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Abstract: Among nutraceuticals, phytochemical-rich compounds represent a source of naturally-derived
bioactive principles, which are extensively studied for potential beneficial effects in a variety of
disorders ranging from cardiovascular and metabolic diseases to cancer and neurodegeneration.
In the brain, phytochemicals produce a number of biological effects such as modulation of
neurotransmitter activity, growth factor induction, antioxidant and anti-inflammatory activity,
stem cell modulation/neurogenesis, regulation of mitochondrial homeostasis, and counteracting
protein aggregation through modulation of protein-folding chaperones and the cell clearing systems
autophagy and proteasome. In particular, the ability of phytochemicals in restoring proteostasis
through autophagy induction took center stage in recent research on neurodegenerative disorders
such as Parkinson’s disease (PD). Indeed, autophagy dysfunctions and α-syn aggregation represent
two interdependent downstream biochemical events, which concur in the parkinsonian brain, and
which are targeted by phytochemicals administration. Therefore, in the present review we discuss
evidence about the autophagy-based neuroprotective effects of specific phytochemical-rich plants
in experimental parkinsonism, with a special focus on their ability to counteract alpha-synuclein
aggregation and toxicity. Although further studies are needed to confirm the autophagy-based
effects of some phytochemicals in parkinsonism, the evidence discussed here suggests that rescuing
autophagy through natural compounds may play a role in preserving dopamine (DA) neuron
integrity by counteracting the aggregation, toxicity, and prion-like spreading of α-syn, which remains
a hallmark of PD.

Keywords: curcumin; bacosides; ashwagandha; gallic/asiatic acids; resveratrol; catechins;
synucleinopathy; cell-clearing pathways; metabolic syndrome

1. Introduction

Nutraceuticals include a broad range of naturally occurring, though different compounds such
as functional foods, fortified foods, and dietary supplements which as a common signature promote
human and animal health and wellness [1,2]. Among these, dietary supplements are generally
identified with herbal extracts, that is, complex mixtures of phytochemicals. These latter correspond
to pharmacologically active compounds, which are also named bioactive ingredients or principles.
Generally, phytochemicals are classified into major categories based on their chemical structures and
characteristics. These include carbohydrates, lipids, polyphenols, terpenes, steroids, alkaloids, and
other nitrogen-containing compounds [3]. Phytochemicals are widely found, either singularly or
in combination, in edible plants and plant products including grains, oilseeds, beans, leaf waxes,
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bark, roots, spices, fruits, and vegetables with varying content and composition. In the last century,
phytochemicals have become increasingly popular as potential preventive and therapeutic compounds
in a variety of disorders, ranging from cancer to cardiovascular, metabolic, and neurodegenerative
diseases [4–7].

Natural compounds which have been mostly investigated in experimental and clinical studies
for their potential benefits in brain metabolism include curcumin (Curcuma longa), bacosides
(Bacopa monnieri), catechins (Camellia sinensis), asiatic and gallic acids (Centella asiatica), withanolides
(Withania somnifera, ashwagandha), and resveratrol (Vitis vinifera). Clinical studies in both healthy
subjects and in patients with central nervous system (CNS) disorders such as Alzheimer’s disease
(AD), dementia, and amyotrophic lateral sclerosis (ALS) provided some encouraging results indicating
cognitive enhancing, anti-oxidant and anti-inflammatory effects of these phytochemicals coupled with
a wide margin of tolerability [8–16].

However, many clinical trials have not been completed yet, especially those on Parkinson’s disease
(PD), and others have yielded inconclusive results. This may be due to suboptimal phytochemical
dosage, timing, or formulation, which may affect phytochemical bioavailability and accumulation in the
brain at necessary concentrations for producing evident therapeutic effects [9,17,18]. Strategies aimed
at overcoming such a limit include the development of nanoparticle-based formulations or concomitant
supplementation with natural bioavailability-enhancing compounds such as piperine [17,19]. As
documented by a vast body of experimental evidence, phytochemicals from C. longa [9,20,21],
B. monnieri [22,23], C. sinensis [24], C. asiatica [25], W. somnifera, ashwagandha [26], and V. vinifera [27] are
indeed able to cross the blood-brain barrier thus displaying sufficient bioavailability to yield beneficial
effects in the brain.

In particular, in experimental models of PD, neuroprotective effects of curcumin (C. longa) [28–54],
bacosides (B. monnieri) [55–68], catechins of green tea (C. sinensis) [69–81], gallic and asiatic
acids (C. asiatica) [82–88], withanolides (W. somnifera, ashwagandha) [89–96], and resveratrol
(V. vinifera) [97–111] have been widely reported (Tables 1–6, respectively). These phytochemicals
produce a number of biological effects such as modulation of dopamine (DA) metabolism and release,
growth factor induction, antioxidant and anti-inflammatory activity, regulation of mitochondrial
homeostasis, stem cell modulation/neurogenesis, and restoration of proteostasis through regulation of
protein-folding chaperones and the cell clearing systems autophagy and proteasome [112–124].
As pointed by most of the past and recent discoveries in PD research, the abovementioned
phytochemical-targeted processes represent key events which are altered in parkinsonism. However,
when considered alone, none of these effects are expected to fully provide therapeutic efficacy in
experimental parkinsonism. Indeed, PD is a multifactorial disease since different etiological (genetic
and/or environmental) factors may combine to produce a chain of pathological events which tightly
intermingle with each other [125–130]. These include alterations in DA metabolism and synaptic
transmission, oxidative stress, mitochondrial damage, and protein aggregation. In search of convergent
downstream pathways being involved in the neurobiology of PD and experimental parkinsonism, a
plethora of studies indicate a key role of the cell clearing systems proteasome and autophagy [127–135].
In particular, autophagy is essential for DA neuronal survival being involved in the surveillance of DA
release, mitochondrial homeostasis, as well as degradation of misfolded, oxidized, and aggregated
proteins. The loss of autophagy in experimental models produces neurodegeneration which is
reminiscent of PD [136], and autophagy dysfunctions are linked with familial PD [128]. In fact,
alterations of several proteins which are encoded by PD-related genes such as alpha-synuclein (α-syn,
SNCA), LRRK2, Endophilin-A, PINK1, and Parkin, may affect the autophagy machinery at various
levels [125,128–130].

It is remarkable that several classes of phytochemicals converge to promote cell clearing systems,
and mostly the autophagy machinery [133], either directly or by targeting common molecular pathways
which are altered in parkinsonism. Thus, if one considers autophagy as a downstream common
event in parkinsonism, the puzzling variety of effects induced by phytochemicals may turn to be only
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apparent, since different pieces can be cast together to converge towards autophagy activation. In fact,
promoting autophagy contributes to regulating DA release, neuro-differentiation, and mitochondrial
homeostasis, as well as counteracting oxidative/inflammatory toxicity and α-syn aggregation, which
remains a hallmark of PD [127,129,133,137–140].

It is worth mentioning that, similar to autophagy, the ubiquitin-proteasome system is affected
in DA-related CNS disorders including PD [134,135,141], and a functional interplay occurs between
autophagy and the proteasome at both biochemical and morphological levels [142,143]. However,
here we chose to focus on the autophagy machinery for several reasons. Although both systems are
seminal for DA synaptic activity and neuronal proteostasis, autophagy degrades specific substrates
such as mitochondria and large protein aggregates which cannot be processed by the proteasome.
Secondly, autophagy is able to compensate for proteasome dysfunctions and to rescue DA neurons
from cell death which is induced by proteasome inhibitors [128,143]. Thus, in the present review we
focus on autophagy as one of the final metabolic pathways through which phytochemicals restore
α-syn proteostasis to confer neuroprotection (Figure 1). This might also disclose a role of autophagy
dysregulations as part of a common chain of events connecting systemic disorders with alterations
of the CNS, which occurs in PD. Nonetheless, the chance that phytochemicals act at the level of the
proteasome system or modify its interplay with autophagy should be constantly considered.
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Figure 1. The effects of phytochemical-rich plants in counteracting the cascade (plain black arrows) of
molecular events, which occur in synucleinopathies and Parkinson’s disease (PD). These include
(i) oxidative stress and accumulation of Reactive Oxygen Species (ROS) arising from altered
dopamine (DA) metabolism (DA oxidation), (ii) endoplasmic reticulum (ER) and mitochondrial
stress, (iii) structural alterations of α-syn, formation of insoluble aggregates up to Lewy bodies
where native α-syn monomers are sequestered (dashed black arrows), (iv) neuroinflammation, and
(v) autophagy impairment due to either altered autophagosome biogenesis or impaired fusion between
lysosomes and autophagosomes (dashed black arrows). The buildup of ubiquitinated α-syn aggregates
contributes to further impairing the autophagy machinery thus fueling a vicious circle where damaged
autophagy substrates accumulate due to impaired clearance and turnover. This, in turn, contributes
to increasing the overall vulnerability of DA neurons and promoting the spreading of α-syn (dashed
black arrows). Phytochemicals from the plants represented here confer neuroprotection by preventing
or reverting (blue arrows) this pathological cascade, starting from autophagy induction to inhibition of
α-syn aggregation, neuroinflammation, and oxidative stress.
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2. Eukaryotic Cell Clearing Pathways: A Focus on Autophagy

Eukaryotic cell clearing pathways are grouped into two main systems, which consist of
the ubiquitin-proteasome and autophagy [137,140]. The latter is further distinguished into
macro-autophagy (hereafter referred to as autophagy), micro-autophagy, and chaperone-mediated
autophagy [140]. In addition, other terms are used to describe the clearance of specific cell compartments,
which is carried out by autophagy [144]. For instance, the removal of altered mitochondria is
named “mitophagy”, which does not necessarily represent a process which is purely dedicated to
removing altered mitochondria. Other examples include autophagy-dependent clearance of pathogens,
ribosomes, portions of endoplasmic reticulum or synaptic vesicles which are conventionally designated
as “xenophagy”, “ribophagy” or “reticulophagy”, or “vesiculophagy”, respectively [129,144].

Autophagy represents a phylogenetically conserved eukaryotic degradative process which plays
a crucial role in cellular homeostasis [145]. A variety of cellular components encompassing proteins,
lipids, sugars, nucleic acids, whole organelles or cytoplasmic compartments are sequestered into a
double-membrane nascent vacuole called phagophore, which then matures to seal in a vesicle called
autophagosome [146]. Autophagy engulfment may occur either as a non-selective process or involve
adaptor/receptor proteins such as SQSTM1/p62 and optineurin, which shuttle ubiquitinated cargoes
to the forming autophagosome [137,145,146]. The autophagosome matures through fusion with
endomembrane vesicles (late endosomes and multivesicular bodies) giving birth to the amphisome.
This latter eventually fuses with the lysosome, which provides acidic hydrolases needed for the
breakdown of substrates. Once engulfed within the autophagolysosome, the cargo is degraded
while some metabolic by-products are recycled. A complex machinery including more than 30
autophagy-related-gene (Atg) products governs the fine steps of autophagy progression, starting from
the biogenesis and maturation of autophagosomes up to the fusion with lysosomes [147,148]. One of the
main mechanisms negatively regulating autophagy relies on mTOR complex1 (mTORC1)-dependent
phosphorylation of Atg13 and inhibition of Atg1 (ULK1 in mammals), both belonging to a molecular
complex, which is seminal for the early induction of autophagy [149]. Again, conversion of Atg8
(LC3 in mammals) into LC3I, ubiquitination-like enzymatic lipidation of LC3I into LC3II isoform, and
eventually the incorporation of LC3II into the phagophore membrane are critical steps for the vacuole
to expand and seal, thus allowing cytoplasmic elements to be properly engulfed. In line with this,
LC3 is widely employed as a marker for monitoring autophagy at the morphological, ultrastructural,
and biochemical level. Nonetheless, other several autophagy proteins ranging from Atg3 to Atg7 are
key in autophagy progression, since they participate in the processing and conjugation of Atg8/LC3
to the growing autophagosome’s membrane lipids [147,148]. Moreover, several pathways besides
Akt/mTOR are known to modulate autophagy. For instance, autophagy occurs upon activation of
5′ AMP-activated Protein Kinase (AMPK) or following inhibition of Glycogen Synthase Kinase 3
Beta (GSK3-β) [150]. Again, activation of the transcription factor EB (TFEB) promotes autophagy
induction by acting either in cooperation with or independently of mTORC1 to regulate lysosomal
activation and autophagosome-lysosome fusion [151]. Likewise, activation of the NAD-dependent
deacetylase Sirtuin-1 (SIRT1) promotes autophagy via de-acetylation of Atg5, Atg7, LC3 as well as of
the transcription factor forkhead box O3 (FOXO3), which, in turn, controls the expression of several
pro-autophagic proteins [152].

Autophagy modulates key cell functions ranging from cell growth and metabolism
to neurotransmitter release, synaptic development and plasticity, neuro-inflammation and
-immunity [125,127,129,130,132,133,135,137]. This is due to the fact that autophagy regulates the
turnover of key proteins and organelles which are involved in these cell processes, and again, a
mutual interplay exists between autophagy machinery and secretory/trafficking pathways, heat
shock protein chaperones, apoptosis, growth factors, and inflammatory cascades. In fact, various
molecules such as Rab-GTPases and SNARE proteins, heat shock proteins (HSP), caspases, reactive
oxygen species (ROS), neurotrophic growth factors, pro-inflammatory cytokines/transcription factors
can indirectly modulate the autophagy machinery [127,130,137,153–157]. Thus, it is not surprising
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that autophagy is commonly dysregulated in a myriad of CNS disorders where a feedback loop
establishes between impaired proteostasis, synaptic alterations, and oxidative/inflammatory events.
In the case of PD, this is best exemplified by the fact that DA-related oxidative/inflammatory events
and α-syn aggregation may converge to impair the autophagy machinery, and, in turn, impaired
autophagic clearance may fuel accumulation of toxic α-syn aggregates, synaptic alterations and
neurodegeneration [127–129,131,158–160]. As we shall see in the next section, autophagy is affected in
both PD patients and experimental models, and promoting autophagy counteracts α-syn aggregation
and rescues DA cell death in experimental parkinsonism (Section 3).

3. Autophagy Failure in Parkinson’s Disease Patients and Experimental Models

The early description of an alteration of the autophagy machinery in the brain of PD patients
was carried out in the late 90s by Anglade et al. (1997) [161], who demonstrated in the Substantia
Nigra pars compacta (SNpc) the concomitancy of apoptotic cells and neurons where autophagy
appeared to be altered. These ultrastructural findings followed up a smoldering background, where
commonalities between altered ubiquitin-dependent protein degradation and PD were already
postulated by Mayer et al. [162,163]. In detail, the authors were stricken by the similarities between
cell pathology developing during viral infections and neuronal inclusions observed in PD, both being
cases characterized by ubiquitin-positive proteinaceous aggregates. On this basis, an altered protein
degradation pathway was postulated as a common mechanism in these disorders. Indeed, alterations
of autophagy machinery have been documented in the brains of patients with PD and Dementia
with Lewy Bodies (DLB), featuring the occurrence of altered mitochondria within autophagy-like
vacuoles, and the concomitant accumulation of LC3-II and α-syn [164–168]. Again, decreased levels of
Atg7 along with increased levels of mTOR are detected in PD brains [169]. This occurs along with
the accumulation of α-syn-filled LC3-II-positive autophagosomes, which do not co-localize with the
lysosomal cathepsin D, confirming an impaired autophagy flux in PD.

The impressive insight into the genetics of PD between the end of the 90s and the first decade
of 2000 led to hypotheses that autophagy failure might be a common event in PD [128]. In fact, as
thoroughly reviewed elsewhere, several proteins which are coded by PARK loci-related genes play a
role in autophagy machinery. Either structural changes or genetic mutations leading to a loss/gain
of function of PD-related proteins such as α-syn, Synphilin, Endophilin-A, LRRK2, UCH-L1, DJ-1,
Parkin, and PINK1 affect the autophagy machinery at various levels, ranging from autophagosome
biogenesis to priming of aggresomes for autophagic clearance, lysosomal uptake, and degradation of
substrates [125,128–130].

Studies on transgenic and toxin-based experimental models of parkinsonism have been seminal to
confirm a key role of autophagy in the survival of DA neurons. For instance, in catecholamine-containing
PC12 cell lines, the overexpression of mutant A53T human α-syn leads to cell death, which associates
with impaired lysosomal degradation [170]. In detail, mutant α-syn binds to the lysosomal-associated
membrane protein type 2A (LAMP-2A) to block the lysosomal uptake and inhibit both their own
degradation and that of other autophagy substrates [159]. Overexpressed and mutant α-syn may also
inhibit autophagy by impairing the cytosolic translocation of high mobility group box 1 (HMGB1),
which blocks HMGB1-Beclin-1 binding while strengthening Beclin1-BCL2 binding [158]. As a proof
of concept, when autophagy is occluded in cell lines and in cultured murine midbrain DA neurons,
an accumulation of α-syn occurs [171–173]. Conversely, exposure to autophagy inducers such as
rapamycin, a gold-standard mTORC1 inhibitor, or overexpression of Beclin-1, boosts the clearance
of α-syn [158,171,173]. Again, pharmacological and genetic blockade of autophagy exacerbates
DA cell loss and formation of α-syn-containing inclusions which are induced by the neurotoxic
drug of abuse Methamphetamine (Meth) [143,174–176]. Conversely, autophagy activation is able to
counteract both Meth toxicity and Meth-induced behavioral alterations [143,175–177]. Autophagy
inhibition also exacerbates rotenone- and 6-hydroxydopamine (6-OHDA)-induced DA toxicity in vitro
and in vivo [178,179], while autophagy activation protects against 6-OHDA and rotenone-induced
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parkinsonism [180,181]. Likewise, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced
nigrostriatal damage in zebrafish is prevented by the overexpression of ATG5, which reduces the levels
of α-syn and other indigested proteins while rescuing locomotor activity [182].

As demonstrated in Atg7 and Atg5-knockout (KO) mice, the presence of intracellular inclusions
bearing misfolded and insoluble a-syn fibrils coupled with the degenerative and sometimes precociously
lethal phenotypes, confirm the key role of constitutive autophagy in the CNS [136,183–185]. Remarkably,
both Atg5- and Atg7-KO models fully recapitulate the severe motor impairment and neuropathology
of PD patients [136,183–185]. In fact, the loss of autophagy in these models produces DA cell loss along
with neuronal inclusions featuring protein aggregates such as α-syn, Parkin, PINK1, LRRK2, ubiquitin,
and p62 [136,184]. Defective autophagy fosters protein aggregation while promoting a prion-like
spreading of misfolded proteins, which is a hallmark of PD. It seems that dysfunctional autophagy due
to the impaired merging of autophagosomes with endosomes and lysosomes produces an exocytotic,
inter-neuronal spreading of indigested cargoes such as α-syn [186]. An impairment of the autophagy
pathway is tightly intermingled with α-syn misfolding/aggregation/accumulation/spreading and, thus,
with the neurobiology of PD and related “synucleinopathies” such as DLB, multisystem atrophy (MSA),
pure autonomic failure (PAF), lysosomal storage diseases (LSD), and Meth abuse [127,131,187–191].

4. Phytochemicals: Autophagy-Based Effects and Related Potential for Alpha-Synuclein
Clearance in Experimental Parkinsonism

4.1. Introduction to Phytochemicals and Rough Classification

Phytochemicals may be classified either on the basis of their chemical structure or the biological
system in which they occur. This dual classification may produce some confusion since there is
considerable overlap between the chemical types of phytochemicals and their biological distribution.
Thus, as an in-depth classification of phytochemicals is far from the aim of this review, we limit to
providing a brief overview of the main classes of phytochemicals which are found in the plants taken
into account here. This is done in the attempt to roughly contextualize the distribution of different
bioactive compounds in specific herbal compounds before moving to their biological effects focused
on autophagy activation, α-syn clearance, and role in Parkinsonism.

Within each phytochemical category, further sub-division is based on their chemical structure.
For instance, polyphenols possess multiple phenolic units in their chemical structure, thus ranging
from simple molecules to highly polymerized structures. Roughly, polyphenols are classified into
four major classes, that is, phenolic acids, flavonoids, lignans, and stilbenes [192]. Examples of
polyphenol-rich plants we chose to examine in the present review include the turmeric C. longa
containing the polyphenol curcumin, the green tea from C. sinensis containing catechins and flavonoids,
C. asiatica containing gallic acids and flavonoids, and V. vinifera containing resveratrol [192,193].

Similar to polyphenols, terpenes are classified into many categories based on the number of
carbon atoms and isoprene residues present in their structure, namely monoterpenes, sesquiterpenes,
diterpenes, triterpenes, tetraterpenes, and polyterpenes [194]. All terpenes share a common 5-carbon
unit named isoprene which has a branched carbon skeleton deriving from a basic 5-carbon unit
named isopentane. Some triterpenes are steroidal in nature, and they are known as triterpenoid
saponins. These correspond to tetracyclic or pentacyclic molecules. An example of bioactive tetracyclic
triterpenoid saponins are bacosides, which represent the major class of nootropic phytochemicals found
within B. monnieri [119]. An example of bioactive pentacyclic triterpenoid saponins are madecassosides,
which are found in C. asiatica [193]. Steroidal tetracyclic molecules also occur as triterpenoid saponins,
which are known as ergostane-type steroids. These are best exemplified by bioactive compounds known
as withanolides, which consist of a steroid backbone bound to a lactone or one of its derivatives [195].
Withanolides and saponins are widely found in ashwagandha, which derives from W. somnifera
roots [195]. Despite this rough classification, most herbal products contain both terpenoids and
steroidal saponins, which indeed share many properties despite differing in their structure.
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4.2. Autophagy and Alpha-Synuclein Clearance as Common Effects Induced by Phytochemicals

All the bioactive classes above-summarized feature a remarkable overlap in their neuroprotective
effects, which encompass anti-oxidant and anti-inflammatory activity, mitochondrial protection,
and increased neuronal lifespan. In addition, phytochemicals exert anti-fibrillogenic effects, thus
counteracting aggregation of proteins such as tau, amyloid-beta, and α-syn in the brain [196] (Figure 2).
Remarkably, these phytochemicals may also act as autophagy activators, which may account for some
of their beneficial effects in parkinsonism, such as counteracting α-syn aggregation. Albeit being a
substrate of both autophagy and proteasome, α-syn clearance is carried out by autophagy when the
proteasome is impaired, suggesting that α-syn may be a preferential substrate of autophagy [171,197].
Since α-syn dynamics are tightly bound to autophagy, which, in turn, is markedly affected in PD, in
the present manuscript we focus on evidence about phytochemical-induced autophagy and α-syn
clearance in experimental parkinsonism.
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Figure 2. A schematic overview of the beneficial effects of phytochemical-rich plants in α-syn
aggregation dynamics (light grey circles), and related molecular mechanisms (central dark grey
circle) occurring in PD. In a physiological state, a dynamic equilibrium (blue arrows) exists
between α-syn natively unfolded monomers and membrane-bound α-helical monomers (secondary
structure). Environmental toxins or mutations/multiplications within α-syn gene (SNCA) favor α-syn
misfolding/overexpression and drive a pathological cascade of conversion up to insoluble fibrils
and Lewy body formation. This is associated with a generalized impairment of cell homeostasis
consisting of altered DA metabolism and synaptic dysfunction, oxidative stress, mitochondrial damage,
autophagy impairment, and cell-to-cell spreading of misfolded and aggregated α-syn conformers.
Phytochemicals found within Curcuma longa, Bacopa monnieri, Centella asiatica, Camellia sinensis, Withania
somnifera and Vitis vinifera are able to reverse/prevent the pathological conversion cascade of α-syn
while counteracting alterations of DA neurotransmission, oxidative stress, mitochondrial damage and
autophagy impairment (green shade).
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4.2.1. Curcumin from Curcuma longa

A large body of evidence converges in that curcumin may act as an autophagy inducer, which
associates with various protective effects beyond the mere clearance of potentially harmful protein
aggregates. For instance, curcumin promotes neurogenesis via autophagy activation [198]. In fact,
in human pluripotent stem cells, curcumin upregulates neural genes along with autophagy-related
genes such as Atg5, Atg8 (LC3), and Lamp1. Conversely, the inhibition of autophagy by chloroquine
suppresses both autophagy and neural differentiation [198]. Furthermore, curcumin counteracts the
alterations in synaptic transmission and autophagy machinery which are induced by exogenously
administered misfolded proteins to cultured hippocampal neurons [199]. Again, curcumin-induced
autophagy through inhibition of mTOR associates with protection from oxidative damage in several
cell models [200,201].

The beneficial and neuroprotective effects of curcumin in PD experimental models have been
widely demonstrated and thoroughly reviewed [112,113] (Table 1). The effects of chronic curcumin
administration were recently evaluated in an animal model of PD induced by lipopolysaccharide
(LPS) injection into the SN of rats [46]. Curcumin supplementation confers neuroprotection and
attenuates motor deficits by preventing the LPS-induced neuro-inflammation and iron deposition in
DA-containing neurons, and by promoting the anti-oxidant defense mechanisms along with preventing
α-syn overexpression and aggregation [46], suggesting that curcumin holds potential as a candidate
drug in the targeted therapy for synucleopathies. A number of studies aimed at enhancing the
bioavailability and neuroprotective effects of curcumin also evaluated the effects of curcumin-based
formulations against α-syn fibrillation and cytotoxicity. For instance, a nanoformulation consisting
of amine-functionalized mesoporous silica nanoparticles of curcumin prevents α-syn fibrillation and
subsequent cytotoxicity [202]. Another nanoformulation prepared with lactoferrin by sol-oil chemistry
protects from rotenone-induced neurotoxicity in DA-containing cells through attenuation of oxidative
stress along with a reduction of α-syn and tyrosine hydroxylase (TH) expression [203]. Similarly,
curcumin-loaded polysorbate 80-modified cerasome nanoparticles alleviate MPTP-induced motor
deficits in mice and confer neuroprotection by rescuing striatal DA levels and TH expression while
promoting α-syn clearance [28].

A few studies focused specifically on the autophagy-based neuroprotective effects of curcumin. In
detail, curcumin suppresses oxidative stress and neurotoxicity which are induced by the parkinsonian
neurotoxins paraquat and atrazine through activation of autophagy in DA-containing SH-SY5Y
cells [204,205]. Curcumin is able to modulate autophagy also via activation of TFEB to foster autophagy
and lysosomal biogenesis in vitro and in vivo [206,207]. In keeping with this, it is remarkable that
besides mTOR inhibitors, even compounds acting as TFEB activators protect from neurotoxicity in
several experimental models, including parkinsonism [208]. In fact, curcumin confers protection and
enhances DA cell survival by rescuing autophagy through TFEB activation in an MPTP-based cell
model of PD [22]. Such an effect goes along with a reduction in α-syn levels [22], which is in line with
several pieces of evidence indicating a role of curcumin-induced autophagy in counteracting α-syn
aggregation and toxicity. For instance, curcumin rescues autophagy dysfunction which is induced by
overexpression of mutated (A53T) α-syn in DA-containing SH-SY5Y cells, and such an effect is occluded
by the autophagy inhibitor 3-MA. In turn, curcumin-induced activation of autophagy via mTOR
inhibition reduces mutant α-syn accumulation to confer neuroprotection in DA cells [48]. Again, a
nanoformulation containing curcumin and piperine with glyceryl monooleate nanoparticles efficiently
crosses the blood-brain barrier in rotenone-induced mouse models of PD to attenuate oxidative
stress and apoptosis while preventing α-syn oligomerization and fibrillation through induction of
autophagy [209].
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Table 1. Neuroprotective effects of curcumin in PD models.

PD Model Cell-Based Models In Vivo Models

MPTP
[28–34]

Nanoparticle-loaded curcumin in SH-SY5Y [28]
↓cytotoxicity and necrotic-like morphologic

alterations
↑DA and tyrosine hydroxylase (TH) levels

↓α-syn aggregation
Serum from Curcumin-activated human

mesenchymal stem cells in PC12 cells [29]
↓apoptosis

↑neuronal differentiation, DAT and TH expression
↓pro-inflammatory cytokine release

↓nitric oxide (NO), and inducible NO synthase
(iNOS) levels

Curcumin in SH-SY5Y [30,31]
↓cytotoxicity [30,31]

↓α-syn protein and mRNA levels [30]
↑LAMP2 and LC3II and TFEB-dependent

autophagy [30]
↓c-Jun, c-Jun N-Terminal Kinase (JNK), and

caspase-3 [31]

Nanoparticle-loaded [28] or free curcumin [31–34] in mice
↓Parkinsonian motor symptoms [28,31,32,34]

↓loss of TH-positive neurons, depletion of DA levels and
dopamine transporter (DAT)-positive fibers in the striatum

[28,31–34]
↓α-syn positive Lewy Bodies [34]

↓lipid peroxidation [34]
↑antioxidant markers superoxide dismutase (SOD) and

glutathione (GSH) [34]
↓JNK and caspase-related apoptotic pathways [31,32]
↑regeneration of neuroblasts in the subventricular zone

(SVZ) [33]
↑growth-derived neurotrophic factor (GDNF) and

transforming growth factor beta 1 (TGF-β1) levels in the
SVZ [33]

6-OHDA
[35–40]

Curcumin in deutocerebrum primary cells [35]
↑survival, antioxidant defense, and adhesive ability

↑Wnt/β-catenin signaling pathway
Curcumin in MES23.5 and SH-SY5Y cells [37,38]

↓neurotoxicity
↓ROS accumulation

↓p53-mediated apoptosis
↓Nuclear Factor K Beta (NF-kβ) nuclear translocation
↑antioxidant enzyme levels and mitochondrial

membrane potential (MMP)
Curcumin in SH-SY5Y [39]

↓toxicity
↓loss of TH

↓toxic quinone formation
↓p38-Mitogen-Activated Protein Kinase (MAPK) and

caspase-3

Curcumin in rats [35,36]
↓neurotoxicity ↓behavioral alterations

↑TH and DAT expression
↓Glial Fibrillary Acidic Protein (GFAP), Heat shock protein

70 (HSP70), and Malondialdehyde (MDA) content
↑antioxidant markers SOD and GSH

↑Wnt3/b-catenin pathway, neurotrophic growth factors
(NGF) and tyrosine receptor kinase A (TrkA) expression

Curcumin in mice [40]
↓L-DOPA-induced dyskinesia

↓Extracellular Signal-Regulated Kinase (ERK)-related AP-1
family transcription factors c-Fos, Fra, FosB, and c-Jun

Rotenone
[41–43]

Demethoxycurcumin (DMC), a derivative of
curcumin, in SH-SY5Y cells [41]

↓toxicity
↓ intracellular ROS

↓proapoptotic proteins Bax, BAD, caspase-3, -6, -8, -9
in mitochondria, and cytochrome (Cyt)-c in the

cytosol
↑MMP

↑antiapoptotic markers Bcl-2, Bcl-xL, and Cyt-c in
mitochondria

Curcumin in rats [42]
↓motor dysfunction
↑TH activity

↓GSH, Heme Oxygenase-1, and Nicotinamide Adenine
Dinucleotide Phosphate Hydrogen (NADPH):quinone

oxidoreductase 1 levels
↓ROS and MDA

↑Akt-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2)
pathway

Curcumin in mice [43]
↓parkinsonian behavior

↓lipid peroxidation and nitrite levels
↑antioxidant enzymes SOD, catalase (CAT), and GSH
↑Succinate Dehydrogenase (SDH) activity and

mitochondrial enzyme complex activity

Copper
[44,45]

Curcumin in mice [44,45]
↑locomotor activity

↑TH expression within SNc, ventral tegmental area (VTA),
and dorsal striatum
↓loss of GFAP levels

LPS
[46]

Curcumin in rats [46]
↓iron deposition
↓α-syn aggregation

↓pro-apoptotic markers Bax, Caspase 3, and Caspase 9
↓inflammatory response markers GFAP, NF-kβ, tumor

necrosis factor alpha (TNF-α), interleukine (IL)-1β and 1α,
and iNOS

↑NADPH oxidase complex and GSH
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Table 1. Cont.

PD Model Cell-Based Models In Vivo Models

α-Syn
overexpression/

mutation
[47–50]

Curcumin in SH-SY5Y cells [47]
↓cytotoxicity induced by either extracellularly

administered or intracellularly overexpressed α-syn
↓cytotoxicity of aggregated α-syn

↓ROS
↓caspase-3 activation and apoptosis

Curcumin in SH-SY5Y cells [48]
↓A53T α-syn-induced cytotoxicity↓

cytoskeletal pathology
↓α-syn overload
↓mTOR

↑autophagy, LC3II levels and co-localization of
LC3-α-syn puncta

Curcumin in PC12 cells [49]
↓A53T α-syn-induced cytotoxicity

↓ROS, Cyt-c release, caspase-9 and -3 activation, and
mitochondrial depolarization

Curcumin in Drosophila models expressing human α-syn
[50]

↑lifespan and activity pattern
↓oxidative stress, apoptosis, lipid peroxidation protein

carbonyl overload

dUCH Knockout
[51]

Curcumin in Drosophila ubiquitin carboxy-terminal
hydrolase (UCH)-KO [51]
↓locomotor defects

↓loss of TH-positive neurons and DA levels
↓ROS

DJ-1 Knockout
[52]

Liposomal-formulated curcumin in DJ-1-KO rats [52]
↑motor activity
↓apoptosis

↑stimulates DA neurogenesis through targeting histone
deacetylase (HDAC) inhibition

PINK1 siRNA
[53]

Curcumin in PINK1 siRNA SH-SY5Y cells [53]
↓apoptosis

↑MMP and maximal respiration
Curcumin in PINK1 siRNA SH-SY5Y cells exposed

to paraquat [53]
↔apoptosis and mitochondrial dysfunctions

LRRK2 mutation
[54]

Curcumin in LRRK2-transfected HEK293T cells and
primary neurons treated with H2O2 [54]

↓combined cytotoxicity
↓LRRK2 kinase activity

Curcumin in LRRK2-transgenic Drosophila exposed to H2O2
[54]

↑survival and locomotor activity
↓loss of DA neurons

↓oxidized protein levels and LRRK2 kinase activity

Bold: The compound and the model in the tables.

4.2.2. Bacosides and Bacopasides from Bacopa monnieri

B. monnieri has proven potential efficacy in both in vitro and in vivo transgenic and toxin-induced
experimental parkinsonism owing to its antioxidant, anti-inflammatory and neuroprotective
properties [114,119] (Table 2). As a nootropic and adaptogenic compound, B. monnieri also acts as a
DA releaser, which likely underlies its ability to ameliorate locomotor activity and cognitive functions
in animal models of PD [114,119]. A few recent studies suggest that B. monnieri exerts its beneficial
effects through autophagy activation. In fact, B. monnieri protects against Benzo[a]pyrene-induced
oxidative stress, mitochondrial damage and cytotoxicity through autophagy induction [210]. An
important standpoint in this study is that B. monnieri confer cytoprotection through induction of
autophagy-dependent removal of damaged mitochondria, since inhibition of autophagy by Beclin-1
KO occludes its cytoprotective effects [210]. Again, bacopasides found within B. monnieri activate
autophagy to modulate stem-cell cycle and growth [211].



Int. J. Mol. Sci. 2019, 20, 3274 11 of 35

Table 2. Neuroprotective effects of Bacopa monnieri in PD models.

PD Model Cell-Based Models In Vivo Models

MPTP
[55–58]

B. monnieri in SH-SY5Y cells [55]
↓toxicity and morphologic alterations
↑mitochondrial functions, MMP, NADH

dehydrogenase, mitochondrial complex I activity
↑proteasome activity and GSH levels

↑pAkt/total Akt ratio, and activation of Nrf2

B. monnieri in mice [56,57]
↓Parkinsonian motor abnormalities

↓TH-positive cell loss
↑DA and its metabolite levels
↑neurogenic genes in the SNc

↓lipid peroxidation and nitrite levels ↑antioxidant
enzymes CAT, glutathione reductase and peroxidase
(GR and GPx), ↓apoptotic enzymes caspase-3 and Bax

↑antiapoptotic enzyme Bcl-2
Nanoparticle-loaded B. monnieri in zebrafish [58]

↓Parkinsonian motor symptoms
↑DA and its metabolites levels

↑GSH, GPx, CAT, SOD, and mitochondrial complex-I
↓lipid peroxidation, MDA levels

Paraquat
[55,59–63]

B. monnieri in SH-SY5Y cells [55]
↓toxicity

↓ROS and superoxide anione levels
↑GSH and antioxidant enzymes levels
↑pAkt/total Akt ratio and Nrf2 activation

B. monnieri in PC12 cells [60]
↓toxicity
↑TH levels

↓ROS, superoxide anion, MMP
↑antioxidant systems glutamylcysteine synthetase

(GCS) and thioredoxin1 (Trx1) levels
↓activation of Akt and HSP90

B. monnieri in Drosophila [59,63]
↓oxidative stress, mitochondrial dysfunctions, and

lethality [59,63]
↑survival and locomotor activity [63]
↓MDA, ROS and H2O2 levels [59,63]

↓apoptosis-associated genes and proteins JNK,
caspase-3 [63]

↑SDH, mitochondrial complex I-III and II-III
enzymes, CAT, and ATP [59,63]

B. monnieri in mice [61,62]
↓behavioral alterations in mice

↓oxidative stress, mitochondrial dysfunctions, and
neurotransmitter alterations
↓ROS, MDA and H2O2 levels

↑SDH and mitochondrial complex enzymes activities
↑cholinergic enzymes activity and striatal DA levels

6-OHDA
[64,65]

B. monnieri in rats
↓behavioral alterations
↓lipid peroxidation

↑GSH content, and the amount and activities of the
antioxidant GPx, GST, SOD, and CAT enzymes [64].

B. monnieri in C. elegans
↓loss of GFP-tagged DA neurons [65]

Rotenone
[66,67]

B. monnieri in N27 DA-cells [66]
↓toxicity

↓ROS and H2O2 levels
↑GSH levels

B. monnieri in flies and mice [66,67]
↓toxicity and motor alterations

↑cholinergic enzymes activity and striatal DA levels
↓lipid peroxidation, MDA and H2O2 levels, protein

carbonyl content
↑GSH, SOD and CAT content

PINK1-KO
[68]

B. monnieri in PINK1-KO flies [68]
↑climbing ability

α-Syn
Overexpression

[65]

B. monnieri in C. elegans transgenic models
overexpressing human α-syn [65]

↓α-syn aggregation
↑lipid content

Bold: The plants and models in the table.

The effects of B. monnieri were recently assessed in two Caenorhabditis elegans (C. elegans) PD models,
namely a transgenic model overexpressing human α-syn, and a pharmacological model expressing
green fluorescent protein (GFP) specifically in DA neurons treated with the selective neurotoxin
6-OHDA [65]. The study examined the effects of B. monnieri on α-syn aggregation in association with
degeneration of DA neurons, lipids content, and longevity of the nematodes. In detail, B. monnieri
prevents DA-neuron degeneration and increases lifespan in nematodes through reduction of α-syn
aggregation and restoration of lipid content [65]. Studies investigating the effects of B. monnieri on
α-syn aggregation and autophagy modulation specifically in parkinsonism are missing so far. However,
the few available findings underlining the potential of B. monnieri as a possible anti-parkinsonian agent
coupled with those demonstrating its pro-autophagic role, encourage further investigations on its
autophagy-based neuroprotective effects in parkinsonism.
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4.2.3. Green Tea Catechins from Camellia sinensis

C. sinensis, the most widely used plant species for green tea, is extremely rich in polyphenols
including catechins and flavonoids. Green tea catechins from C. sinensis show a remarkable potential
in inducing autophagy [212,213]. In detail, these polyphenols modulate autophagy through various
mechanisms, including TFEB, mTOR, and 5′ AMP-activated protein kinase (AMPK) [212–215].
Intriguingly, the green tea catechin epigallocatechin gallate (EGCG) was shown to activate autophagy
even through direct interaction with LC3-I protein, and to foster the exposure of its pivotal Gly-120
site to other important binding partners, thus promoting the synthesis of LC3-II [216]. EGCG also
activates autophagy also via a class III histone deacetylase (HDAC) [217]. Induction of autophagy
by green tea polyphenols associates with various beneficial effects ranging from neuroprotection
against prion protein-induced toxicity in primary neuronal cells [217] to degradation of endotoxins,
anti-inflammatory activity [218] and lipid clearance [219,220]. Again, green tea catechins prevent
hypoxia-induced oxidative stress and cell death by inducing autophagy [221]. Catechins can also inhibit
the growth of tumor stem cells in vitro and in vivo by inducing autophagy [222,223]. Nonetheless, the
autophagy-related properties of green tea depend upon the dosage used, level of stress, and the cell
models employed [212]. For instance, at low-to-moderate doses, EGCG induces autophagy to prevent
apoptosis and promote cell viability, while higher concentrations of EGCG may inhibit autophagy
leading to apoptosis [215,224].

Green tea polyphenols are recognized to exert powerful neuroprotective effects in both
cell-based and animal models of parkinsonism owing to their ability to counteract oxidative stress,
neuroinflammation, and protein aggregation, and to promote autophagy [213,225] (Table 3). For
instance, green tea polyphenols activate autophagy in DA-containing SH-SY5Y cells to confer
neuroprotection from the toxic herbicide atrazine [205]. Again, EGCG protects neuronal-like,
catecholamine-containing PC12 cells from oxidative-radical-stress-induced toxicity through inhibition
of GSK3 pathway [226], and likely, through autophagy activation. Again, in transgenic Drosophila
models of PD, namely mutant LRRK2 and Parkin-null flies, EGCG protects from neurodegeneration and
mitochondrial dysfunction through activation of AMPK, which is an upstream autophagy inducer [80].
Consistently, pharmacological or genetic activation of AMPK reproduces EGCG’s protective effects,
while the loss of AMPK activity exacerbates Parkin-null- and mutant LRRK- induced DA neuronal
loss and motor alterations [80]. Similar to parkin, AMPK is seminal to induce mitophagy, which
occurs through AMPK-mediated phosphorylation of the autophagy initiator ATG1. This suggests that
autophagy, and in particular mitophagy induction, may underlie the ability of EGCG to rescue from
neurotoxicity which is induced by the enhanced LRRK2 kinase activity.

Green tea catechins, especially EGCG, also possess a remarkable potential against α-syn
aggregation and fibrillation in experimental parkinsonism [70,71,196,227]. In detail, EGCG provides
neuroprotection and attenuates motor abnormalities in 6-OHDA-treated parkinsonian rats, which
associates with reduced α-syn expression along with decreased mTOR, AKT, and GSK3-β levels [78].
Since inhibition of the mTOR/AKT/GSK-3β axis leads to autophagy induction, it is likely that EGCG
reduces α-syn levels through autophagy-dependent protein clearance. EGCG may also prevent
α-syn aggregation through modulation of the hypoxia-inducible factor (HIF)-1 signaling pathway,
which in turn controls oxidative and iron homeostasis, and also autophagy-dependent mitochondrial
turnover [228,229]. It is worth mentioning that EGCG modulates α-syn dynamics also through
conformational [196,228] or epigenetic mechanisms [230]. In particular, EGCG interferes with an
early step in the aggregation cascade by binding directly to the natively unfolded α-syn to inhibit
its conversion into toxic intermediates [231]. Again, EGCG converts large, mature α-syn particles
into non-toxic amorphous monomers or small diffusible oligomers displaying reduced α-syn toxicity
in vitro [231]. EGCG also disaggregates α-syn fibrils by preventing the amyloid formation of α-syn
tandem repeat and destabilizing α-syn fibrils into soluble amorphous aggregates [232]. In detail,
EGCG appears to bind directly β-sheet-rich aggregates, thus reducing the relative concentration which
is required to induce conformational changes [233]. Furthermore, EGCG modulates methylation of
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CpG sites within the promoter region of the α-syn gene (SNCA) to regulate its expression levels in the
rodent brain [230].

Table 3. Neuroprotective effects of Camellia sinensis in PD models.

PD Model Cell-Based Models In Vivo Models

MPTP
[69–73]

EGCG in PC12 cells [69]
↓cytotoxicity

↓ROS production
↑antioxidant enzymes SOD1 and GPx

↑SIRT1/ Peroxisome Proliferator-Activated Receptor
Gamma Coactivator 1-alpha

(PGC-1α) pathway

EGCG in mice [70–73]
↓motor abnormalities [72,73]

↓loss of TH-positive neurons [70,71,73]
↑striatal DA levels, TH amount and activity [70–72]

↓α-syn accumulation [70,71]
↑Bcl-2 ↓Bax [70,71]

↑Protein Kinase C alpha (PKC-α) overexpression
[70,71]

↓oxidative stress and protein carbonyl content [72]
↑ iron-export protein ferroportin [72]
↓the ratio of CD3+CD4+ to CD3+CD8+ T
lymphocytes in the peripheral blood [73]
↓TNF-α and IL-6 in the serum [73]

DJ-1-KO/Parkin-KO
+ Paraquat

[74,75]

Catechins (EGCG and propyl gallate, PG) in
paraquat-exposed DJ-1-KO or Parkin-KO Drosophila

[74,75]
↑life-span and locomotor activity

↓degeneration of TH-positive neurons
↓lipid peroxidation

6-OHDA
[76–78]

EGCG in PC12 and SH-SY5Y cells [76]
↓toxicity

↓Nf-kβ nuclear translocation and binding activity

C. sinensis extracts and catechins in rats [77]
↓behavioral alterations

↑TH- and cyclooxygenase (COX)-2 immunopositivity
↑DA and its metabolites levels in the striatum
↓lipid peroxidation, nitrite levels, and iNOS

immunopositivity
EGCG in rats [78]

↓motor alterations and apoptosis in the SN
↓α-syn, mTOR, AKT, and GSK3β levels

Rotenone
[79]

EGCG in RGC-5 [79]
↓toxicity

↓lipid peroxidation
↓MAPK, c-Jun, JNK, and p38

Parkin-KO and/or
LRRK2 mutation

[80]

EGCG in Parkin-null or LRRK2-mutated
Drosophila [80]
↑climbing scores
↓loss of DA neurons
↑mitochondrial integrity
↑activation of AMPK

α-Syn
overexpression

[81]

EGCG in Drosophila expressing human α-syn in the
brain [81]

↑climbing ability
↓apoptosis and lipid peroxidation

Bold: The names of plant/bioactive compounds and models.

4.2.4. Gallic Acids, Asiatic Acids, and Madecassosides from Centella asiatica

Various in vitro and in vivo experimental studies indicate an anti-parkinsonian potential of
C. asiatica (Table 4). Several bioactive compounds found within C. asiatica act as autophagy inducers,
though this was mostly documented in cell-based models other than PD. For instance, madecassoside, a
major bioactive component of C. asiatica, reduces oxidative stress and Ca2+ overload while attenuating
subsequent mitochondrial damage through activation of autophagy [234]. Again, Asiatic acid
triterpenoids found within C. asiatica downregulate stem-cell growth through inhibition of the
Akt/mTOR pathway [235]. Similarly, gallic acid monophenols, which are major constituents of
C. asiatica, act as autophagy inducers as shown by the increased abundance of LC3-II coupled with
enhanced degradation of p62 [152]. Phytochemicals including gallic acids induce autophagy even
through activation of SIRT1, which associates with decreased acetylation of cytoplasmic proteins.
Conversely, administration of bafilomycin A1, which blocks late-step autophagy progression, occludes
the beneficial effects of several phytochemicals including gallic acids [152].
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Table 4. Neuroprotective effects of Centella asiatica in PD models.

PD Model Cell-Based Models In Vivo Models

MPTP
[82–85]

C. asiatica in mice [82,83]
↓motor abnormalities [82,83]

↑DA levels, DAT and vesicular monoamine transporter type 2
(VMAT2) in the SN and striatum [82]

↑Brain-Derived and Vascular-Endothelial Growth Factors
(BDNF, VEGF), GDNF, and TrKB [82]

↓MAPK-P38 related activation of JNK and ERK [82]
↑SOD, CAT, GPx, and GSH [83]
↓lipid peroxidation [83]

C. asiatica in rats [84,85]
↓motor abnormalities [84]

↑DA and its metabolite levels [84]
↓lipid peroxidation, MDA, and protein carbonyl content [84,85]

↑GSH, Bcl-2/Bax ratio, BDNF [84]
↑SOD, CAT, GPx, and GSH [85]

Rotenone
[86,87]

C. asiatica in SH-SY5Y cells [86]
↓cytotoxicity, ROS, apoptosis, and DNA

damage
↑MPP, Bcl-2

↓Bax, Cyt-c, caspases-3, -6, -8, and -9

C. asiatica in rats [87]
↓motor deficits

↓loss of TH-immunopositivity in the SN and striatum
↓ lipid peroxidation, MDA levels

↑mitochondrial complex I activity, SOD, and CAT

α-syn
overexpression

[88]

C. asiatica in Drosophila expressing human α-syn in the brain
[88]

↑climbing ability and activity pattern
↓lipid peroxidation, MDA, and protein carbonyl content

↑GSH

PINK1-KO
[68]

C. asiatica in PINK1-KO Drosophila [68]
↑climbing ability

Bold: The names of plants and models.

Studies investigating autophagy-based effects of C. asiatica specifically in PD models are still limited
so far. There is some indirect evidence based on SH-SY5Y DA cell lines. Here, Asiatic acids protect from
glutamate-induced excitotoxicity by decreasing apoptosis and ROS, while stabilizing mitochondrial
function through activation of the autophagy inducer SIRT1 [236]. Nonetheless, C. asiatica counteracts
a-syn aggregation to confer neuroprotection in several PD models. In fact, C. asiatica inhibits α-syn
aggregation from monomers, the transition of oligomers to aggregates and fosters the disintegration
of the preformed fibrils [237]. Such an effect may be due to gallic acids, which prevent α-syn fibril
formation while stabilizing the extended, native structure of α-syn [238]. Again, they protect from
α-syn-induced toxicity by disaggregating pre-formed α-syn amyloid fibrils [239]. Interestingly, at
very low concentrations and similar to what reported for EGCG, gallic acid was found to bind to and
stabilize soluble, non-toxic α-syn oligomers lacking β-sheet content [239]. Again, in MPTP-treated mice
and in transgenic Drosophila models over-expressing human α-syn, C. asiatica increases motor ability
and it protects from neurotoxicity by reducing oxidative stress, lipid peroxidation and protein carbonyl
content [85,88]. Unfortunately, these studies did not specifically asses α-syn levels or autophagy status,
which underlines the need for further in vivo studies aimed at clarifying whether C. asiatica exerts
neuroprotection through anti-α-syn and autophagy-based effects.

4.2.5. Withanolides and Withaferin from Withania somnifera, ashwagandha

Withanolides, the biologically active steroids of ashwagandha, confer neuroprotection and
improve behavioral abnormalities in experimental parkinsonism, owing to their anti-oxidant, synaptic
remodeling, and nerve-regenerating properties [240,241] (Table 5). Among their various biological
effects, withanolides also modulate autophagy. Withaferin A, the most investigated and major
constituent of ashwagandha, induces stem-cell cycle arrest and suppresses stem-cell growth through
autophagy enhancement [242]. Again, ashwagandha prevents the accumulation of misfolded proteins
and exerts beneficial anti-inflammatory and immunomodulatory effects, which may be due to autophagy
activation. In fact, ashwagandha prevents glial activation and phosphorylation of nuclear factor
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kappaB (NF-κB) while inducing autophagy to reduce disease severity in SOD1(G93A) mouse model of
ALS [243]. This suggests that autophagy-based effects induced by ashwagandha may be beneficial
at the early stages of neurodegeneration [243]. Nonetheless, controversial results are found in the
literature concerning the autophagy-related effects of ashwagandha. In fact, some studies performed
in cancer cell-lines suggest that withaferin A may act as an autophagy inhibitor, or that concomitant
administration of autophagy inhibitors potentiates rather than preventing the beneficial effects of
withaferin A [242,244–248]. These controversies may be due to several factors. Firstly, similar to
that reported for other phytochemicals such as green tea catechins, the effects of withaferin upon
autophagy may be dose-dependent. In fact, low doses of withaferin induce autophagy as shown
by the massive accumulation of LC3II puncta coupled with progressive degradation of p62 [248].
Contrariwise, higher concentrations of withaferin may stimulate endoplasmic reticulum (ER) stress to
activate pro-apoptotic proteins, which may suppress autophagy-related proteins [248]. Secondly, most
of the studies investigating the effects of ashwagandha on autophagy were carried out in tumor cells,
where very high, toxic concentrations of Withaferin are generally employed to induce growth arrest
and sensitization to apoptosis. These considerations suggest that appropriate dosing of phytochemicals
is key when investigating and interpreting potential therapeutic effects.

Table 5. Neuroprotective effects of W. somnifera (ashwagandha) in PD models.

PD Model In Vivo Models

MPTP
[83,89–91]

Ashwagandha in mice [83,89–91]
↓Parkinsonian motor abnormalities [83,89–91]
↑DA and its metabolite levels [89–91]
↑GSH, GPx, SOD, and CAT [83,89–91]

↓lipid peroxidation and thiobarbituric acid reactive substance (TBARS) [83,89–91]

Maneb-Paraquat
[92,93]

Ashwagandha in mice [92,93]
↓behavioral alterations and TH loss

↓ROS, lipid peroxidation, iNOS, Bax, GFAP
↑Bcl-2, CAT

6-OHDA
[94]

Ashwagandha in rats [94]
↓behavioral alterations

↑TH expression, DA and its metabolite levels, DA D2 receptor binding
↓lipid peroxidation

↑GSH, GPx, GR, GST, SOD, and CAT

Rotenone
[95]

Ashwagandha in Drosophila [95]
↓toxicity and motor alterations

↑striatal DA levels
↓ROS, lipid peroxidation, and H2O4

↑GSH, GST, SOD, and CAT
↑SDH, mitochondrial complex-I-III and complex-II-III

LRRK2 mutation
[96]

Ashwagandha in adult Drosophila [96]
↑lifespan, locomotor activity, muscle electrophysiological response to stimuli

↓mitochondria degeneration

PINK1-KO
[68]

Ashwagandha in PINK1-KO Drosophila [68]
↑climbing ability

Bold: The compunds and models.
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Despite the plethora of evidence supporting the multifold benefits of ashwagandha in experimental
models of parkinsonism, only one recent study investigated the effects of withanolides specifically
upon α-syn aggregation. This was carried out in stress-exposed C. elegans models expressing yellow
fluorescent protein (YFP)-tagged α-syn [240]. In detail, Withanolide treatment produces a reduction of
nearly 40% in α-syn levels compared with untreated animals. In withanolide-treated worms, such
an effect goes along with lifespan extension, modulation of acetylcholine release, and enhancement
of oxidative and thermal stress resistance [240]. Remarkably, all these beneficial effects depend on
the insulin/insulin-like growth factor signaling (IIS) pathway, which is an upstream modulator of
autophagy. Although the role of autophagy was not specifically investigated, it appears worthwhile
to test in the future the effects of upon autophagy modulation and its potential contribution in
parkinsonism and related synucleinopathies.

4.2.6. Resveratrol from Vitis vinifera

Resveratrol, a stilbene found in grapes and red wine, possesses multifold benefits including
attenuation of oxidative stress, inflammation and mitochondrial impairment, modulation of stem-cell
growth, neuroprotection and autophagy induction [124,249,250] (Table 6).

Table 6. Neuroprotective effects of resveratrol in PD models.

PD Model Cell-Based Models In Vivo Models

MPTP
[97–101]

Resveratrol in SH-SY5Y cells [97]
↓cytotoxicity and apoptosis
↓α-syn mRNA levels

↓metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) and miR-129 expression

Resveratrol in mice [97–100]
↓Parkinsonian motor symptoms [98–100]

↓loss of TH-positive neurons and striatal DA depletion
[97–100]

↓α-syn levels [97,99,100]
↓apoptosis, Bax and Caspase 3 [97,99]
↓MALAT1 and miR-129 expression [97]

↓proinflammatory cytokine IL-1β and GFAP [99]
↑pAkt/Akt ratio [99]
↓p62 levels [100]

↑SIRT1 and autophagy [100]
Resveratrol in Drosophila [101]

↓behavioral deficits and brain histopathology
↑survival rate and life-span
↓H2O2 and nitric oxide (NO)

↑GST and CAT

6-OHDA
[102,103]

Resveratrol in SK-N-BE cells [102]
↓cytotoxicity
↓ROS

↑SIRT1-dependent autophagy

Resveratrol in rats [103]
↓behavioral alterations induced by apomorphine-and

6-OHDA
↓ultrastructural alterations: chromatin condensation and
clumping, mitochondrial tumefaction, and vacuolization

↓COX-2 and TNF-α

Rotenone
[104–109]

Resveratrol in SH-SY5Y and PC12 cells [104–107]
↓cytotoxicity and mitochondrial damage [104–107]

↓ROS and apoptosis [104–106]
↓histone-associated DNA fragmentation [107]

↓α-syn aggregation [107]
↓cleaved Poly ADP-ribose Polymerase (PARP) [107]

↑p-ERK1/2/ERK1/2 ratio [104,105]
↑autophagy [104–107]

↑Heme Oxygenase-1-dependent autophagy [104,105]
↑SIRT1 pathway and autophagy [106,107]

Nanoparticle-loaded [108] and free resveratrol [109] in rats
↓Parkinsonian motor dysfunction [108,109] and nigral

histopathology [108]
↓striatal DA depletion [109]
↓lipid peroxidation, MDA [108]

↓ER stress markers CHOP and GRP78 [109]
↓caspase 3 activity, IL-1β level, protein carbonyl content [109]
↑SDH, citrate synthase, aconitase, and mitochondrial complex

I activity [108]
↑antioxidant GSH, CAT, GPx [108,109]
↑Nrf2 DNA-binding activity [109]

α-Syn mutation
[102,110]

Resveratrol in SK-N-BE cells [102]
↓A30P α-syn-induced cytotoxicity
↑SIRT1-dependent autophagy

Resveratrol in mice [110]
↓A53T α-syn-induced neurotoxicity
↓motor and cognitive deficits

↓total α-syn and oligomers, α-syn aggregation
↓neuroinflammation and oxidative stress

PINK1 mutation
[111]

Resveratrol in PINK1 mutated Drosophila [111]
↑lifespan, locomotor activity, and muscle ATP production

↓DA neuron loss and abnormal wing posture
↓mitochondrial aggregates
↑autophagy and mitophagy

Bold: The names of compounds and models.

Resveratrol-induced autophagy is associated with a variety of effects which may be relevant
for PD. For instance, resveratrol-induced autophagy modulates embryonic stem-cell proliferation
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and pluripotency through AMPK/Ulk1 upregulation and mTORC1 suppression [251] and promotes
neuronal differentiation of stem-cells as shown by increased expression of the neuro-progenitor
markers Nestin, Musashi, and CD133 [252]. This latter effect occurs through SIRT1 activation, which
besides AMPK/mTOR is one of the main mechanisms bridging resveratrol-induced beneficial effects
and autophagy induction [100,248,253–260]. For instance, resveratrol-induced autophagy via SIRT1
exerts anti-inflammatory [253] and anti-bacterial activity [261], and it counteracts oxidative damage to
promote cell viability [262,263]. Resveratrol-induced autophagy and mitophagy are associated with
cytoprotection and anti-oxidant effects in a plethora of cell-based PD models, including exposure to
the parkinsonian toxins atrazine and rotenone, and overexpression/exposure to misfolded peptides
including mutant α-syn [102,104,105,107,205]. This is recapitulated in mice models of PD such as
MPTP-induced parkinsonism, where resveratrol confers neuroprotection by preventing the loss of
DA neurons and rescuing alterations in TH and DA levels while improving behavioral abnormalities
through SIRT1-dependent autophagy activation [100]. Resveratrol also prevents α-syn aggregation
and toxicity in both cell-based and animal models of parkinsonism [98,102,264,265]. For instance, in
MPTP-treated rats, resveratrol reduces motor dysfunctions and alleviates the loss of DA neurons by
counteracting apoptosis, neuroinflammation and α-syn aggregation [99]. Remarkably, a combined
administration of resveratrol and L-DOPA also reduces the side effects of L-DOPA as well as the
dosage of L-DOPA which is required to produce beneficial effects in MPTP-induced parkinsonism [99].
These effects are associated with an increased pAkt/Akt ratio [99]. Since Akt acts as a major upstream
inhibitor of autophagy through activation of mTOR and/or inactivation of Beclin-1 [266], it is likely that
the effects of resveratrol are bound to induction of autophagy. Indeed, specific autophagy-based effects
of resveratrol in conferring neuroprotection through α-syn clearance have been widely reported. For
instance, in PC12 cells overexpressing wild-type and mutated α-syn, and in rotenone-exposed SH-SY5Y
cells, resveratrol enhances α-syn degradation by activating autophagy through the AMPK/SIRT1
signaling pathway [107]. Likewise, in MPTP-treated mice, the autophagy-based neuroprotective effects
of resveratrol via induction via SIRT1-dependent LC3 de-acetylation occur along with a reduction
in α-syn levels [100]. Contrariwise, an inhibitor of SIRT1 antagonizes the neuroprotective effects of
resveratrol by reducing the autophagy-based degradation of α-syn [100].

From these studies, it emerges that resveratrol acts quite specifically as a powerful SIRT1 activator.
In fact, when compared with other phytochemicals, resveratrol induces autophagy much more potently,
in a way which is reminiscent of the gold-standard autophagy activator rapamycin [152]. Such an
apparently selective SIRT1-dependent mechanism recruited by resveratrol adds on the already long
lists of molecules through which phytochemicals modulate autophagy, including mTOR, AMPK, TFEB,
and GSK3 (Figure 3). At the same time, these considerations remark the need for further studies
aimed at disclosing yet poorly explored pathways which may be involved in the autophagy-based
effects of phytochemicals. In addition to these molecular findings, ultrastructural analyses seem to
confirm the key role of autophagy in resveratrol-induced beneficial effects in parkinsonism. This was
shown in rats with 6-OHDA-induced parkinsonism, where resveratrol exerts neuroprotective and
anti-inflammatory effects [103]. Remarkably, ultrastructural analysis of DA neurons in the SN of these
rats revealed that resveratrol alleviates 6-OHDA-induced subcellular alterations which are reminiscent
of autophagy failure, namely accumulation of electron-dense cytoplasmic material, accumulation
of vesicles resembling stagnant autophagy-like vacuoles, and mitochondrial swelling [103]. Taken
together, these studies provide compelling evidence for the key role of autophagy induction in the
beneficial effects of resveratrol in parkinsonism.
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Figure 3. Autophagy-related molecular pathways which are targeted by phytochemical-rich plants.
Phytochemicals induce autophagy by acting at several molecular levels. Curcumin (C. longa), catechins
of green tea (C. sinensis), resveratrol (V. vinifera) and bacosides (B. monnieri) act as mTOR inhibitors, which
leads to autophagy induction either through activation of ULK1/Atg13 or transcription factor EB (TFEB).
In particular, curcumin, green tea catechins, and C. asiatica activate TFEB to promote its translocation
to the nucleus, and the subsequent induction of autophagy-related genes. Catechins of green tea
and withanolides from W. somnifera may also activate autophagy through inhibition of Glycogen
Synthase Kinase 3 Beta (GSK-3β), while resveratrol fosters the activation of the autophagy-promoting
transcription factor FoxO3. Again, green tea catechins, resveratrol and B. monnieri activate autophagy
through enhancement of AMP-activated Protein Kinase (AMPK), which in turn is an upstream inhibitor
of mTOR and an activator of Sirtuin-1 (SIRT1). Activation of SIRT1-dependent autophagy through
deacetylation of Atg proteins is mainly induced by resveratrol and C. asiatica. Again, W. somnifera
may also act upstream of autophagy by modulating the IGF1-Akt axis, although a role has not been
confirmed yet. Plain black arrows indicate pathways which act as upstream inhibitors of autophagy
while plain orange arrows indicate pathways which promote autophagy. Dashed black arrows
indicate pathways converging towards autophagy machinery. Red dashed boxes indicate the specific
phytochemicals which activate autophagy by acting as inhibitors (red line) or inducers (red cross) of
specific autophagy-related molecules.

5. Conclusions and Future Directions

The experimental evidence reviewed here converges in that phytochemicals such as curcumin,
catechins of green tea, and resveratrol confer neuroprotection in experimental parkinsonism by fostering
degradation of α-syn toxic species through activation of autophagy. For other phytochemical-rich
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plants such as W. somnifera, B. monnieri, and C. asiatica, the autophagy-based beneficial effects in
experimental parkinsonism remain to be investigated and/or confirmed. In keeping with this, it is
worth mentioning that phytochemicals may also induce autophagy indirectly. For instance, most of
the compounds analyzed here, especially curcumin, EGCG, and C. asiatica extracts counteract the
upregulation of pro-apoptotic molecules such as caspases and MAPK-p38, which may interact with
Atg proteins to inhibit autophagy in favor of an apoptotic profile [130,157,267].

Again, neuroprotection from curcumin and B. monnieri extract associates with the activation of
Nrf2, which in turn may induce mitophagy [268]. Curcumin and EGCG also decrease the activity of
LRRK2, whose inhibition stimulates autophagy [269]. Phytochemicals are also able to restore DA levels
and activity in experimental parkinsonism, and this may indirectly impact on autophagy through
biochemical cascades arising from stimulation of specific DA receptors [270]. Other examples of
target molecules through which phytochemicals may indirectly modulate autophagy include growth
factors such as BDNF, pro-inflammatory factors, and epigenetic enzymes such as HDAC, which are all
reported to have an effect upon the autophagy machinery [137,271,272].

Rescuing autophagy through natural compounds may play a role not only in preserving DA neuron
integrity but also in counteracting the prion-like spreading of indigested α-syn, which is not limited to
the CNS milieu but occurs even between distant cells operating in different organs [273]. In this scenario
of multisystem interaction, neural mechanisms intermingle with immunological and neuroendocrine
pathways to link emotional and cognitive centers of the brain with peripheral functions. In PD this is
evident by the spreading of α-syn along the whole brain-gut-immune axis [273]. Since autophagy is
seminal for both cellular and organ-level homeostasis, alterations of autophagy in PD are likely to
underlie a much broader range of events featuring altered communication and spreading of abnormal
signals between different systems. This is best exemplified by the concomitance between systemic
disorders such as the metabolic syndrome and the occurrence of PD, where a failure of autophagy may
represent a downstream systemic event occurring in and out the CNS. In fact, autophagy is seminal
in modulating body and nutrient metabolism by acting either in peripheral organs or in the CNS by
controlling hypothalamic energy expenditure, appetite, and body weight. Thus, targeting autophagy
alterations through natural compounds possessing low side effects may be an advantageous strategy
in targeting both CNS and systemic alterations, which occur in age-related and neurodegenerative
disorders [274,275]. The beneficial effects of phytochemicals analyzed in the present review extend
to several systemic diseases including metabolic syndrome, diabetes, cardiovascular disease, cancer,
and chronic inflammation beyond neurodegeneration [116,274,276]. These considerations warrant
additional studies aimed at dissecting and confirming the autophagy-based beneficial effects of
phytochemicals in those CNS disorders such as PD, which are featured by alterations in the cell-clearing
systems. In keeping with this, it would also be worth testing the effects of combined phytochemicals
supplementations in PD models, which may disclose either synergistic or independent effects of single
bioactive compounds. Further research is also needed to identify safe and effective strategies aimed at
enhancing phytochemicals bioavailability. Again, well-designed clinical trials should be undertaken to
identify the optimal dosage which can safely and effectively reproduce the beneficial effects observed
in experimental models.

Funding: This work was funded by Ministero della Salute (Ricerca Corrente 2019).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

3-MA 3-Methyladenine
6-OHDA 6-Hydroxydopamine
AD Alzheimer’s Disease
ALS Amyotrophic Lateral Sclerosis
AMPK 5′ AMP-activated Protein Kinase
Atg Autophagy-Related-Gene
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BAD Bcl-2-Associated Death Promoter
BDNF Brain-Derived Neurotrophic Factor
CAT Catalase
CNS Central Nervous System
COX-2 Cyclooxygenase-2
Cyt Cytochrome
DA Dopamine
DAT Dopamine Transporter
DLB Dementia with Lewy Bodies
EGCG Epigallocatechin Gallate
ER Endoplasmic Reticulum
ERK Extracellular Signal–Regulated Kinase
FOXO3 Forkhead Box O3
GDNF Glial Cell Line-Derived Neurotrophic Factor
GFAP Glial Fibrillary Acidic Protein
GFP Green Fluorescent Protein
Gpx Glutathione Peroxidase
GR Glutathione Reductase
GSH Glutathione
GSk3-β Glycogen Synthase Kinase 3 Beta
GST Glutathione S-Transferase
HDAC6 Histone Deacetylase 6
HIF-1 Hypoxia-Inducible Factor 1
HMGB1 High Mobility Group Box 1
IFNγ Interferon Gamma
IIS Insulin/Insulin-Like Growth Factor Signaling
IL-1β Interleukine 1 Beta
IL-1β/a Interleukine-1 beta/alpha
iNOS inducible Nitric Oxide Synthase
JNK c-Jun N-Terminal Kinase
LAMP-2A Lysosomal-Associated Membrane Protein Type 2a
LPS Lipopolysaccharide
LRRK2 Leucine-Rich Repeat Kinase 2
LSD Lysosomal Storage Diseases
MALAT1 Metastasis-Associated Lung Adenocarcinoma Transcript 1
MAPK Mitogen-Activated Protein Kinase
MDA Malondialdehyde
Meth Methamphetamine
MMP Mitochondrial Membrane Potential
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MSA Multisystem Atrophy
mTOR Mammalian Target of Rapamycin
NADPH Nicotinamide Adenine Dinucleotide Phosphate Hydrogen
Nf-Kb Nuclear Factor K Beta
NGF Neurotrophic Growth Factor
NO Nitric Oxide
Nrf2 Nuclear Factor Erythroid 2-Related Factor 2
PAF Pure Autonomic Failure
PARP Poly (ADP-ribose) Polymerase
PD Parkinson’s Disease
PGC-1α Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
PINK1 PTEN-induced kinase 1
PKC α Protein Kinase C alpha
Rab GTPase Gtp Bound Ras Proteins in Brain
ROS Reactive Oxygen Species
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SDH Succinate Dehydrogenase
SIRT1 NAD-dependent deacetylase Sirtuin-1
SNARE Soluble Nsf Attachment Protein Receptor
SNpc Substantia Nigra Pars Compacta
SOD Superoxide Dismutase
SQSTM1 Sequestosome-1
SVZ Subventricular Zone
TBARS Thiobarbituric Acid Reactive Substance
TFEB Transcription Factor EB
TGF-b1 Transforming Growth Factor Beta 1
TH Tyrosine Hydroxylase
TNFα Tumor Necrosis Factor Alpha
Trk A/B Tyrosine Receptor Kinase A/B
UCH-LI Ubiquitin carboxy-terminal hydrolase L1
VEGF Vascular-Endothelial Growth Factor
VTA Ventral Tegmental Area
YFP Yellow Fluorescent Protein
α-syn alpha-synuclein
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