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Abstract: QuasAr1 is a fluorescent voltage sensor derived from Archaerhodopsin 3 (Arch) of
Halorubrum sodomense by directed evolution. Here we report absorption and emission spectroscopic
studies of QuasAr1 in Tris buffer at pH 8. Absorption cross-section spectra, fluorescence quantum
distributions, fluorescence quantum yields, and fluorescence excitation spectra were determined.
The thermal stability of QuasAr1 was studied by long-time attenuation coefficient measurements
at room temperature (23 ± 2 ◦C) and at 2.5 ± 0.5 ◦C. The apparent melting temperature was
determined by stepwise sample heating up and cooling down (obtained apparent melting temperature:
65 ± 3 ◦C). In the protein melting process the originally present protonated retinal Schiff base (PRSB)
with absorption maximum at 580 nm converted to de-protonated retinal Schiff base (RSB) with
absorption maximum at 380 nm. Long-time storage of QuasAr1 at temperatures around 2.5 ◦C
and around 23 ◦C caused gradual protonated retinal Schiff base isomer changes to other isomer
conformations, de-protonation to retinal Schiff base isomers, and apoprotein structure changes
showing up in ultraviolet absorption increase. Reaction coordinate schemes are presented for the
thermal protonated retinal Schiff base isomerizations and deprotonations in parallel with the dynamic
apoprotein restructurings.

Keywords: QuasArs; Archaerhodopsin 3; genetically encoded voltage sensors (GEVIs); absorption
spectroscopic characterization; fluorescence spectroscopic characterization; apparent protein melting
temperature; thermal stability; thermal isomerization; thermal deprotonation

1. Introduction

Changes in electrical potential across the plasma membrane of neurons are important for
intercellular and intracellular signal transmission [1]. Classical electrophysiology techniques involve
placing electrodes into biological tissue allowing to record membrane currents [2,3]. Optical recordings
of membrane potential from cells, especially neurons, with fluorescent voltage sensitive dyes [4–8],
genetically encoded calcium indicators (GECIs) [9–14], and with fluorescent genetically encoded
voltage indicators (GEVIs) [15–28] is an active field of research. Two major groups of GEVIs are i)
integral membrane voltage sensing domains (VSDs) composed of four trans-membrane helices fused to
fluorescent proteins [15,17–20,25–27,29–34] and ii) microbial rhodopsins composed of 7 trans-membrane
α-helices with covalently bound retinal isomers [14,16,25–27,35–38]. Generally microbial rhodopsins
exhibit low fluorescence quantum yield in the range of φF = 2 × 10−4 to 10−5 [39–41] which is too
low for any cellular application. Directed evolution approach yielded modified microbial rhodopsins
with increased fluorescence quantum yield, and few of them exhibited change of the fluorescence
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intensity depending on the membrane voltage [14,15,25–27,35–38,42–48]. In rhodopsin-fluorescent
protein GEVIs a microbial rhodopsin is fused with a highly fluorescent protein and the emission of the
fused fluorescent protein changes upon membrane voltage changes [16,28,49,50].

Archaerhodopsin 3 (Arch) from Halorubrum sodomense with a single residue mutation D95N showed
potential as a GEVI [36] and initiated the development of the Arch variants QuasAr1 and QuasAr2
(named according to ‘Quality superior to Arch’) [42]. QuasArs have improved fluorescence intensity
and membrane voltage sensitivity [22,42,45]. The fluorescence quantum yield of wild-type Arch was
reported to be φF = 9 × 10−4 [36], of the mutant Arch D95N it was φF = 4 × 10−4 [36,42], while for
QuasAr1 it increased to φF = 8 × 10−3 [42], and for QuasAr2 it was found to be φF = 4 × 10−3 [42].
The lower fluorescence quantum yield of QuasAr2 compared to QuasAr1 is compensated by its higher
voltage sensitivity [42]. QuasAr1 differs from the wild-type Arch by 5 mutations, namely P60S, T80S,
D95H, D106H, and F161V [42]. The amino acid sequence of QuasAr1 is shown in Figure S1 of the
Supplementary Materials (Section S1). Some structural formulae of retinal cofactors of rhodopsins are
found in [51] and are shown in Figure S2 of the Supplementary Materials (Section S2). QuasAr2 differs
from QuasAr1 by the counter ion mutation H95Q.

Here a detailed study is presented of the absorption and emission spectroscopic properties and the
thermal dynamics of QuasAr1 in pH 8 Tris buffer. Aliquots of 30 µL were used in the studies. They were
stored at−80 ◦C and thawed before usage. The absorption cross-section spectrum, excitation wavelength
dependent fluorescence emission quantum distributions and quantum yields, and emission wavelength
dependent fluorescence excitation spectra of purified QuasAr1 were determined. The thermal stability
of QuasAr1 was studied by long-time spectroscopic studies at room temperature (21–25 ◦C) and
refrigerator temperature of 2.5 ± 0.5 ◦C. The apparent melting temperature was determined by stepwise
sample heating up and cooling down. The temperature and time dependent retinal chromophore and
opsin protein changes are discussed.

2. Results

2.1. Absorption and Emission Behavior of Fresh Thawed QuasAr1 Samples

The absorption coefficient spectrum αa(λ) of a fresh thawed QuasAr1 sample was measured
after centrifugation with 4400 rpm for 30 min at 4 ◦C (Centrifuge 5702 R, Eppendorf AG, Hamburg,
Germany). It is displayed by the solid curve in Figure 1. The main absorption band with maximum at
wavelength λ ≈ 580 nm is attributed to the singlet S0–S1 transition of protonated retinal Schiff base
(PRSB) and named Ret_580. The absorption in the range from 310 nm to 465 nm is thought to be
comprised of singlet S0-Sn (n ≥ 2) transitions of Ret_580 (dashed curve αa,Ret_580(λ) in Figure 1, for its
determination see section S3 of the Supplementary Materials) and singlet ground-state–excited-state
transitions of residual retinal components (dotted curveαa,residual retinals(λ) =αa,QuasAr1(λ)−αa,Ret_580(λ)
in Figure 1). The short-wavelength absorption band peaking at λ = 280 nm is determined by apoprotein
absorp tion (Trp, Tyr, Phe) and some retinal contribution.

The absorption cross-section spectrum of Ret_580, i.e., σa(λ) = αa,Ret_580(λ)/NRet_580 where
NRet_580 is the number density of Ret_580 chromophores in QuasAr1, is determined in section S3 of the
Supplementary Materials (Figure S3).

Fluorescence emission quantum distributions EF(λ) of a fresh thawed QuasAr1 sample in pH
8 Tris buffer for fluorescence excitation wavelengths λF,exc in the range from 260 nm to 640 nm are
shown in Figure 2 and the corresponding fluorescence quantum yields are included in Figure 3
(see below). For λF,exc > 500 nm only S1–S0 emission from Ret_580 is observed. The wavelength
position of peak fluorescence emission is at λF,max ≈ 740 nm. The full spectral half-width of this
emission is δν̃F,Ret_580 ≈ 2900 cm−1. The Stokes shift is δν̃Stokes = λ−1

a,max − λ
−1
F,max ≈ 3730 cm−1.

The strong Stokes shift and broad spectral width of the Ret_580 emission spectra indicate fluorescence
emission along the S1 excited state photo-isomerization path. Below it will be shown that Ret_580
is composed dominantly of two protonated retinal Schiff base isomers (Ret_580I and Ret_580II) in
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different apoprotein conformations (ApoproteinI and ApoproteinII) which contribute to the broad
fluorescence emission. In the Supplementary Materials (Table S1) wavelength positions of absorption
maxima and fluorescence maxima together with Stokes shifts are listed for several rhodopsins (range of
Stokes shifts from δν̃Stokes ≈ 1750 cm−1 for histidine kinase rhodopsin 1 from Chlamydomonas reinhardtii
to δν̃Stokes ≈ 4900 cm−1 for proteorhodopsin from uncultivated marine γ-proteobacteria).
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Figure 1. Absorption coefficient spectrum of a fresh thawed QuasAr1 sample in pH 8 Tris buffer.
Solid curve: measured absorption coefficient spectrum αa,QuasAr1(λ). Dashed curve: absorption
coefficient spetrum αa,Ret_580(λ) of PRSB Ret_580. Dotted curve: absorption coefficient spectrum of
residual retinal components αa,residual retinals(λ) = αa,QuasAr1(λ) − αa,Ret_580(λ).
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Figure 3. Dependence of the total fluorescence quantum yield φF on the fluorescence excitation
wavelength λF,exc for QuasAr1 in pH 8 Tris buffer. The dashed line connected triangles belong to a
fresh thawed sample. The line-connected circles belong to a sample stored at 2.5 ± 0.5 ◦C in the dark
over a period of 80 days.

Fluorescence excitation in the wavelength range from 400 nm to 480 nm indicates an additional
fluorescence emission band around λF,max ≈ 550 nm. It is thought to be caused by a small amount
of a protonated retinal Schiff base isomer (named Ret_450, see below) absorbing in this range
(δν̃Stokes ≈ 4000 cm−1). Fluorescence excitation in the range from 330 nm to 390 nm resulted in a broad
fluorescence emission band around λF,max ≈ 470 nm. It is attributed to fluorescence emission of
deprotonated retinal Schiff base isomer components. For fluorescence excitation in the wavelength
region from 260 nm to 320 nm the fluorescence emission is dominated by Trp emission of the QuasAr1
apoprotein. The fluorescence emission maximum occurs at λF,max = 328 nm (δν̃F,Trp ≈ 5600 cm−1,
δν̃Stokes ≈ 5200 cm−1). For all excitation wavelengths, the Ret_580 fluorescence emission band around
λF,max = 740 nm is present since the Ret_580 absorption extends over the whole applied fluorescence
excitation wavelength region due to S0-Sn transitions (n ≥ 1) with fast Sn–S1 nonradiative relaxation
for n ≥ 2 and S1–S0 radiative emission. Additionally Förster-type energy transfer [52,53] occurs from
Tyr and Trp to Ret_580 in the case of Tyr and Trp photo-excitation.

The dependence of the total fluorescence quantum yield φF =
∫

em EF(λ)dλ (the integration
runs over the whole fluorescence emission wavelength region) of fresh thawed QuasAr1 on the
fluorescence excitation wavelength λF,exc is depicted by the dashed curve connected triangles in
Figure 3. The fluorescence quantum yield is φF = (6.5 ± 0.5) × 10−3 for excitation in the wavelength
region of S0–S1 absorption of Ret_580 (λF,exc ≥ 490 nm). In the range of 380 nm ≤ λF,exc ≤ 480 nm
it is φF = (7 ± 0.5) × 10−3, and in the range 320 nm ≤ λF,exc ≤ 380 nm it is φF = (8 ± 0.5) × 10−3

indicating a somewhat increased fluorescence efficiency of the additionally present retinal species
besides Ret_580. In the range of 260 nm ≤ λF,exc ≤ 310 nm the fluorescence emission is dominated
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by apoprotein Trp emission. There the fluorescence quantum yield increased to φF = 0.026 ± 0.002.
The fluorescence emission of photo-excited Tyr is quenched by Förster-type energy transfer [52,53]
to Trp (see supplementary material to [54]). The Trp fluorescence is reduced by Förster-type energy
transfer [52,53] from Trp to the retinals in QuasAr1. The fluorescence quantum yields of Tyr and Trp in
neutral water at 20 ◦C are φF(Tyr) = 0.14 [55] and φF(Trp) = 0.15 [56,57].

Normalized fluorescence excitation quantum distributions E′ex(λ) of a fresh thawed QuasAr1
sample in pH 8 Tris buffer for fluorescence detection wavelengths λF,det in the range from 300 nm to
780 nm are shown in Figure S4 of the Supplementary Materials (section S4). They confirm the excitation
wavelength dependent fluorescence emission of the dominant retinal component Ret_580 and other
present retinal components.

2.2. Heating-Coling Cycle of a Fresh Thawed QuasAr1 Sample

A fresh thawed sample of QuasAr1 was stepwise heated up to ϑ = 73.9 ◦C, and then cooled
down. Thereby attenuation coefficient spectra were measured. The results are shown in Figure 4.
The applied temporal heating and cooling temperature profile is depicted in the right inset of Figure 4b.
The apparent QuasAr1 protein melting temperature ϑm was determined by the onset of a steep
attenuation rise in the transparency spectral region of QuasAr1 [58] due to coalescing of denatured
unfolded proteins [59]. The apparent protein melting temperature is an indicator of the protein
thermal stability.

The temperature dependent development of attenuation coefficient spectra α(λ) of QuasAr1 is
shown in Figure 4a. Up to about 55 ◦C the attenuation spectra remained nearly unchanged (see top
part of Figure 4a). Then the attenuation band of Ret_580 decreased and a new attenuation band around
380 nm built up (Ret_380). Light scattering became detectable above 55 ◦C and increased strongly above
65 ◦C. The temperature dependence of the light attenuation in the transparency region of QuasAr1 at
800 nm during the sample heating up is shown in the inset of the top part of Figure 4a. The apparent
protein melting temperature determined by the onset of steeply rising light attenuation (light scattering)
is ϑm = 65 ± 3 ◦C. The light scattering increased during heating up to 73.9 ◦C, and continued to increase
during cooling down to 43.5 ◦C (see bottom part of Figure 4a). Then the light attenuation decreased
likely due to aggregated particle sedimentation (see attenuation curve belonging to 31.5 ◦C in bottom
part of Figure 4a). The final attenuation curve (dash-dotted curve in bottom part of Figure 4a) was
obtained after centrifugation of the sample for 20 min with 4400 rpm at 4 ◦C.

The main part of Figure 4b shows the temperature dependent development of absorption coefficient
spectra αa(λ) of QuasAr1 during stepwise sample heating up (the attenuation coefficient spectra of
Figure 4a were deprived of their scattering contribution, see procedure described in Section 4.2).
The PRSB Ret_580 absorption band peaking around 580 nm decreased with rising temperature by
deprotonation to RSB Ret_380 forming a new absorption band around 380 nm. For ϑ = 69.6 ◦C Ret_580
is nearly completely converted to Ret_380. Therefore the curve αa(λ, ϑ = 69.6 ◦C) in the wavelength
range from ≈ 310 nm to ≈ 500 nm of Figure 4b represents the absorption coefficient spectrum of Ret_380.
The absorption cross-section spectrum of Ret_380 is determined in section S3 of the Supplementary
Materials from αa(λ, ϑ = 4 ◦C) and αa(λ, ϑ = 69.6 ◦C) of Figure 4b (dashed curve in Figure S3).

The left inset in Figure 4b displays the temperature dependent development of the absorption
coefficients αa(ϑ) at λ = 580 nm (line-connected circles) and at λ = 380 nm (line-connected triangles).
The curves clearly show the rising conversion of Ret_580 to Ret_380 with increasing temperature.
The absorption at 380 nm below 40 ◦C is determined by the S0-Sn absorption of Ret_580 and the
absorption of the already present deprotonated retinal Schiff base isomers of the fresh thawed unheated
sample. In the stepwise sample heating the conversion of PRSB (Ret_580) to RSB (Ret_380) starts
already at about ϑ = 40 ◦C and becomes very strong above ϑ = 55 ◦C well below the apparent protein
melting temperature of ϑm ≈ 65 ◦C.
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Figure 4. Heating-cooling cycle behavior of a fresh thawed QuasAr1 sample in pH 8 Tris buffer.
(a) Attenuation coefficient spectra α(λ) development during stepwise sample heating up (top part) and
cooling down (bottom part). Inset in top part: Temperature dependent attenuation coefficient development
α(800 nm) during sample heating up. (b) Absorption coefficient spectra αa(λ) development during
stepwise sample heating up. Left inset: Temperature dependent absorption coefficient development
αa(580 nm) and αa(380 nm). Right inset: Applied heating and cooling temperature profile ϑ(t).
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2.3. Temporal Development of QuasAr1 at Refrigerator Temperature of 2.5 ◦C

The thermal stability of QuasAr1 in pH 8 Tris buffer at ϑ = 2.5 ± 0.5 ◦C in the dark was studied
by carrying out transmission spectra measurements over a duration of 80 days and by measuring
fluorescence emission and fluorescence excitation spectra at the end of the storage time.

The temporal development of the attenuation coefficient spectra α(λ) is shown in Figure 5.
In the top main part attenuation coefficient spectra are shown for selected storage times tstorage.
For tstorage = 80 days the attenuation spectra are shown before and after sample centrifugation to see
the small light scattering contribution due to protein aggregation. The top inset shows the temporal
attenuation coefficient development for some selected wavelengths. The bottom part displays difference
attenuation spectra ∆α(λ, tstorage) = α(λ, tstorage)− α(λ, 0)

[
α(580 nm, tstorage)/α(580 nm, 0)

]
for selected

storage times.
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Figure 5. Temporal development of attenuation coefficient spectra α(λ,tstorage) of QuasAr1 in pH
8 Tris buffer at 2.5 ± 0.5 ◦C in the dark. The storage times in the refrigerator are listed in the
legend. The top inset shows attenuation coefficients at fixed wavelengths versus the storage time
tstorage. The bottom part displays difference attenuation spectra ∆α(λ, tstorage) = α(λ, tstorage) −

α(λ, 0)
[
α(580 nm, tstorage)/α(580 nm, 0)

]
.

Within the first ten days the attenuation coefficient of Ret_580 around 580 nm and the attenuation
coefficient of the apoprotein around 280 nm decreased with time while the attenuation in the range
from 310 nm to 470 nm remained approximately unchanged. The attenuation reduction around
580 nm and around 280 nm are attributed i) partly to the conversion of Ret_580 to other retinals
absorbing in the 470–310 nm range (see differential attenuation coefficient spectra in the bottom part of
Figure 5) and ii) partly to QuasAr1 tight small aggregate formation (specific surface reduction [60–62])
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and/or loose aggregate cluster compactization with storage time (cluster size small therefore not
showing up in light attenuation in the transparency spectral region; loosely packed globules with small
volume fill factor densify to tightly packed globules, thereby the apparent absorption cross-section
per molecule decreases because of specific surface reduction of the aggregates [63]). In the time range
from tstorage = 10 d to 80 d the Ret_580 absorption band remained nearly unchanged. However, in this
time range the apoprotein absorption changed. The main apoprotein absorption band around 280 nm
increased and broadened (stronger absorption around 250 nm and around 310 nm). This behavior is
attributed to dynamic QuasAr1 apoprotein restructuring. The increase of the apoprotein absorption
strength is attributed to some increase of the oscillator strength of the S0 to S1 transition of Trp due to
protein restructuring. In the wavelength range from 310 nm to 400 nm some absorption contribution
from possibly formed dityrosine [64], tyrosinyl radicals [65], and tryptophanyl radicals [66] cannot be
excluded [67]. The tryptophan involvement as chromophore element in photoreceptors is known for
the UV-B photoreceptor UVR8 from Arabidopsis thaliana [68,69] (see also [51] with references therein)
and for the LITE-1 photoreceptor in Caenorhabditis elegans [70,71].

Only a slight increase of light scattering was found after 80 days of storage by comparing the
attenuation coefficient spectra measured before and after sample centrifugation (for 20 min at 4400 rpm).
The slow spectral changes indicate the high thermal stability of QuasAr1 at 2.5 ◦C.

Fluorescence emission quantum distributions EF(λ) of QuasAr1 after 80 days of sample storage
in the dark at 2.5 ◦C are shown in Figure 6. Fluorescence excitation in the wavelength range from
λF,exc = 500 nm to 620 nm (top sub-figure) resulted in the fluorescence emission band of Ret_580 with
fluorescence maximum around 740 nm. Sample excitation in the wavelength range from λF,exc = 420 nm
to 480 nm (second top sub-figure) revealed a second fluorescence emission band with emission
maximum around 540 nm. It is attributed to a PRSB isomer named Ret_450. In the second lowest
sub-figure fluorescence emission spectra in the excitation wavelength region from λF,exc = 320 nm to
400 nm are displayed. A weak fluorescence band peaking around 470 nm is resolved for fluorescence
excitation around λF,exc ≈ 400 nm (RSB, Ret_400). A stronger fluorescence band peaking around 440 nm
is observed for fluorescence excitation around λF,exc ≈ 350 nm (RSB, Ret_350). A short-wavelength
fluorescence band with maximum around 330 nm, in the bottom sub-figure of Figure 6, belongs to the
apoprotein Trp emission (absorption band maximum around λF,exc ≈ 280 nm). Fluorescence excitation
in the wavelength range from λF,exc = 240 nm to 280 nm additionally caused fluorescence emission
around 450 nm. This indicates excitation energy transfer from apoprotein absorbing species Tyr and
Trp to Ret_350.

The excitation wavelength dependence of the total fluorescence quantum yield φF of QuasAr1
in pH 8 Tris buffer after 80 days of storage at 2.5 ◦C in the dark is displayed by the line-connected
circle curve in Figure 3. The spectral changes of φF(λF,exc) due to sample storage are seen easily by
comparison with the φF(λF,exc) curve a fresh thawed QuasAr1 sample (dashed-line connected triangle
curve in Figure 3). For λF,exc < 500 nm the fluorescence quantum yield is increased by the thermally
formed retinal isomers named Ret_450, Ret_400, and Ret_350 and by the thermally induced apoprotein
restructuring with fluorescence emission of Trp (λF,exc around 280 nm).

Normalized fluorescence excitation spectra of QuasAr1 in pH 8 Tris buffer stored in the dark at
2.5 ◦C for 80 days are presented in section S5 of the Supplementary Materials (Figure S5). They confirm
the thermal formation of retinal isomers with increased fluorescence efficiency compared to Ret_580
and the Trp fluorescence emission.
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Figure 6. Fluorescence emission quantum distributions EF(λ) of QuasAr1 in pH 8 Tris buffer stored at
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2.4. Temporal Development of QuasAr1 at Room Temperature

The thermal stability of QuasAr1 in pH 8 Tris buffer at room temperature (ϑ = 21–25 ◦C) in the
dark was studied by carrying out transmission spectra measurements over a duration of 101 days and
by measuring fluorescence emission and fluorescence excitation spectra after 50 days and at the end of
the storage time.

The measured attenuation coefficient spectra α(λ) are presented in Figure S6 of the Supplementary
Materials (Section S6). In Figure 7a the temporal development of the absorption coefficient spectra
αa(λ) is shown. The curves were derived from Figure S6 by removing the scattering contributions αs(λ)
according to αa(λ) = α(λ) − αs(λ) with αs(λ) = αs(λ0) × (λ0/λ)γ whereby λ0 was set to 800 nm and
γwas adjusted in the transparency region (see below Section 4.2). The storage times are listed in the
legend. The wavelength positions of maximum absorption of the originally present species (Ret_580
and Trp) and the formed species (Ret_530, Ret_500, Ret_450, Ret_400, Ret_350) are indicated.

In the main part of Figure 7a it is seen that the absorption decreased around 580 nm (PRSB, Ret_580),
and new absorption built-up and decreased around 500 nm (PRSB, Ret_500). The absorption increased
with storage time around 400 nm (RSB, Ret_400) and around 350 nm (RSB, Ret_350). The temporal
increase of absorption below 320 nm is attributed to apoprotein restructuring with Trp enlarged
absorption oscillator strength.

The inset of Figure 7a shows the dependence of the absorption coefficient αa(580 nm) versus
storage time tstorage (circles are experimental data). The decrease of the absorption coefficient with
storage time is fitted by a two-component single exponential decay function according to:

αa,580 nm(tstorage) = αa,580 nm(0)
[
κRet_580I

exp(−tstorage/τRet_580,I) + κRet_580II
exp(−tstorage/τRet_580,II)

]
(1)
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In Equation (1) αa,580 nm(0) is the total initial absorption coefficient at tstorage = 0. κRet_580I is the
fraction of Ret_580 with fast absorption decay time constant τRet_580,I. This component is named
Ret_580I. κRet_580II = 1− κRet_580I is the fraction of Ret_580 with slow absorption decay time constant
τRet_580,II. This component is named Ret_580II. The fit parameters are αa,580 nm(0) = 2.193 cm−1,
κRet_580I = 0.41, τRet_580I = 3.8 d, κRet_580II = 0.59, and τRet_580II = 120 d.

In Figure 7b the temporal development of absorption coefficient spectra of new formed
species (Ret_640, Ret_530, Ret_500, Ret_450, Ret_400, Ret_350) are displayed. In the main part
of Figure 7b the Ret_580 contribution αa,Ret_580(λ,tstorage) and the original residual retinal contributions
αa, residual retinals(λ) are subtracted from αa(λ,tstorage) of Figure 7a, i.e.:

∆αa(λ, tstorage) = αa(λ, tstorage) − αa,Ret_580(λ, tstorage) − αa,residual retinals(λ, 0) (2)

is displayed. The curves show i) formation of a weak absorption band around 640 nm (formation of
PRSB isomer Ret_640), ii) build-up and decrease of a broad absorption band around 500 nm (formation of
PRSB Ret_500), iii) build-up of an absorption band around 400 nm (formation of RSB isomer Ret_400), iv)
build-up of an absorption band around 350 nm (formation of RSB isomer Ret_350), and v) build-up of
long-wavelength apoprotein absorption in the range < 340 nm. The Ret_500 absorption band changed its
shape for long-time sample storage tstorage ≥ 50 d. Shoulders are seen around λ ≈ 530 nm (Ret_530) and
around λ ≈ 450 nm (Ret_450). They may be due to new formed retinal isomer forms or due to Ret_500
isomer position shift due to apoprotein adjacent structure changes. The minor part of the PRSB isomer
Ret_580 (fraction κRet_580I , named Ret_580I, likely a cis isomer) is converted dominantly to the short
wavelength absorbing PRSB Ret_500 (likely a trans isomer), and the dominant part of the PRSB isomer
Ret_580 (fraction κRet_580II , named Ret_580II, likely a trans isomer) is converted to the long-wavelength
absorbing PRSB isomer Ret_640 (likely a cis isomer). Ret_500 is thought to deprotonate to Ret_400
(likely a RSB trans isomer), and Ret_640 is thought to deprotonate to Ret_350 (likely a RSB cis isomer).
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Figure 7. (a) Temporal development of absorption coefficient spectra αa(λ) of QuasAr1 in pH 8
Tris buffer stored in the dark at room temperature (ϑ = 21–25 ◦C). The storage times are listed
in the legend (tstorage = 0 h refers to absorption coefficient spectrum measurement immediately
after sample thawing). The inset shows the temporal development of αa(580 nm) where the
circles are data points and the solid curve is a two-component single exponential fit according to
αa,580 nm(tstorage) = αa,580 nm(0)

[
κRet_580I exp(−tstorage/τRet_580,I) + κRet_580II exp(−tstorage/τRet_580,II)

]
with αa,580 nm(0) = 2.193 cm−1, κRet_580I = 0.41, τRet_580I = 3.8 d, κRet_580II = 0.59, and τRet_580II =

120 d. (b) Temporal development of the corresponding difference absorption coefficient spectra
∆αa(λ, tstorage) = αa(λ, tstorage) − αa,Ret_580(λ, tstorage) − αa,residual retinals(λ, 0). The inset shows ∆αa

at λ = 500 nm and λ = 640 nm versus storage time tstorage. The ∆αa data at λ = 500 nm
are fitted by ∆αa,500 nm(tstorage) = ∆αa,500 nm,max

[
1− exp

(
−tstorage/τRet_580I

)]
exp

(
−tstorage/τPT,I

)
with

∆αa,500 nm,max = 0.83 cm−1, τRet_5801
= 3.8 d, and τPT,I = 42 d. The ∆αa data at λ = 640 nm

are fitted by ∆αa,640 nm(tstorage) = ∆αa,640 nm,max
[
1− exp

(
−tstorage/τRet_580II

)]
exp

(
−tstorage/τPT,II

)
with

∆αa,640 nm,max = 0.3 cm−1, τRet_5801I
= 120 d, and τPT,II = 42 d.

The inset in Figure 7b displays the temporal development of ∆αa(500 nm) (circles, initial build-up
of Ret_500 due to conversion of Ret_580I to Ret_500 and subsequent decrease of Ret_500 due to
conversion to Ret_400) and the temporal development of ∆αa(640 nm) (triangles, weak build-up of
Ret_640 due to conversion of Ret_580II to Ret_640 and concurrent conversion of Ret_640 to Ret_350).
The temporal development of ∆αa(500 nm) is fitted by:

∆αa,500 nm(tstorage) = ∆αa,500 nm,max
[
1− exp

(
−tstorage/τRet_580I

)]
exp

(
−tstorage/τPT,I

)
(3)

∆αa,500 nm,max is the expected maximum ∆αa(500 nm) for tstorage→∞ in the absence of deprotonation
(τPT,I → ∞). τRet_580I is the decay time constant of Ret_580I. τPT,I is the time constant of Ret_500
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deprotonation. The fit parameters are ∆αa,500 nm,max = 0.83 cm−1, τRet_580I = 3.8 d, and τPT,I = 42 d.
(∆αa,500 nm at tstorage = 101 d is larger than the fit value since short-wavelength absorption bands extend
to λ = 500 nm and ∆αa,500nm(101 d) is not only due to Ret_500 absorption).

The temporal development of ∆αa(640 nm) is fitted by:

∆αa,640 nm(tstorage) = ∆αa,640 nm,max
[
1− exp

(
−tstorage/τRet_580II

)]
exp

(
−tstorage/τPT,II

)
(4)

∆αa,640 nm,max is the expected maximum ∆αa(640 nm) for tstorage→∞ in the absence of deprotonation
(τPT,II →∞). τRet_580,II is the decay time constant of Ret_580II. τPT,II is the time constant of Ret_640
deprotonation. The fit parameters are ∆αa,640 nm,max = 0.3 cm−1, τRet_580II = 120 d, and τPT,II = 42 d.

Fluorescence emission quantum distributions EF(λ) of QuasAr1 after 50 days of sample storage
in the dark at room temperature (ϑ = 21–25 ◦C) are shown in Figure 8. Fluorescence excitation
in the wavelength range of λF,exc ≥ 560 nm (top sub-figure) resulted in the fluorescence emission
band of Ret_580 with fluorescence maximum around 740 nm. Sample excitation in the region from
λF,exc = 540 nm to λF,exc = 420 nm (second top sub-figure) resulted in peak fluorescence emission in
the range from 550 nm to 530 nm. This emission is dominantly attributed to the formed protonated
retinal Schiff base isomers Ret_530, Ret_500, and Ret_450. In the second lowest sub-figure fluorescence
emission spectra are resolved resulting from the deprotonated retinal Schiff base isomers Ret_400 (λF,exc

≈ 400 nm, λF,max ≈ 470 nm, weak fluorescence emission) and Ret_350 (λF,exc ≈ 350 nm, λF,max ≈ 430 nm).
In the bottom sub-figure the fluorescence emission peaking around λF,max ≈ 330 nm is due to the
apoprotein Trp emission (either directly excited or populated by excitation transfer from photo-excited
Tyr to Trp).
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In Figure S7 of the Supplementary Materials (Section S7) the fluorescence emission quantum
distributions of QuasAr1 after 101 days of storage in the dark at room temperature are shown.
The reduced presence of weakly fluorescing Ret_580 increased the overall fluorescence quantum yield
in the wavelength region from 420 nm to 540 nm (stronger fluorescent Ret_530 and Ret_450).

The excitation wavelength dependence of the fluorescence quantum yield φF of QuasAr1 in pH 8
Tris buffer after 50 days and after 101 days of storage in the dark at room temperature is displayed in
Figure 9. φF is the ratio of the total amount of emitted fluorescence photons to the total amount of
absorbed photons from the various absorbing species i in QuasAr1 at the selected excitation wavelength
λF,exc. This means:

φF(λF,exc) =
∑

i

αa,i(λF,exc)

αa(λF,exc)
φF,i(λF,exc) (5)

where i runs over the species absorbing at λF,exc with the absorption coefficients αa,i(λF,exc), φF,i(λF,exc)
is the fluorescence quantum yield of component i, and αa(λF,exc) =

∑
i αa,i(λF,exc) is the total absorption

coefficient at λF,exc. The wavelength positions of the absorption band maxima of the present components,
protonated retinal Schiff bases Ret_580, Ret_530, Ret_500, Ret_450, deprotonated retinal Schiff
bases Ret_400 and Ret_350, and the apoprotein contribution Trp are indicated at the bottom of
Figure 9. The fluorescence quantum yield contributions of Ret_500 and Ret_400 are not well resolved.
The fluorescence quantum yield of Ret_580 of φF ≈ 0.007 is the same after 50 days and 101 days of
storage as of the fresh sample immediately after thawing. Ret_530, Ret_450, and Ret_350 are a factor of
5 to 10 stronger fluorescent than Ret_580. The fluorescence quantum yield of the apoprotein φF,Trp is
reduced by apoprotein excitation energy transfer to the retinal isomers.
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Normalized fluorescence excitation spectra of QuasAr1 in pH 8 Tris buffer stored in the dark
at room temperature for 50 days (Figure S8) and 101 days (Figure S9) are presented in section S8 of
the Supplementary Materials. They confirm the thermal formation of retinal isomers with increased
fluorescence efficiency compared to Ret_580 and the thermal apoprotein restructuring with increased
absorption strength. The formation of small amounts of strongly fluorescent protonated retinal Schiff
base isomers Ret_530 and Ret_450 by thermal activated ground-state isomerization of Ret_580 are
resolved in Figures S8 and S9.

3. Discussion

In Section 2 we reported spectroscopic investigation of QuasAr1 absorption and emission at pH
8 in Tris buffer. The samples were studied under different conditions: i) fresh thawed samples, ii)
thermally aged samples at refrigerated temperature (2.5 ◦C) and room temperature (21–25 ◦C), and iii)
heat-denaturized samples. The measurements provided information on the thermal protein stability,
the presence of different original apoprotein structures, the original retinal isomer composition, the
thermal induced isomer conformation changes, the protonated retinal Schiff base isomers (PRSB) proton
release to deprotonated retinal Schiff base isomers (RSB), and the thermal apoprotein restructuring
of the originally present apoprotein structures showing up in UV spectral changes and absorption
strength increase. The formation of new protonated retinal Schiff base isomers and their deprotonation
to retinal Schiff base isomers occurred in parallel with the dynamic opsin apoprotein restructuring.

In the heterologous expression of QuasAr1 the retinal cofactor is covalently bound to the opsin
protein via a lysine Schiff base. It is dominantly present in protonated form. About 86% of retinal
was found to be present as protonated retinal Schiff base (PRSB) Ret_580, and about 14% were found
to be present mainly as neutral retinal Schiff base (RSB) isomers Ret_400 and Ret_350 and small
amounts of other protonated retinal Schiff base isomers as Ret_450 (see Figure 1 and section S4 of the
Supplementary Materials).

At refrigerator temperature (≈ 2.5 ◦C) over a period of 80 days only small conversion of Ret_580
to Ret_500, Ret_450, Ret_400 and Ret_350 was observed. Some apoprotein restructuring showed up in
increased UV absorption strength.

At room temperature (≈ 23 ◦C) within the observation time of 101 days formation of new PRSB
isomers (Ret_640, Ret_530, Ret_500, Ret_450) and significant deprotonation of the PRSB isomers to
RSB isomers (Ret_640 to Ret_350, Ret_500 to Ret_400) occurred together with apoprotein restructuring
showing up in increased UV absorption. The temporal two-component single exponential absorption
decrease of Ret_580 (Figure 7a) indicated its composition of two main isomer components Ret_580I

(likely a PRSB cis isomer in a specific QuasAr1 amino acid residue arrangement Apoproteininitial,I) and
Ret_580II (likely a PRSB trans isomer in another specific QuasAr1 amino acid residue arrangement
Apoproteininitial,II). The temporal formation and decay of the absorption coefficient spectra of new
formed species (Figure 7b) indicated i) a ground-state thermal activated isomerization of Ret_580I to
Ret_500 (likely a PRSB trans isomer) and the subsequent deprotonation of Ret_500 to Ret_400 (likely
a RSB trans isomer), and ii) a ground-state thermal activated isomerization of Ret_580II to Ret_640
(likely a PRSB cis isomer) and the concurrent deprotonation of Ret_640 to Ret_350 (likely a RSB cis
isomer). QuasAr1 sample heating above 60 ◦C resulted in fast PRSB chromophore deprotonation to RSB.
The thermal studies indicated energy barrier involved ground-state isomerizations, irreversible protein
restructuring with irreversible protonated retinal Schiff base deprotonation and intrinsic apoprotein
residue (mainly Trp) rearrangement with increased absorption oscillator strength.

The protonated retinal Schiff base ground-state isomerization, protonated retinal Schiff base
deprotonation, and the apoprotein restructuring dynamics are illustrated in Figure 10. The top part
illustrates the isomerization of the PRSB Ret_580II isomer (likely all-trans isomer in a specific QuasAr1
protein conformation ApoproteinII) to the PRSB Ret_640 isomer (likely 13-cis isomer in the same specific
QuasAr1 protein conformation) and the concurrent proton release from Ret_640 to the stable formation
of Ret_350 (likely a RSB 13-cis isomer). The middle part illustrates the isomerization of the PRSB
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Ret_580I isomer (likely 13-cis isomer in a specific QuasAr1 protein conformation ApoproteinI ) to the
PRSB Ret_500 isomer (likely all-trans isomer in the same specific QuasAr1 protein conformation) and
the subsequent proton release from Ret_500 to the stable formation of Ret_400 (likely a RSB all-trans
isomer). The bottom part illustrates the concurrent occurring apoprotein restructuring supporting the
ground-state protonated retinal Schiff base isomerizations and deprotonations.
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Figure 10. Schematic reaction coordinate diagrams for thermal activated S0 ground-state protonated
retinal Schiff base isomerizations and apoprotein restructuring assisted irreversible deprotonations to
retinal Schiff base isomers. Top part: Isomerization of Ret_580II to Ret_640 and subsequent deprotonation
to Ret_350. Middle part: Isomerization of Ret_580I to Ret_500 and subsequent deprotonation
to Ret_400. Bottom part: Parallel occurring opsin restructuring of originally present apoprotein
structures (Apoproteininitial,I and Apoproteininitial,II) to final apoprotein structures (Apoproteinfinal,I and
Apoproteinfinal,II) of QuasAr1 acting on protonated retinal Schiff base isomerization and deprotonation.

The energetic level positions Eiso,I of Ret_500 and Eiso,II of Ret_640 may be estimated from the
expected maximum absorption differences ∆αa,500 nm, max and ∆αa,640 nm, max of Equations (3) and (4).
Assuming equal absorption cross-sections σa,Ret_580(580 nm), σa,Ret_500(500 nm), and σa,Ret_640(640 nm),
the fractions χRet_500 and χRet_640 of thermally populated Ret_500 and Ret_640 would be [54]:

χRet_500 =
∆αa,500 nm,max

αa,580 nm(0)κRet_580,I
(6)

χRet_640 =
∆αa,640nm,max

αa,580 nm(0)κRet_580,II
(7)

The energy level positions Eiso,I and Eiso,II are obtained by application of the Boltzmann level position
law [72]:

χRet_500 =
exp(−Eiso,I/(kBϑ))

1 + exp(−Eiso,I/(kBϑ))
(8)
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and:

χRet_640 =
exp(−Eiso,II/(kBϑ))

1 + exp(−Eiso,II/(kBϑ))
(9)

where kB is the Boltzmann constant and ϑ is the temperature.
Solving Equations (8) and (9) for Eiso,I and Eiso,II gives:

Eiso,I = − ln
(
χRet_500

1− χRet_500

)
kBϑ (10)

and:

Eiso,II = − ln
(
χRet_640

1− χRet_640

)
kBϑ (11)

Insertion of parameters gives: χRet_500 = 0.92 (∆αa,500 nm,max = 0.83 cm−1, αa,580 nm(0) = 2.193 cm−1,
κRet_580,I = 0.41), χRet_640 = 0.23 (∆αa,500 nm,max = 0.3 cm−1, αa,580 nm(0) = 2.193 cm−1, κRet_580,II = 0.59),
Eiso,I = −9.98 × 10−21 J = −500 cm−1

× hc0 (kB = 1.38 × 10−23 J K−1, ϑ = 296 K is temperature, h is the
Planck constant, and c0 is the speed of light in vacuum), and Eiso,II = 4.94 × 10−21 J = 248 cm−1

× hc0.
The time constants of Ret_580I isomerization to Ret_500, τRet_580,I, of Ret_580II isomerization to

Ret_640, τRet_580,II, of Ret_500 deprotonation to Ret_400, τPT,I, and of Ret_640 deprotonation to Ret_350,
τPT,II, were determined above (Equations (3) and (4)). They are related to the energy activation barriers
Eact,I, Eact,II, Eact,PT,I, and Eact,PT,II by the Arrhenius relation [73] according to:

τRet_580,I = τ0 exp
(

Eact,I

kBϑ

)
(12)

τRet_580,II = τ0 exp
(

Eact,II

kBϑ

)
(13)

τPT,i = τ0 exp
(

Eact,PT,i

kBϑ

)
, i = I, II (14)

where τ0 = h/(kBϑ) is the attempt time constant of barrier crossing [59,74]. Solving Equations (12)–(14)
for the activation energy barriers gives:

Eact,I = ln
(
τRet_580,I

τ0

)
kBϑ (15)

Eact,II = ln
(
τRet_580,II

τ0

)
kBϑ (16)

Eact,PT,i = ln
(
τPT,i

τ0

)
kBϑ. i = I, II (17)

Insertion of parameters (ϑ = 296 K, τ0 ≈ 1.6 × 10−13 s, τRet_580,I = 3.8 d, τRet_580,I = 120 d, τPT,I ≈

τPT,II ≈ 42 d) leads to Eact,I = 1.72 × 10−19 J = 8670 cm−1
× hc0, Eact,II = 1.86 × 10−19 J = 9380 cm−1

× hc0,
and Eact,PT,I ≈ Eact,PT,II ≈ 1.82 × 10−19 J ≈ 9160 cm−1

× hc0.
The performed data analysis of fresh thawed and of heat treated QuasAr1 allowed to determine

the absorption cross-section spectra of PRSB Ret_580 (a composition of PRSB 13-cis isomer Ret_580I

and PRSB all-trans isomer Ret_580II in two different protein adjacent amino acid arrangements
Apoproteininitial,I and Apoproteininitial,II) and of the RSB Ret_380 (likely unresolved composition of
Ret_350 and Ret_400) which are shown in Figure S3. Knowledge of the absorption cross-section spectra
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allowed the determination of the radiative lifetimes τrad of the S1–S0 emission transitions using the
Strickler–Berg formula according to [75–77]:

τrad =
nAλ

3
F

8πc0n3
Fσ

(18)

where nA and nF are the average refractive indices of the aqueous buffer solution in the S0–S1 absorption
band region and the S1–S0 emission band region, respectively, and c0 is the velocity of light in

vacuum. λF =
(∫

em EF(λ)λ3dλ/
∫

em EF(λ)dλ
)1/3

is the average S1–S0 fluorescence emission wavelength,
and σa =

∫
abs(σa(λ)/λ)dλ is the absorption cross-section strength of the S0–S1 absorption band.

Using appropriate absorption cross-section data from Figure S3, fluorescence quantum distribution
data from Figure 6 and refractive indices of water, we determine τrad(Ret_580) = 9.32 ns (nF = 1.33,
nA = 1.3328, λF = 745 nm, σa = 3.33 × 10−17 cm2) and τrad(Ret_380) ≈ 3.74 ns (nF = 1.3366, nA = 1.3406,
λF ≈ 460 nm, σa = 1.94 × 10−17 cm2).

Average Strickler-Berg based fluorescence lifetimes τF,SB are obtained from the radiative lifetimes
and the fluorescence quantum yields according to:

τF,SB = φFτrad (19)

The obtained values are τF,SB(Ret_580) ≈ 61.5 ps (φF ≈ 0.0065) and τF,SB(Ret_380) ≈ 150 ps (φF ≈ 0.04).
The fluorescence quantum yields and the fluorescence lifetimes of the protonated retinal Schiff

base chromophore Ret_580 of fresh thawed QuasAr1 and of the thermally formed deprotonated retinal
Schiff base Ret_380 are extraordinary large compared to the parent wild-type Archaerhodopsin 3
(φF(Arch) = 9 × 10−4) [36,42]. The performed mutations on Arch to get QuasAr1 led to a slowing down
of the excited-state isomerization dynamics via twisted internal conversion (S1–S0 conical intersection).
They cause some restriction (barrier) along the reactive coordinate (twist angle) of photoisomerization.
The slower relaxation along the S1 state potential energy surface towards the funnel position of S1

to S0 internal conversion leads to the broad-band fluorescence emission of increased efficiency and
longer fluorescence lifetime ([51] and references therein). In Table S1 of the Supplementary Materials
(section S9) absorption, fluorescence, and primary photoisomerization parameters of some rhodopsins
are collected for comparison.

4. Materials and Methods

4.1. Sample Preparation

QuasAr1 gene was a gift from Adam E. Cohen (Addgene plasmid # 64135, [42]). E. coli optimized
gene was cloned into pET21a(+) vector between the NdeI and SalI restriction sites with a C-terminal
TEV protease cleavage site and a HIS6 tag (ENLYFQSLVDLEHHHHHH).

The expression plasmid (pet21a+) carrying QuasAr1 was transformed into C41(DE3) E. coli cells.
To induce the protein expression we used 0.5 mM isopropyl β-D-thiogalactopyranoside (IPTG; Carl
Roth GmbH, Karlsruhe, Germany) and the LB media was supplemented with 5µM all-trans retinal
(ATR; Sigma-Aldrich, St. Louis, USA). The cells were incubated at 37 ◦C for 4 h and then harvested.
The cells were disrupted using an EmulsiFlex-C3 Homogenizer (AVESTIN Inc., Ottawa, Canada).
The membrane fraction was collected by ultracentrifugation (45,000 rpm) for 1 h at 4 ◦C (Type 45
Ti; Beckman Inc., Indianapolis, USA) and then resuspended in buffer containing 50 mM Tris-HCl
(pH 8.0), 300 mM NaCl, 0.1 mM phenylmethanesulfonyl fluoride (PMSF), 1.5% n-dodecyl-β-D-maltoside
(DDM, GLYCON Biochemicals GmbH, Luckenwalde, Germany), and 0.3% cholesteryl hemisuccinate
(CHS, Sigma-Aldrich, St. Louis, USA) and stirred overnight for solubilization. The insoluble fraction
was removed by ultracentrifugation (200,000 × g, 1 h at 4 ◦C). The QuasAr1 protein was purified by
Ni-NTA affinity and using an ÄKTAxpress protein purification system (GE Healthcare Life Science,
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Chicago, USA) configured with a HisTrap HP Ni-NTA column. The protein was collected in the final
buffer containing 50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 0.02% DDM, 0.004% CHS, 0.1 mM PMSF,
and 5% glycerol.

The expressed QuasAr1 protein in the final buffer was aliquoted to amounts of 30 µL in Eppendorf
tubes, shock-frozen, and stored at –80 ◦C until thawing for experimental investigations.

4.2. Spectroscopic Measurements

Transmission measurements, T(λ) (λ is wavelength), were carried out with a spectrophotometer
(Cary 50, Varian Australia Pty Ltd, Mulgrave, Victoria, Australia). Attenuation coefficient spectra were
calculated by the relation, α(λ) = − ln[T(λ)]/l, were l is the sample length. In the case of negligible
protein light scattering the attenuation coefficient spectrum α(λ) is equal to the absorption coefficient
spectrum αa(λ). Otherwise it comprises absorption (αa) and scattering (αs) contributions according
to α(λ) = αa(λ) + αs(λ). The scattering coefficient spectrum is approximated by the empirical
relation [78] αs(λ) = αs(λ0)(λ0/λ)γ where the wavelength λ0 is selected in the transparency region
and γ ≤ 4 is fitted to the experimental attenuation in the transparency region. Absorption coefficient
spectra became available by subtracting the scattering contribution from the measured attenuation
coefficient spectra.

The QuasAr1 melting was studied by stepwise sample heating up, then cooling down and thereby
measuring the attenuation coefficient spectra development [58,59]. The apparent protein melting
temperature ϑm was derived from the onset of strong light attenuation in the transparency region
of QuasAr1.

The thermal stability of QuasAr1 at room temperature (21–25 ◦C) and refrigerator temperature
(2.5 ± 0.5 ◦C) was determined by storing QuasAr1 samples at these temperatures in the dark and
measuring transmission spectra at certain time intervals.

Fluorescence spectroscopic measurements were carried out with a spectrofluorimeter (Cary Eclipse,
Varian Australia Pty Ltd, Mulgrave, Victoria, Australia). Fluorescence emission quantum distributions
EF(λ) were determined from fluorescence emission spectra measurements at fixed excitation
wavelengths [52,79,80]. The dye rhodamine 6G in methanol was used as reference standard
for fluorescence quantum distribution calibration (fluorescence quantum yield φF,ref = 0.93 [81]).
The fluorescence quantum yield φF was calculated using the relation φF =

∫
em EF(λ)dλ where the

integration runs over the fluorescence emission wavelength region. Fluorescence excitation quantum
distributions Eex(λ) were recorded by scanning the fluorescence excitation wavelength over the
absorption wavelength region at fixed fluorescence detection wavelengths [82]. Magic angle conditions
were applied for the fluorescence recordings (vertical polarized excitation and orientation of the
fluorescence detection polarizer at an angle of 54.7◦ to the vertical [83]). The spectra were corrected for
the spectral sensitivity of the spectrometer and the photodetector.

5. Conclusions

The rhodopsin fluorescent voltage sensor QuasAr1 [42] was characterized by its absorption and
emission spectroscopic behavior and its long-time thermal stability. At refrigerator temperature it may
be used over a period of about 40 days without significant absorption and fluorescence spectroscopic
changes. At room temperature it is possible to store the voltage sensor over about one day without
severe retinal Schiff base deprotonation and opsin protein restructuring.

In the dark at room temperature the formation of new retinal isomers in the ground-state of
QuasAr1 took place by thermal overcoming of energy barriers and by lowering the potential energy
levels of the protonated Schiff base isomers (dominantly Ret_500 and Ret_640) and the deprotonated
Schiff base isomers (dominantly Ret_400 and Ret_350) due to dynamic protein restructuring on a time
scale of days. The isomerization dynamics of QuasAr1 retinals in the excited state (photoisomerization)
occurs on a ten picosecond timescale due to a different barrier-involved S1 state potential energy
surface structure.
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Abbreviations

Arch Archaerhodopsin 3 from Halorubrum sodomense
GECI Genetically encoded calcium indicator
GEVI Genetically encoded voltage indicator
PRSB Protonated retinal Schiff base
QuasAr Quality superior to Arch
Ret_xxx Retinal with absorption maximum approximately at xxx nm
RSB Retinal Schiff base
Trp Tryptophan
Tyr Tyrosine
VSD Voltage sensing domain
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