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Abstract: Tissue engineering is gaining attention rapidly to replace and repair defective tissues in
the human body after illnesses and accidents in different organs. Electrospun nanofiber scaffolds
have emerged as a potential alternative for cell regeneration and organ replacement. In this paper,
porous membranes, based on nanofibrous chitosan (CS), polyvinyl alcohol (PVA), and graphene oxide
(GO), were obtained via electrospinning methodology. Three different formulations were obtained
varying GO content, being characterized by Fourier Transform Infrared spectroscopy (FTIR), scanning
electron microscopy (SEM), and energy dispersive spectroscopy (EDS). In vitro tests were carried
out, consisting of hydrolytic degradation inside simulated biological fluid (SBF), and in vivo tests
were carried out, where the material was implanted in Wistar rats’ subcutaneous tissue to determine
its biocompatibility. The antibacterial activity was tested against Gram-positive bacteria Bacillus
cereus and Staphylococcus aureus, and against Gram-negative Salmonella enterica and Escherichia coli, by
contact of the electrospun nanofiber scaffolds above inoculum bacterial in Müeller Hinton agar with
good inhibition only for scaffolds with the higher GO content (1.0%). The results confirmed good
biocompatibility of the nanofibrous scaffolds after in vivo tests in Wistar rats, which evidences its
high potential in applications of tissue regeneration.

Keywords: antibacterial nanofibrous membranes; chitosan; electrospinning; graphene oxide;
polyvinyl alcohol

1. Introduction

Currently, in the world, millions of people are affected by bone defects due to accidents, traumas,
tumors, natural aging, bone fractures, obesity, and physical activity [1]. Due to this problem, the search
for biomaterials with application in tissue engineering for the development of three-dimensional
porous structural materials that imitate bone behavior has increased. This porous framework must
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possess the properties of a natural bone, such as biocompatibility, biodegradability, support for cell
adhesion, proliferation, and cell growth, to overcome accidents, traumas, tumors, natural aging, bone
fractures, obesity, and physical activity [1]. The primary function of the scaffolding is to mimic the
natural extracellular matrix temporarily, while the new bone is growing, which serves as a biological
substitute for adhesion, allows cell migration, and, finally, guides the development of the new tissue
with the appropriate functions [2].

Typically, various materials have been used for the manufacture of scaffolds, especially of
the polymeric type, due to its excellent biocompatibility, adjustable chemical composition, suitable
biological rearrangement, and acceptable degradation. However, the main drawback of natural
polymers is their low mechanical resistance, which makes them unsuitable for a bone scaffold [3]. For
this reason, it is necessary to reinforce the mechanical and thermal properties of the materials used
as scaffolds with nanocomposites, which can increase mechanical and thermal resistance, as well as
the barrier and antimicrobial properties. Therefore, the development of nanocomposites based on
biopolymers, such as chitosan (CS), thanks to its biocompatibility, biodegradability, physiological
inertness, remarkable affinity to proteins, and antibacterial, hemostatic, fungistatic, and antitumor
properties, becomes an excellent alternative for the design of biomaterials for cell regeneration [4].

Graphene is a solid material composed of a thin single atomic sheet of sp2 carbon atoms [5–7].
Functionalization of graphene for several uses in biomedicine (e.g., biosensors, nanocarriers, and
devices for cell imaging and phototherapy for cancer) is an active area nowadays [8–12]. Usually,
it is synthesized from the allotropic form graphite, one of the most abundant chemical elements in
nature [13]. Several nanocomposites based on graphene and other materials have been used for
stimulating neural stem cell adhesion, proliferation, differentiation, and neural regeneration [14].

Graphene oxide (GO), one of graphene’s derivatives, has become a highly used nanofiller thanks
to its high mechanical resistance, chemical stability, large surface area, and low toxicity [15]. Also,
due to its antibacterial properties and a high surface/volume ratio, GO is a promising material for the
development of antimicrobial surfaces [16]. Graphene oxide nanocomposites have been prepared to
improve surface roughness and promote neural growth [14,17–20].

Recently, our group prepared antimicrobial films based on nanocomposites of chitosan/polyvinyl
alcohol/graphene oxide by the drop-casting method, which showed excellent biocompatibility in the
subcutaneous tissue of Wistar rats, antimicrobial activity against Gram-positive and Gram-negative
bacteria, and better thermal and mechanical stability with the increase of graphene oxide [21]. We
also prepared scaffolds by the freeze-drying method based on CS–GO nanocomposites demonstrating
excellent biocompatibility after 30 days of implantation in Wistar rats’ subcutaneous tissue.
Reabsorption of the material by phagocytic activity and new bone formation in experiments on
critical size defects has also been demonstrated [22,23]. However, there is a growing need to obtain
materials with a tunable size of porosity to better stimulate cell adhesion and regeneration through the
use of these devices.

Micro/nanofibrous scaffolds have been investigated extensively for tissue engineering and drug
delivery [24]. Since micro/nanofibrous scaffolds mimic the natural extracellular matrix (ECM), they
stimulate cell adhesion, proliferation, migration, and differentiation better than particulate structures.
By the other side, due to its higher surface-area to volume ratio and higher interconnected porosity,
cell adhesion and proliferation occurs quickly, which makes it a promising material for tissue
engineering [25].

Electrospinning technique has been used to develop these controlled nanostructures with high
porosity ratio for the formation of polymer fibers. This technique has advantages because, by using
electric forces, fibers with diameters ranging from 2 nm to several micrometers can be obtained
using solutions of both natural and synthetic polymers [26]. This process offers unique capabilities
for the production of new nanofibers and natural tissues with controllable pore structure [27].
Electrospun nanofibrous membranes can be easily tuned to match irregular bone defects to promote
osteointegration [28]. For all of the above reasons, electrospinning of polymeric micro/nanofibrous
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scaffolds has the potential for application in traumatic or disease states, such as in skin regeneration or
the treatment of cancer [29].

Even though several studies on CS/ polyvinyl alcohol (PVA)/GO films and electrospun polymeric
micro/nanofibrous scaffolds have been investigated extensively in the literature, there is a lack
of information about the physical, chemical, and mechanical characterization of the nanofibrous
membranes, and their biocompatibility and antimicrobial performance. Therefore, this research
proposed the study of biodegradable nanofibrous membranes based on PVA/CS/GO with potential
applications for tissue regeneration and antimicrobial devices.

2. Results and Discussion

2.1. GO Synthesis and Characterization

GO synthesis followed the methodology used by Mangadlao [30]. GO synthesis and characterization
were previously reported by our group [21].

2.2. Electrospun CS/PVA/GO Composite Nanofibrous Membranes Characterization

2.2.1. Fourier-Transform Infrared Spectroscopy (FTIR)

In Figure 1, the ATR-FTIR spectrum of the scaffolds are shown. It was observed that a band
appears at 1701 cm−1 due to the stretching vibration of carbonyl groups C=O (-COOH) at the edges
of GO. The vibration band coupled in the OH plane (1328 cm−1) becomes more pronounced due
to the destruction of the original hydrogen bonds of CS/PVA compounds and the formation of a
strong interaction between CS, PVA, and GO, with the increase in the amount of GO. The C–OH bond
observed at 1382 cm−1 is weakened with the increase in GO due to the strong hydrogen bond. On
the other hand, no changes were noted in the functional groups in the compound system, although
it is known that generally between the CS and the GO there will be hydrogen bonds that stabilize
their compounds. The bands of the secondary amino groups and amide groups formed would be
overlapping with the bands of amino groups and amide groups of the CS [31]. Furthermore, the band
at 3251 cm−1, due to the stretching vibration of the OH group, was displaced to higher wavenumbers
(3288 cm−1) and was further expanded, which can be attributed to the hydrogen interaction of GO
with the mixture CS-PVA [32].
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membranes with different GO amounts (0%, 0.5%, and 1.0%).
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2.2.2. Scanning Electron Microscopy (SEM)

The morphology of the electrospun fibers is controlled by various parameters, such as the applied
voltage, the flow velocity of the solution, the distance between the nozzle and the collector, and,
especially, the concentration and surface tension of the solution [33].

As the Figure 2 shows, the composite nanofibers exhibit a random fibrous morphology and an
interconnected porous structure, where the effect of the addition of GO is reflected in the increase of
the average diameters of the fibers, due to the rise in the viscosity of the mixture with the addition of
the GO [34,35]. The diameter of the fibers increased in average 144.45, 152.94, and 202.79 nm for GO
percentages of 0%, 0.5%, and 1% by weight, respectively (Table S1).

Viscosity refers to the resistance exerted by a fluid against a tangential deformation. This resistance
to flow is generated from the friction between the molecules. The increase in the viscosity can be
justified because, when increasing the concentration of GO, the quantity of electrospun CS/PVA/GO
composite nanofibrous membranes that interacted with each other, both with the polymeric molecules,
increased. In addition, the formation of agglomerates in suspension was induced and they act as a
resistance to the flow. When the jet is generated, the solution exerts strength to being stretched by the
electric field, creating larger diameter fibers [36,37]. However, the defects presented can be attributed
to an agglomeration of the GO sheets due to the high concentration that was used. On the other hand,
it can be attributed to the effect of the residual solvent that was not evaporated during the process.
Therefore, the flat fibrillar structure was not obtained in some regions of the material [36,38].
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Figure 2. SEM images of electrospun CS/PVA/GO composite nanofibrous membranes with different
GO amounts (0%, 0.5%, and 1.0%). Images (A,C,E) at 500×, and images (B,D,F) at 10,000×. For all the
experiments, the voltage used was 20 kV.

2.2.3. Degradation in a Simulated Biological Fluid (SBF)

Figure 3 shows the results of the degradation percentage (weight loss) of the scaffolds with
different proportions of GO after 14 days of being subjected to the process of hydrolytic degradation in
a simulated biological fluid (SBF). The rate (%) of weight loss was calculated by employing Equation (1).
It can be observed that the incorporation of GO in the polymer matrix improved the stability of the
scaffolds against the SBF. The weight loss was lower for the samples with higher GO content, the
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samples with 0% GO presented a final degradation of 75.4%, which is higher in comparison with the
samples that contained some percentage of GO: the scaffolds with 0.5% GO exhibited an ultimate
degradation of 72.33% and the frameworks with 1% GO showed the lowest deterioration of 71.90%.
Therefore, it was observed that with a higher content of GO there is a lower weight loss, attributed to
the higher content of GO in the CS/PVA binary mixture due to hydrogen bonds with the CS. Since
many secondary bonds are present, these forces will multiply, and it will have high energy along with
these links, evidenced in more excellent stability in the polymer chains [39].

The degradation behavior is explained by the interaction of the SBF with the CS and PVA.
This interaction generates random excisions of the polymer chains since the introduction of water
inside the polymer matrix causes the hydration of the molecules, rupture of hydrogen bonds, swelling,
and, finally, the hydrolysis of unstable bonds [40]. Ultimately, resulting in a decrease in molecular
weight and, therefore, higher susceptibility to a weight loss of the samples [41].

Wl (%) =
W0 −Wd

W0
× 100 (1)
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Figure 3. Weight loss of electrospun CS/PVA/GO composite nanofibrous membranes with different GO
amounts (0%, 0.5%, and 1.0%), after several periods of immersion in a simulated biological fluid SBF.

In Figure 4, the average variation in pH of the SBF solution is shown. The drop in pH has been
associated with the attack on amorphous zones because they retain more acidic species and because
their blocks are more susceptible to degradation since they do not have segments of crystalline zones
that hold them together, according to Figueira Maldonado [42]. Another possible cause could be the
remaining acetic acid present in the scaffolds due to the production process used and the degradation
of byproducts typical in CS, such as glucosamine or N-acetylglucosamine, which can also be found
in the extracellular tissue matrix of humans, making them harmless when released into the human
body [43].
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The pH of the biological media is a fundamental constant for the maintenance of vital processes.
The enzymatic action and the chemical transformations of the cells are carried out within strict pH
ranges. In the human body, the admissible scales that promote life and maintenance of vital functions
oscillate between 6 and 8, as determined by the ASTM F1635 standard and confirmed in various
investigations [44,45], which indicates that the values obtained during the degradation of the scaffolds
are within the known ranges for biological processes.

2.2.4. SEM of the Electrospun CS/PVA/GO Composite Nanofibrous Membranes after Immersion in SBF

It was expected that the characteristic fibrillar structure of these materials would resist dissolution
during the incubation in SBF. However, it could be seen by the SEM that there are notable differences
between the morphologies before and after the degradation process in SBF (Figures 2 and 5), respectively,
giving evidence of a rough surface and with fibers fused together. The fibrillar and porous structure
disappeared, possibly due to the swelling of the fibers, which was attributed to the hydrophilic
character of CS and PVA in a high degree of hydrolysis and medium molecular weight [44].
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Figure 5. SEM images of the electrospun CS/PVA/GO composite nanofibrous membranes after fourteen
days in the degradation process in SBF. (A,B) 0% GO, (C,D) 0.5% GO, and (E,F) 1.0 % GO. Images
(A,C,E) at 500×, and images (B,D,F) at 10,000×. For all the experiments, the voltage used was 20 kV.

The immersion of the scaffolds in SBF was also carried out to evaluate the capacity of apatite
formation on the surface of the material. The SEM images showed that, in some places, the scaffolds
were covered by hydroxyapatite (HA) crystals, as evidenced for the scaffolding with 0.5% GO (Figure 5D)
after 14 days of immersion, confirming the capacity of the material to stimulate the formation of new
bone. This was verified through dispersive energy spectroscopy (EDS, data not shown) where it
showed that the peak signals of Ca and P were present in the scaffolds, with proportions of calcium of
7.09% and phosphorus of 3.11%, which confirms the formation of apatite. In addition to these main
elements, the presence of small amounts of Na, Cl, K, and Mg was detected. The above components
were derived from SBF.

Figure 5 shows the SEM images of the surface of the CS/PVA/GO scaffolds that were successfully
made by the electrospinning method, showing a fibrillar morphology, as expected. With a volume
ratio of PVA/CS of 7:3 and different concentrations of GO (0%, 0.5%, and 1% by weight of CS) the
nanofibers were uniform, smooth, continuous and without defects in almost the entire sample.

The results showed the formation of hydroxyapatite compounds. Therefore, CS/PVA/GO scaffolds
could provide a promising construction for the application of bone tissue engineering, as long as
the chemical stability in SBF is improved. However, it is advisable to perform tests in subdermal
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implantation in the longer term to verify if there is bone ectopic formation or to perform tests on critical
size intraosseous defects to study the osteogenic capacity of the biomaterial.

2.2.5. Antibacterial Activity

As shown in Table 1, no inhibition of pathogens was observed in the treatments with 0% and 0.5%
of GO. Although inhibition against Gram-positive and Gram-negative bacteria can occur due to GO
and chitosan [46,47], the fact that there was no inhibition when there is only chitosan (0% GO) shows
the strong interaction of hydrogen bonds between chitosan and PVA, which decreases the solubility of
chitosan in the medium [45]. This interaction prevents its interaction with the cell membrane of the
microorganisms, causing no inhibition to occur.

This explanation suggests that the inhibition found in the treatment with 1.0% GO is mainly due
to the GO effect. The sharp atomic edges of the GO penetrate the cell’s membrane and destabilize its
integrity. Chemically, they can promote lipid peroxidation induced by the natural oxidative nature of
GO depending directly on their concentration in the medium [46,47]. This inhibition was presented
against all the bacteria evaluated, which agrees with that found by other authors against Gram-positive
bacteria [48,49] and Gram-negative bacteria [48–55].

Table 1. Inhibition of electrospun CS/PVA/GO composite nanofibrous membranes against
bacterial strains.

Strain 0% GO 0.5% GO 1.0% GO

Bacillus cereus - - - - - +
Staphylococcus aureus - - - - - +

Salmonella spp - - - - - +
Escherichia coli - - - - - +

(+) Weak inhibition of the pathogen; (- -) Weak pathogen growth; (- - -) Complete growth of the pathogen.

2.2.6. Biomodel Tests In Vivo

After 30 days of implantation in the biomodels, the samples were recovered. In all cases, repair of
the created surgical defect was observed. Furthermore, all the biomodels showed a hair recovery and
absence of injuries and infections in the intervened areas with healthy healing and restoration of the
tissue architecture (Figure 6). The material, although quite compatible, generated an inflammatory
response to a foreign body where the cells surrounded the fragments with a fibrous capsule and the
rest of the soft tissues with healthy appearance, for the case of higher GO content (1.0%).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 14 
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Figure 6. The dorsal area of the rat Wistar after 30 days of the implantation: (A) hair recovery,
(B) absence of injuries and infections, and (C) internal surface of the skin where the implanted samples
are encapsulated by scar tissue.
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Figure 7 shows the images of the histological study of the subcutaneous tissue after 30 days of
implanting the scaffolds in the biomodels (Wistar rats). In Figure 7, we have the histological image of
the control sample (porcine collagen), where it was observed that there was resorption of the material
with the recovery of the anatomical architecture of the tissue.
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Figure 8 corresponds to scaffolds with 0% GO, recovery of tissue architecture, and fragments of
the material in the process of resorption with the presence of inflammatory infiltrate are noted. It was
also possible to observe the presence of a fibrous capsule (FC), corresponding to a series of collagen
fibers that surrounded the biomaterial and that is a common finding in the experiments that include
the implantation of materials, as part of the healing process within the chronic inflammation phase.
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Figure 8. Scaffold with 0% GO using the hematoxylin and eosin technique. Image (A) at 4× and
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inflammatory infiltrate, IZ: implantation area, M: muscle, and FC: fibrous capsule.

Figures 9 and 10 correspond to the implanted material with graphene oxide content. In both of
them, the recovery of tissue architecture is observed. Figure 9 corresponds to the material with 0.5%
GO, which shows a normal healing process, with the presence of traces of material in the process of
resorption and are surrounded by fibrous tissue with the presence of inflammatory cells, although the
inflammatory response seems to be lower in scaffolds with 0.5% GO. In the case of structures with 1%
GO (Figure 10), a continuity solution was observed in the tissue, healing was delayed, and a greater
inflammatory process was apparent when compared to the two previous cases.

In all cases, a normal healing process was observed with the recovery of the tissue architecture.
In scaffolds with 0.5% graphene oxide, traces of the material being phagocytized by an inflammatory
infiltrate were observed, whereas in frameworks with 1% graphene oxide, resorption was minimal
after 30 days of implantation and the situation has been solved as a reaction to a foreign body that has
encapsulated the scaffold (FC).
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3. Materials and Methods

3.1. Materials

For graphene oxide synthesis, graphite flakes (99.8%) were used (Alfa Aesar, Tewksbury, MA,
USA). Concentrated sulfuric acid (H2SO4), potassium permanganate (KMnO4), hydrogen peroxide
(H2O2), and isopropanol were supplied by Merck (Burlington, MA, USA). For the production of
the films, chitosan of low molecular weight (Mv 144.000 g/mol) and a deacetylation degree between
89–90%, polyvinyl alcohol (PVA), with hydrolysis between 87–89% and viscous molecular weight of
93,000 g/mol was used (Sigma-Aldrich, Palo Alto, CA, USA). Glacial acetic acid comes from Merck
(Burlington, MA, USA). For the elaboration of the simulated biological fluid, NaCl, K2HPO4 3H2O,
CaCl2, Na2SO4, and tris-(hydroxymethyl aminomethane) [(CH2OH)3CNH2] were acquired from Sigma
Aldrich (Palo Alto, CA, USA); NaHCO3, KCl, and MgCl2 6H2O from Fisher Chemical (Pittsburgh,
PA, USA); and hydrochloric acid (HCl) from Merck (Burlington, MA, USA). All reagents used were
analytical degree.

3.2. Methods

3.2.1. GO Synthesis

GO synthesis followed the methodology used by Mangadlao [30]. GO synthesis and
characterization were previously reported by our group [21].

3.2.2. Preparation of Electrospun CS/PVA/GO Composite Nanofibrous Membranes

Scaffolds were manufactured by the electrospinning method using a vertical configuration. A high
voltage source (Gamma High Voltage Research INC., Model E30) was used. It was connected to
the nozzle and the collector, then the polymer solution was introduced in a 10 mL syringe, and, by
means of a polypropylene hose, it was coupled to the electrospinning nozzle in stainless steel. Finally,
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a voltage of 22 kV was applied and a pump (Braintree Scientific INC) was used to control the flow of
the solution, maintaining it at 1.0 mL/h. As a result of the positive polarization of the solution and the
electric field, the solution was attracted by the negatively charged collector, thus forming the fibers,
which were collected on a slotted Teflon mold, which is arranged on an aluminum sheet. The whole
process was carried out at a temperature (21–30 ◦C) and relative humidity (45–60%), average to the
environmental conditions of the city of Santiago de Cali, Colombia.

The solution for electrospinning was carried out with individual solutions of CS at 5% (w/v)
dissolved in 2% acetic acid (v/v), 8% PVA solution (w/v) dissolved in distilled water at 80 ◦C, and
300 rpm. The GO was dispersed in the ultrasonic medium. A volume ratio of PVA:CS of 7:3 was used,
and the GO was added concerning 1% by weight of the CS.

3.3. Characterization

3.3.1. Fourier Transform Infrared Spectroscopy (FTIR)

The chemical identification of the films was carried out using FTIR in the ATR mode (attenuated
total reflectance) (Shimadzu, Kyoto, Japan).

3.3.2. Scanning Electron Microscopy (SEM)

The morphological inspection of the surfaces of the film was carried out through a scanning
electron microscope (SEM) (JEOL JSM-6490LA, Musashino, Tokyo, Japan). The working conditions
were 20 kV and mode of secondary backscattered electrons. All the samples were coated with gold to
create an electronic density in the material since the polymers lack it.

3.3.3. Degradation in Simulated Biological Fluid

The hydrolytic degradation was carried out following the procedure outlined in the American
Society for Testing and Materials (ASTM) F1635-16 standard. The scaffolds were immersed in a
simulated biological fluid (SBF) at 37 ◦C for 14 days in a Memmert IN 110 incubator (Memmert,
Schwabach, Germany). The SBF was prepared according to the method proposed by Kokubo and
Takadama [56], and the degradation was evaluated by examining the weight of the films before and
after immersion for different periods (1, 3, 5, 7, and 14 d).

The initial weight of the samples before immersion was recorded as W0 and the weight after
drying for 48 h in the incubator at 37 ◦C was recorded as Wd. The weight loss (% Wl) was calculated
according to Equation (1).

Each sample was immersed in 15 mL of SBF, and, in each period, three samples were evaluated
per formulation. The pH of the SBF was measured every day until the total test time was completed
using an Accumet AB150 pH meter (Fisherbrand, Ottawa, ON, Canada). The morphology of the films
after drying was studied using SEM.

3.3.4. Antimicrobial of Electrospun CS/PVA/GO Composite Nanofibrous Membranes Assay

The antimicrobial activity of the electrospun CS/PVA/GO composite nanofibrous membranes
was evaluated against Gram-positive bacteria, Bacillus cereus (ATCC 13061) and Staphylococcus
aureus (ATCC 55804), and Gram-negative bacteria, Salmonella enterica (ATCC 13311) and Escherichia
coli (ATCC 11775), by contact of the electrospun CS/PVA/GO composite nanofibrous membranes
above inoculum bacterial in agar. The methodology used by Ruiz et al. (2018) was followed without
modifications [21]. The test was repeated three times for each of the treatments.

3.3.5. Biomodels Test In Vivo

The inflammatory response to the implantation of films in the subcutaneous tissue was measured.
Samples of CS–PVA films with different percentages of GO (three replicates per formulation) with
10 mm in diameter and 2 mm in thickness were implanted in the subdermal tissue of three adult Wistar
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rats, in preparations made on the dorsal surface, according to the recommendation of ISO 10993-6. As
a control sample, commercial porcine collagen with the same dimensions was used. All the biomodels
were supplied by the Bioterium of the Faculty of Medical Sciences of the Universidad del Valle. The
procedures carried out were approved by the Animal Ethics Committee of the Universidad del Valle,
by the CEAS 001-016 certificate of May 20th of 2016.

After 30 days of implantation, the samples were recovered, fixed in buffered formalin, dehydrated
in alcohol solutions of ascending concentration (70%, 80%, 95%, and 100%), diaphanized with xylol
and infiltrated with paraffin for later cutting to 4 µm. The samples were processed for histological
analysis by hematoxylin and eosin (H&E) and masson trichromacy (MT) techniques.

4. Conclusions

In this research, we demonstrated a simple protocol for obtaining electrospun scaffolds based on
CS/PVA/GO nanocomposites, which showed adequate chemical and biological properties for their
application in tissue engineering. The addition of GO in the electrospun scaffolds did not interfere
with the correct formation of the fibrillar structure. Rather, it gave a more excellent stability against the
degradation in SBF. It was also evidenced through EDS that in some places the scaffolds were covered
by a mild apatite layer.

Finally, the material that presented the best tissue biocompatibility was the one that had a GO
content of 0.5%. Interestingly, there was a better antibacterial response when the GO was increased to 1%,
being active both for Gram-positive bacteria and Gram-negative bacteria. However, the inflammatory
response also increased and the degradability was reduced when it was implanted. According to this
observation, the use of biomaterial the most suitable in subdermal applications is the scaffold with GO
at 0.5%, and scaffolds with 1% GO should be recommended in areas where an antibacterial effect is
needed, such as in wounds exposed and infected skin, since the inflammatory response seems to be
higher as the percentage increases. It is also necessary to perform additional studies to evaluate the
osteogenic effect in applications for bone tissue engineering.

Supplementary Materials: Supplementary material Table S1 can be found at http://www.mdpi.com/1422-0067/20/
12/2987/s1.
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