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Abstract: Methylenetetrahydrofolate reductase (MTHFR) is a pivotal enzyme in the one-carbon
metabolism, a metabolic pathway required for DNA synthesis and methylation reactions. MTHFR
hypermethylation, resulting in reduced gene expression, can contribute to several human disorders,
but little is still known about the factors that regulate MTHFR methylation levels. We performed the
present study to investigate if common polymorphisms in one-carbon metabolism genes contribute
to MTHFR methylation levels. MTHFR methylation was assessed in peripheral blood DNA samples
from 206 healthy subjects with methylation-sensitive high-resolution melting (MS-HRM); genotyping
was performed for MTHFR 677C>T (rs1801133) and 1298A>C (rs1801131), MTRR 66A>G (rs1801394),
MTR 2756A>G (rs1805087), SLC19A1 (RFC1) 80G>A (rs1051266), TYMS 28-bp tandem repeats
(rs34743033) and 1494 6-bp ins/del (rs34489327), DNMT3A -448A>G (rs1550117), and DNMT3B
-149C>T (rs2424913) polymorphisms. We observed a statistically significant effect of the DNMT3B
-149C>T polymorphism on mean MTHFR methylation levels, and particularly CT and TT carriers
showed increased methylation levels than CC carriers. The present study revealed an association
between a functional polymorphism of DNMT3B and MTHFR methylation levels that could be of
relevance in those disorders, such as inborn defects, metabolic disorders and cancer, that have been
linked to impaired DNA methylation.

Keywords: methylenetetrahydrofolate reductase; MTHFR; methylation; one-carbon metabolism;
folate metabolism; polymorphisms; DNMT3B; epigenetics

1. Introduction

The folate and methionine cycles are the “core” part of the one-carbon metabolism, a set of
interconnected pathways that supply methyl groups for the synthesis of nucleic acids, amino acids, and
S-adenosylmethionine (SAM), the main intracellular methylating agent [1]. Methylenetetrahydrofolate
reductase (MTHFR) is a pivotal enzyme in one-carbon metabolism and catalyzes the conversion
of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate (5-methylTHF), the main form of
circulating folate and the methyl donor for homocysteine (hcy) remethylation to methionine in the
reaction catalyzed by methionine synthase (MTR) that transfers the methyl group from 5-methylTHF
to hcy, forming tetrahydrofolate (THF) and methionine. Methionine is then used for the production of
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SAM, required for DNA and protein methylation reactions, and THF re-enters the folate pathway as
an acceptor of novel one-carbon moieties (Figure 1).
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Figure 1. Simplified overview of the folate (orange color) and methionine (blue color) cycles in the 
one-carbon metabolism, adapted from [1]. The diagram illustrates the enzymes (violet color) whose 
polymorphisms have been investigated in this article, and their metabolites. Enzymes: DNMTs, 
DNA methyltransferases; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine 
synthase; MTRR, methionine synthase reductase; RFC1, reduced folate carrier 1; TYMS, thymidilate 
synthase. Metabolites: DHF, dihydrofolate; THF, tetrahydrofolate; dTMP, deoxythymidine 
monophosphate; dUMP, deoxyuridine monophosphate; SAH, S-adenosylhomocysteine; SAM, 
S-adenosylmethionine. 

Rare and severe MTHFR mutations lead to MTHFR deficiency, an autosomal recessive inborn 
defect characterized by extremely high hcy levels in the urine and plasma, causing developmental 
delay, eye disorders, thrombosis, and osteoporosis [2]. More common polymorphisms in the 
MTHFR gene, such as the 677C>T (rs1801133) and 1298A>C (rs1801131) ones, reduce the enzyme 
thermostability and activity and can lead to hyperhomocysteinemia, especially in homozygous 
677TT carriers [3–5]. These common polymorphisms, and particularly the MTHFR 677C>T one, have 
been often associated with a small increase in the risk of various human conditions, including male 
infertility, pregnancy loss, neural tube defects, congenital heart disease and Down syndrome [6–8], 
and have been suggested to contribute to complex disorders such as cancer, cardiovascular diseases, 
autoimmune disorders and neurodegenerative diseases, among others [9–14]. 

More recent evidence suggests than not only sequence variants, but also epigenetic 
modifications of the MTHFR gene can contribute to human disorders. Particularly, increased 
MTHFR promoter methylation results in decreased gene expression levels and has been associated 
with male infertility, pre-eclampsia, recurrent miscarriages, trisomy 21 and congenital heart disease 
in the offspring [15–21]. MTHFR hyper-methylation is also suspected to play a role in diabetic 
complications, vascular diseases and cancer [22–26]. 

Increasing evidence suggests an association between circulating folate levels and the 
methylation status of several genes [26–28], and common polymorphisms of genes involved in 
one-carbon metabolism, including MTHFR 677C>T and 1298A>C, MTR 2756A>G (rs1805087), 
methionine synthase reductase (MTRR) 66A>G (rs1801394), thymidilate synthase (TYMS) 28-bp 

Figure 1. Simplified overview of the folate (orange color) and methionine (blue color) cycles in the
one-carbon metabolism, adapted from [1]. The diagram illustrates the enzymes (violet color) whose
polymorphisms have been investigated in this article, and their metabolites. Enzymes: DNMTs,
DNA methyltransferases; MTHFR, methylenetetrahydrofolate reductase; MTR, methionine synthase;
MTRR, methionine synthase reductase; RFC1, reduced folate carrier 1; TYMS, thymidilate synthase.
Metabolites: DHF, dihydrofolate; THF, tetrahydrofolate; dTMP, deoxythymidine monophosphate;
dUMP, deoxyuridine monophosphate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine.

Rare and severe MTHFR mutations lead to MTHFR deficiency, an autosomal recessive inborn
defect characterized by extremely high hcy levels in the urine and plasma, causing developmental delay,
eye disorders, thrombosis, and osteoporosis [2]. More common polymorphisms in the MTHFR gene,
such as the 677C>T (rs1801133) and 1298A>C (rs1801131) ones, reduce the enzyme thermostability
and activity and can lead to hyperhomocysteinemia, especially in homozygous 677TT carriers [3–5].
These common polymorphisms, and particularly the MTHFR 677C>T one, have been often associated
with a small increase in the risk of various human conditions, including male infertility, pregnancy
loss, neural tube defects, congenital heart disease and Down syndrome [6–8], and have been suggested
to contribute to complex disorders such as cancer, cardiovascular diseases, autoimmune disorders and
neurodegenerative diseases, among others [9–14].

More recent evidence suggests than not only sequence variants, but also epigenetic modifications
of the MTHFR gene can contribute to human disorders. Particularly, increased MTHFR promoter
methylation results in decreased gene expression levels and has been associated with male infertility,
pre-eclampsia, recurrent miscarriages, trisomy 21 and congenital heart disease in the offspring [15–21].
MTHFR hyper-methylation is also suspected to play a role in diabetic complications, vascular diseases
and cancer [22–26].

Increasing evidence suggests an association between circulating folate levels and the methylation
status of several genes [26–28], and common polymorphisms of genes involved in one-carbon
metabolism, including MTHFR 677C>T and 1298A>C, MTR 2756A>G (rs1805087), methionine synthase
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reductase (MTRR) 66A>G (rs1801394), thymidilate synthase (TYMS) 28-bp tandem repeat (rs34743033)
and 1494 ins/del (rs34489327), reduced folate carrier (SLC19A1 or RFC1) 80G>A (rs1051266), and DNA
methyltransferases DNMT3A -448A>G (rs1550117) and DNMT3B -149C>T (rs2424913) ones, have
been frequently investigated as potential modulators of either global or gene-specific methylation
levels in various human conditions [29–32]. In addition, there is evidence that certain polymorphisms,
such as MTR polymorphisms, can act as cis-regulatory elements to regulate the methylation levels
of their own gene promoter, as well as trans-regulatory elements to regulate the methylation levels
of other metabolic genes [33]. However, little is still known concerning the contribution of common
polymorphisms in one-carbon metabolism genes to MTHFR methylation levels.

To further address this issue, in the present study we investigated a cohort of 206 healthy individuals
searching for correlation between common polymorphisms in the main genes of one-carbon metabolism
and the methylation levels of the MTHFR gene.

2. Results

Table 1 shows the demographic characteristics of the study population and the average methylation
levels of the MTHFR gene in our cohort. The study was performed in 206 healthy Italian subjects,
including 67 males and 137 females of mean age 71.4 ± 15.4 years. We investigated a CpG island located
in the 5′ untranslated region (5′ UTR) of the MTHFR gene, whose methylation levels are inversely
correlated with gene expression levels [24,34]. Methylation levels of this region ranged from 5.9% to
69.3% in the study population, with an average value of 29.3%, which is in agreement with previous
investigations in various populations [20,24,27,35].

Table 1. Study population.

Total Subjects Age (Mean ± SD) Gender MTHFR Methylation (Mean ± SD)

206 71.4 ± 15.4
M: 67

29.3 ± 9.3%F: 139

Table 2 shows the genotype distribution of the investigated polymorphisms in the study population;
all the genotype distributions conformed to Hardy-Weinberg equilibrium (HWE) expectations and are
in agreement with those previously reported in healthy Caucasians [5,36,37].

Table 2. Distribution of genotypes in the study population.

Polymorphism Genotypes: N◦ of Subjects (%)

MTHFR 677C>T CC: 72 (35.0%), CT: 91 (44.2%), TT: 43 (20.8%)
MTHFR 1298A>C AA: 95 (46.1%), AC: 95 (46.1%), CC: 16 (7.8%)

MTRR 66A>G AA: 61 (29.6%), AG: 105 (51.0%), GG: 40 (19.4%)
MTR 2756A>G AA: 157 (76.2%), AG: 47 (22.8%), GG: 2 (1.0%)
RFC-1 80G>A GG: 62 (30%), GA: 113 (54.9%), AA: 31 (15.1%)

TYMS 28bp Repeats 3R3R: 52 (25.2%), 3R2R: 108 (52.4%), 2R2R: 46 (22.4%)
TYMS 1494 6bp ins/del ins/ins:64 (31.1%), ins/del: 108 (52.4%), del/del: 34 (16.5%)

DNMT3A -448G>A GG: 170 (82.3%), GA: 36 (17.7%), AA: 0 (0.0%)
DNMT3B -149C>T CC: 90 (43.7%), CT: 96 (46.6%), TT: 20 (9.7%)

The correlation between each of the studied polymorphisms and MTHFR methylation levels is
shown in Figure 2. We observed a statistically significant effect of the DNMT3B -149C>T polymorphism
on mean MTHFR methylation levels, and in particular, a significant difference between wild-type (CC)
and heterozygous (CT) subjects (27.2 ± 0.9% vs. 30.6 ± 0.9%, p = 0.02), and a significant difference
between wild-type (CC) and mutant (TT) subjects (27.2 ± 0.9% vs. 32.8 ± 2.0%, p = 0.03), revealing that
MTHFR methylation increases significantly with the increasing number of T alleles. None of the other
polymorphisms showed a significant contribution to MTHFR methylation levels (Figure 2).
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DNMT3B gene expression levels compared to the major C one [38,39]. DNMT3B is the major de novo 
DNA methyltransferase expressed and active during the early stages of embryonic development, 
and is impaired in human diseases with chromosomal and genomic instabilities, including inherited 
diseases and cancer [40]. Particularly, in vitro studies revealed a 30% increased promoter activity of 
the DNMT3B -149T allele with respect to the C one [38]. Similarly, the DNMT3B -149T allele resulted 
in increased gene expression levels in human pancreatic cancer cells [39]. Therefore, it was suggested 
that the DNMT3B -149C>T polymorphism increases human cancer risk by increasing DNMT3B gene 
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Bonferroni’s correction for multiple testing (p < 0.05).

3. Discussion

Increasing evidence suggests that MTHFR hypermethylation represents a risk factor for various
human disorders [15–26], but little is still known concerning the genetic factors acting as regulatory
elements of MTHFR methylation levels. In the present study we investigated several of the major
polymorphisms in one-carbon metabolism genes as potential modulators of MTHFR gene methylation
in blood DNA samples from 206 healthy individuals, observing a statistically significant contribution
of the DNMT3B -149C>T one. This polymorphism is located 149 base pairs upstream the transcription
start site, and the minor T allele has been associated with increased DNMT3B gene expression levels
compared to the major C one [38,39]. DNMT3B is the major de novo DNA methyltransferase expressed
and active during the early stages of embryonic development, and is impaired in human diseases with
chromosomal and genomic instabilities, including inherited diseases and cancer [40]. Particularly,
in vitro studies revealed a 30% increased promoter activity of the DNMT3B -149T allele with respect to
the C one [38]. Similarly, the DNMT3B -149T allele resulted in increased gene expression levels in human
pancreatic cancer cells [39]. Therefore, it was suggested that the DNMT3B -149C>T polymorphism
increases human cancer risk by increasing DNMT3B gene expression levels resulting in increased
promoter methylation and silencing of tumor suppressor genes [38,39]. Indeed, this polymorphism
was associated with increased risk of several cancers [40], including lung cancer in smokers [41],
prostate and gastric and colorectal cancer in certain populations, albeit with conflicting results [42,43].
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Furthermore, it was shown that the DNMT3B -149C>T polymorphism was linked to altered methylation
levels of cancer related genes, such as hMLH1 and ECAD, in colorectal cancer cells [44].

Folate metabolism is required in all dividing cells for a proper supply of nucleotides, as well as in
non-dividing cells such as neurons, for a proper repair of damaged DNA bases and for the regulation of
DNA and protein methylation patterns, and therefore most of the folate-related genes are ubiquitously
expressed and differentially regulated in human tissues, including blood cells [1]. Particularly, there
is an indication that both DNMT3A and DNMT3B are de-methylated and expressed blood cells of
healthy individuals [35,45]. Similarly, the MTHFR is expressed in blood cells [46], and the expression
levels are inversely regulated by promoter methylation levels, that show a large inter-individual
variability [24,35].

Indeed, the contribution of DNMT3B polymorphisms to human disease has been investigated
in many other diseases than cancer. For example, increasing evidence suggests that the DNMT3B
-149C>T polymorphism, either alone or in haplotype combination with other non-coding DNMT3B
polymorphisms, contributes to the maternal risk for having a child with Down syndrome [47–49],
and has been associated with an increased risk of prematurity [30], with childhood immune
thrombocytopenia [50,51] and autoimmune thyroid disease [52]. The association of the DNMT3B
-149C>T polymorphism with neurological and neurodegenerative diseases, either alone or in haplotype
combination, is still controversial [53–56].

Present findings linking the DNMT3B -149C>T polymorphism to MTHFR methylation levels are
original, and if confirmed in other populations could be of relevance for those conditions characterized
by increased MTHFR methylation, and particularly for congenital disorders or cancers associated with
DNMT3B polymorphisms. For example, recent studies revealed increased MTHFR methylation as a
risk factor for recurrent miscarriages, as well as for Down syndrome and congenital heart disease in the
offspring [18,20,21], and MTHFR hyper-methylation was seen in several human cancers [24,25,34,57].
Also, male infertility has been recently linked to a DNMT3B polymorphism in strong linkage with the
-149C>T one [58], and several studies suggest association of MTHFR hyper-methylation with male
infertility [15–17]. Therefore, a further investigation of the link between DNMT3B polymorphisms and
MTHFR methylation levels is warranted in several human disorders.

DNMT3A is the other de novo DNA methyltransferase, and the DNMT3A -448A>G polymorphisms
was recently associated with the risk of spontaneous abortion [59], as well as with risk of several
cancers [60]; therefore, we decided to investigate its contribution to MTHFR methylation levels,
observing no association. To the best of our knowledge, there are no other studies addressing this issue.

Concerning MTHFR 677C>T and 1298A>C polymorphisms, we found no association with
MTHFR methylation levels. A previous study performed in 101 epileptic patients treated with valproic
acid (VPA) and 68 healthy controls also reported no association of MTHFR 677C>T and 1298A>C
polymorphisms with MTHFR gene methylation levels in blood DNA of both groups [61]. Collectively,
present and previous data [61] suggest that MTHFR 677C>T and 1298A>C polymorphisms are unlikely
to act as cis-regulatory modulators of MTHFR gene methylation levels. In that manuscript the authors
also investigated the contribution of MTR 2756A>G, MTRR 66A>G, and RFC-1 80G>A to MTHFR
methylation levels, observing an association of the MTR 2756A>G polymorphism only in epileptic
patients treated with VPA, but none of the three polymorphisms was linked to MTHFR methylation
levels in healthy controls [61]. In the present investigation we included only healthy individuals not
taking drugs or supplements known to affect the epigenome, and present data are in agreement with
that previous investigation [61], indicating that MTR 2756A>G, MTRR 66A>G, and RFC-1 80G>A
polymorphisms are not associated with MTHFR methylation levels in untreated healthy subjects. VPA
is a very potent epigenetic drug, exerting anti-cancer and neuro-protective effects by its inhibitory
action on proteins that catalyze histone deacetylation [60]. Several recent studies suggest that VPA
also induces changes is serum folate and hcy levels, as well changes in the methylation levels of
several genes, including MTHFR [59–61]. Therefore, the contribution of polymorphisms in one-carbon
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metabolism genes to global and gene-specific methylation levels might be exacerbated under treatments
that globally affect folate metabolism and the epigenome [61–63].

TYMS competes with MTHFR for 5,10-methylenetetrahydrofolate, and the folate pathway can be
shifted toward the synthesis of DNA precursors or toward hcy remethylation to methionine, depending
on the cell requirements (Figure 1). We previously observed association of TYMS polymorphisms with
the methylation levels of tumor suppressor and DNA repair genes in colorectal cancer cells [31], but no
previous study investigated the contribution of TYMS polymorphisms to MTHFR gene methylation.
However, the present investigation revealed no association of TYMS polymorphisms with MTHFR
methylation levels.

In summary, we investigated the contribution of several of the major polymorphisms of genes
coding enzymes involved in the folate and methionine cycles of the one-carbon metabolism to MTHFR
methylation levels in healthy individuals, observing a significant association of the DNMT -149T allele
with increased MTHFR methylation. Additional studies are required to further address this issue in
human disorders characterized by MTHFR hyper-methylation, as well as to investigate if drugs or
compounds exerting epigenetic properties are able to modulate this association. Of particular interest
are disorders such as Down syndrome, lung and gastrointestinal cancers, and male infertility, all linked
to DNMT3B variants and characterized by MTHFR hyper-methylation.

4. Materials and Methods

4.1. Study Population

DNA samples from peripheral leukocytes were available from a total of 206 healthy individuals,
including 67 males and 139 females of mean age 71.4 ± 15.4 years (Table 1), mainly recruited from
2011 to 2015 as healthy control subjects for genetic and epigenetic case-control investigations [13,20,35].
All the individuals were volunteer subjects of Italian origin, underwent a rigorous clinical and
neurological examination, and were healthy at blood drawing. In addition, individuals taking vitamins,
drugs, substances or supplements known or suspected to interfere with one-carbon metabolism and
DNA methylation reactions, such as anti-cancer drugs, anti-epileptic drugs, anti-inflammatory drugs,
epi-drugs, metformin, tobacco smoking, folic acid or other vitamin supplements, were not enrolled in
the study. Each subject gave an informed and written consent for the inclusion in the study that received
approval from the Ethics Committee of the Pisa University Hospital (Protocol number 3618/2012), and
was performed in accordance with the Declaration of Helsinki.

4.2. Analysis of MTHFR Methylation Levels

Two hundred nanograms of DNA from each sample have been treated with sodium bisulfite in
order to convert un-methylated cytosines into uracil, using the EpiTect Bisulfite Kit (Qiagen, Milan,
Italy, Catalog N◦ 59104). Bisulfite conversion was performed simultaneously on all samples in order
to avoid potential batch effects, and the bisulfite conversion efficiency was assessed using a sample
of completely un-methylated human DNA (Qiagen, Catalog N◦ 59568), resulting of 99% in average.
The MTHFR methylation levels have been assessed using a methylation-sensitive high-resolution
melting (MS-HRM) protocol previously developed in our laboratory, validated by pyrosequencing,
and fully described by us elsewhere [32]. All the MS-HRM analyses were performed using a CFX96
Real-Time PCR detection system (Bio-Rad, Milan, Italy). Particularly, we studied a CpG island in the
5′-untranslated (UTR) region of the MTHFR gene spanning from +30 to +184 from the transcription
start site, and containing 7 CpG sites whose methylation levels were found to be inversely correlated
with MTHFR gene expression levels by several authors [24,34]. Table 3 shows the sequence of the
primers, the annealing temperature (Ta), the studied region, the length of the amplicon, and the
number of CpG sites within it. Each reaction was performed in duplicate, and we analyzed 10% of the
samples independently on separate occasions to verify the inter-assay variability. Fully methylated
and un-methylated DNA (EpiTectH methylated and unmethylated human control DNA, bisulfite
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converted, Qiagen, Catalog N◦ 59695) were mixed to obtain the following ratios of methylation: 0%,
12,5%, 25%, 50%, 75%, 100%. Standard DNA samples with known methylation ratios were included in
each assay in order to generate standard curves that were used to deduce the methylation levels of
each sample, using an interpolation method previously described [64].

Table 3. Sequence of the primers, annealing temperature (Ta), length of the amplicon, studied region
and number of CpG sites.

Primer Sequences Ta Amplicon Lenght Region CpG Sites

F: 5′-TTTTAATTTTTGTTTGGAGGGTAGT-3′

R: 5′-AAAAAAACCACTTATCACCAAATTC-3′ 54 ◦C 155 bp From +30 to +184 7

4.3. Analysis of Common Polymorphisms in One-Carbon Metabolism Genes

Genotyping for MTHFR 677C>T (rs1801133), MTHFR 1298A>C (rs1801131), MTRR 66A>G
(rs1801394), MTR 2756A>G (rs1805087), SLC19A1 (RFC-1) 80G>A (rs1051266), TYMS 28-bp
repeats (rs34743033), TYMS 1494 6-bp ins/del (rs34489327), DNMT3A -448A>G (rs1550117), and
DNMT3B -149C>T (rs2424913) polymorphisms was performed by PCR/RFLP techniques as detailed
elsewhere [36,65].

4.4. Statistical Analysis

To verify that genotype frequencies of all the studied polymorphisms were in Hardy-Weinberg
equilibrium we used the Chi-square (X2) analysis. MTHFR methylation data were tested for normality
using the Shapiro-Wilk test and showed a normal distribution in our cohort. Multi-factor analysis of
variance (ANOVA) including age at sampling, gender, and all the other investigated polymorphisms
as covariates, was used to investigate the contribution of each studied polymorphism to MTHFR
methylation levels, followed by post-hoc Bonferroni’s correction for multiple testing. Statistical
analyses were performed with the STATGRAPHICS 5.1 plus software package for Windows, and
Bonferroni’s corrected p-values < 0.05 were considered statistically significant.
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Abbreviations

DNMT DNA methyltransferase
HWE Hardy-Weinberg equilibrium
MS-HRM Methylation-sensitive high-resolution melting
MTHFR Methylenetetrahydrofolate reductase
MTR Methionine synthase
MTRR Methionine synthase reductase
RFC1 Reduced folate carrier 1
SAM S-adenosylmethionine
SD Standard deviation
SEM Mean standard error
THF Tetrahydrofolate
TYMS Thymidilate synthase
VPA Valproic acid
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