoS Comput. Biol. 2008, 4, e1000213. [CrossRef] [PubMed]

40. Bendtsen, J.D.; Nielsen, H.; von Heijne, G.; Brunak, S. Improved prediction of signal peptides: SignalP 3.0.
J. Mol. Biol. 2004, 340, 783–795. [CrossRef] [PubMed]

41. Nielsen, H.; Krogh, A. Prediction of signal peptides and signal anchors by a hidden Markov
model. In Proceedings of the International Conference on Intelligent Systems for Molecular Biology,
Toronto, ON, Canada, 19–23 July 2008; Volume 6, pp. 122–130.

42. Maetschke, S.; Towsey, M.; Bodén, M. BLOMAP: An Encoding of Amino Acids which Improves Signal
Peptide Cleavage Site Prediction. In Proceedings of the 3rd Asia-Pacific Bioinformatics Conference,
Singapore, 17–21 January 2005; Imperial College Press: London, UK, 2005; pp. 141–150.

43. Murphy, L.R.; Wallqvist, A.; Levy, R.M. Simplified amino acid alphabets for protein fold recognition and
implications for folding. Protein Eng. 2000, 13, 149–152. [CrossRef] [PubMed]

44. Peterson, E.L.; Kondev, J.; Theriot, J.A.; Phillips, R. Reduced amino acid alphabets exhibit an improved
sensitivity and selectivity in fold assignment. Bioinformatics 2009, 25, 1356–1362. [CrossRef] [PubMed]

45. von Heijne, G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986,
14, 4683–4690. [CrossRef] [PubMed]

46. Cilingir, G.; Broschat, S.L.; Lau, A.O. ApicoAP: The first computational model for identifying apicoplast-targeted
proteins in multiple species of Apicomplexa. PLoS ONE 2012, 7, e36598. [CrossRef] [PubMed]

47. Sperschneider, J.; Williams, A.H.; Hane, J.K.; Singh, K.B.; Taylor, J.M. Evaluation of Secretion Prediction
Highlights Differing Approaches Needed for Oomycete and Fungal Effectors. Front. Plant Sci. 2015, 6, 1168.
[CrossRef] [PubMed]

http://dx.doi.org/10.1098/rspb.2009.2176
http://www.ncbi.nlm.nih.gov/pubmed/20200034
http://dx.doi.org/10.3390/ijms15022431
http://www.ncbi.nlm.nih.gov/pubmed/24521882
http://dx.doi.org/10.1016/j.pt.2017.05.009
http://www.ncbi.nlm.nih.gov/pubmed/28688800
http://dx.doi.org/10.1073/pnas.1414221111
http://www.ncbi.nlm.nih.gov/pubmed/25453091
http://dx.doi.org/10.1038/ncomms6521
http://www.ncbi.nlm.nih.gov/pubmed/25422853
http://dx.doi.org/10.1126/scitranslmed.aaa6645
http://www.ncbi.nlm.nih.gov/pubmed/26180101
http://dx.doi.org/10.1038/nmeth.1701
http://www.ncbi.nlm.nih.gov/pubmed/21959131
http://dx.doi.org/10.1002/minf.201300077
http://www.ncbi.nlm.nih.gov/pubmed/27485691
http://dx.doi.org/10.1155/2012/492174
http://www.ncbi.nlm.nih.gov/pubmed/23118510
http://dx.doi.org/10.1016/j.bbrc.2007.08.140
http://www.ncbi.nlm.nih.gov/pubmed/17880924
http://dx.doi.org/10.1093/nar/gkh378
http://www.ncbi.nlm.nih.gov/pubmed/15215414
http://dx.doi.org/10.1016/j.jmb.2004.03.016
http://www.ncbi.nlm.nih.gov/pubmed/15111065
http://dx.doi.org/10.1371/journal.pcbi.1000213
http://www.ncbi.nlm.nih.gov/pubmed/18989393
http://dx.doi.org/10.1016/j.jmb.2004.05.028
http://www.ncbi.nlm.nih.gov/pubmed/15223320
http://dx.doi.org/10.1093/protein/13.3.149
http://www.ncbi.nlm.nih.gov/pubmed/10775656
http://dx.doi.org/10.1093/bioinformatics/btp164
http://www.ncbi.nlm.nih.gov/pubmed/19351620
http://dx.doi.org/10.1093/nar/14.11.4683
http://www.ncbi.nlm.nih.gov/pubmed/3714490
http://dx.doi.org/10.1371/journal.pone.0036598
http://www.ncbi.nlm.nih.gov/pubmed/22574192
http://dx.doi.org/10.3389/fpls.2015.01168
http://www.ncbi.nlm.nih.gov/pubmed/26779196


Int. J. Mol. Sci. 2018, 19, 3709 16 of 16

48. Yu, C.Y.; Li, X.X.; Yang, H.; Li, Y.H.; Xue, W.W.; Chen, Y.Z.; Tao, L.; Zhu, F. Assessing the performances of
protein function prediction algorithms from the perspectives of identification accuracy and false discovery
rate. Int. J. Mol. Sci. 2018, 19, 183. [CrossRef] [PubMed]

49. Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing
data. Bioinformatics 2012, 28, 3150–3152. [CrossRef] [PubMed]

50. Nielsen, H.; Engelbrecht, J.; Brunak, S.; von Heijne, G. Identification of prokaryotic and eukaryotic signal
peptides and prediction of their cleavage sites. Protein Eng. 1997, 10, 1–6. [CrossRef] [PubMed]

51. Burdukiewicz, M.; Sobczyk, P.; Rödiger, S.; Duda-Madej, A.; Mackiewicz, P.; Kotulska, M. Amyloidogenic
Motifs Revealed by N-Gram Analysis. Sci. Rep. 2017, 7, 12961. [CrossRef] [PubMed]

52. Dawson, D.M. Size; Academic Press: New York, NY, USA, 1972; pp. 1–38.
53. Fasman, G.D. Proteins, 3rd ed.; CRC Press: Cleveland, OH, USA, 1976; Volume 1.
54. Goldsack, D.E.; Chalifoux, R.C. Contribution of the free energy of mixing of hydrophobic side chains to the

stability of the tertiary structure of proteins. J. Theor. Biol. 1973, 39, 645–651. [CrossRef]
55. Zimmerman, J.M.; Eliezer, N.; Simha, R. The characterization of amino acid sequences in proteins by

statistical methods. J. Theor. Biol. 1968, 21, 170–201. [CrossRef]
56. Cid, H.; Bunster, M.; Canales, M.; Gazitua, F. Hydrophobicity and structural classes in proteins. Protein Eng.

1992, 5, 373–375. [CrossRef] [PubMed]
57. Eisenberg, D. Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 1984,

53, 595–623. [CrossRef] [PubMed]
58. Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.

1982, 157, 105–132. [CrossRef]
59. Ponnuswamy, P.K.; Prabhakaran, M.; Manavalan, P. Hydrophobic packing and spatial arrangement of amino

acid residues in globular proteins. Biochim. Biophys. Acta 1980, 623, 301–316. [CrossRef]
60. Grantham, R. Amino acid difference formula to help explain protein evolution. Science 1974, 185, 862–864.

[CrossRef] [PubMed]
61. Radzicka, A.; Pedersen, L.; Wolfenden, R. Influences of solvent water on protein folding: Free energies

of solvation of cis and trans peptides are nearly identical. Biochemistry 1988, 27, 4538–4541. [CrossRef]
[PubMed]

62. Argos, P.; Rao, J.K.; Hargrave, P.A. Structural prediction of membrane-bound proteins. Eur. J. Biochem. 1982,
128, 565–575. [CrossRef] [PubMed]

63. Chou, P.Y.; Fasman, G.D. Prediction of the secondary structure of proteins from their amino acid sequence.
Adv. Enzymol. Relat. Areas Mol. Biol. 1978, 47, 45–148. [PubMed]

64. Prabhakaran, M. The distribution of physical, chemical and conformational properties in signal and nascent
peptides. Biochem. J. 1990, 269, 691–696. [CrossRef] [PubMed]

65. Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino
acid index database, progress report 2008. Nucleic Acids Res. 2008, 36, D202–D205. [CrossRef] [PubMed]

66. Rabiner, L.R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE
1989, 77, 257–286. [CrossRef]

67. Yu, S.Z. Hidden semi-Markov models. Artif. Intell. 2010, 174, 215–243. [CrossRef]
68. Koski, T. Hidden Markov Models for Bioinformatics; Computational Biology; Springer: Dordrecht,

The Netherlands, 2001.
69. Durbin, R.; Eddy, S.R.; Krogh, A.; Mitchison, G. Biological Sequence Analysis. Probabilistic Models of Proteins

and Nucleic Acids; Cambridge University Press: Cambridge, UK, 1998.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijms19010183
http://www.ncbi.nlm.nih.gov/pubmed/29316706
http://dx.doi.org/10.1093/bioinformatics/bts565
http://www.ncbi.nlm.nih.gov/pubmed/23060610
http://dx.doi.org/10.1093/protein/10.1.1
http://www.ncbi.nlm.nih.gov/pubmed/9051728
http://dx.doi.org/10.1038/s41598-017-13210-9
http://www.ncbi.nlm.nih.gov/pubmed/29021608
http://dx.doi.org/10.1016/0022-5193(73)90075-1
http://dx.doi.org/10.1016/0022-5193(68)90069-6
http://dx.doi.org/10.1093/protein/5.5.373
http://www.ncbi.nlm.nih.gov/pubmed/1518784
http://dx.doi.org/10.1146/annurev.bi.53.070184.003115
http://www.ncbi.nlm.nih.gov/pubmed/6383201
http://dx.doi.org/10.1016/0022-2836(82)90515-0
http://dx.doi.org/10.1016/0005-2795(80)90258-5
http://dx.doi.org/10.1126/science.185.4154.862
http://www.ncbi.nlm.nih.gov/pubmed/4843792
http://dx.doi.org/10.1021/bi00412a047
http://www.ncbi.nlm.nih.gov/pubmed/3166998
http://dx.doi.org/10.1111/j.1432-1033.1982.tb07002.x
http://www.ncbi.nlm.nih.gov/pubmed/7151796
http://www.ncbi.nlm.nih.gov/pubmed/364941
http://dx.doi.org/10.1042/bj2690691
http://www.ncbi.nlm.nih.gov/pubmed/2390062
http://dx.doi.org/10.1093/nar/gkm998
http://www.ncbi.nlm.nih.gov/pubmed/17998252
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1016/j.artint.2009.11.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Roles and Features of Signal Peptides
	Software Predicting Signal Peptides

	Results and Discussion
	Performance of SignalHsmm Algorithm
	Comparison of Amino Acid Encodings
	Benchmark Tests
	Specific Composition of Plasmodiidae Signal Peptides

	Materials and Methods
	Overview
	Data Selection
	Sequence Identity Reduction in Studied Sequence Sets
	Clustering of Amino Acids into Groups
	Hidden Semi-Markov Model

	Conclusions
	References

