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Abstract: One of the most chronic constraints to crop production is the grain yield reduction near
the crop harvest stage by lodging worldwide. This is more prevalent in cereal crops, particularly
in wheat and rice. Major factors associated with lodging involve morphological and anatomical
traits along with the chemical composition of the stem. These traits have built up the remarkable
relationship in wheat and rice genotypes either prone to lodging or displaying lodging resistance.
In this review, we have made a comparison of our conceptual perceptions with foregoing published
reports and proposed the fundamental controlling techniques that could be practiced to control
the devastating effects of lodging stress. The management of lodging stress is, however, reliant on
chemical, agronomical, and genetic factors that are reducing the risk of lodging threat in wheat and
rice. But, still, there are many questions remain to be answered to elucidate the complex lodging
phenomenon, so agronomists, breeders, physiologists, and molecular biologists require further
investigation to address this challenging problem.

Keywords: lodging; morphological management; plant growth regulators; resistance genes;
agronomical management

1. Introduction

The primary causes of plant lodging including: legion, increased nitrogen levels, over plant
population, soil density, diseases, natural disasters such as storm damage, sowing date, and seed type,
are all mainly contributing factors to lodging in cereal crops. Lodging refers to stem breaking type
and stem bending type (stem lodging) [1] or root lodging (anchorage failure) [2] of the plants, and is
one of the most concerning problems faced by the farmers worldwide [3]. Generally, the possibility of
lodging occurs when the plant weight (upper parts of plants) increased by the interception of rainfall.
When the lower stem parts are weakened by disease attack or by overdose application of nitrogenous
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fertilizer, or when the shearing cohesive bond strength of the soil particles around the root system is
almost completely deteriorated by rainfall. Lodging severely affects grain production of the major
cereal crops; particularly wheat and rice also have several other indirect knock-on effects such as crop
harvest at a slower pace, reduction in grain quality, and drying costs [4–6]. These factors are considered
among some of the major constraints in reducing crop productivity globally.

In the United Kingdom, lodging in winter wheat accounted for about $80 million annual losses
to the farming industry [7]. Reduction in the grain yield up to 80% has been estimated in a study
focusing on the impact of lodging on crop yield using both natural and artificially-induced lodging
modes [8]. Niu et al. [9] reported that robust storms-continuous rainfalls and heavy rainfalls were the
major factors for lodging to reduce wheat production in China. Overall, robust storms-continuous
rainfalls accounted for 73% lodging while heavy rainfalls and robust storm contributed to about 19%
and 8% lodging, respectively. In Egypt, the reduction in wheat grain production by 7.2% and 19.9%
was observed by lodging at 275 kg N ha−1 and 225 kg N ha−1, in comparison with 175 kg N ha−1

and 150 kg N ha−1 applications, respectively [10]. Artificially-induced lodging in wheat at the ear
emergence, soft dough, hard dough, and at milk stages decreased the grain yield by 31%, 20%, 12%,
and 25%, respectively [11]. Generally, in wheat, grain yield reduction is associated with the crop
growth stage at which the lodging occurs, like the onset of stem elongation and flowering. During
these stages, the wheat crop is highly vulnerable to damage by wind and frost [12].

Furthermore, Berry and Spink [4] reported that crops falling within an angle of 45◦ may result in
the 18% decline of grain production. Similarly, plants lodging at an angle of 80◦ from the perpendicular
position during the flowering phase could reduce the significant proportion of grain yield. The reduction
in the grain yield varies from 8–34% [11], up to 54% [4], and 43–61% [8], had revealed from different
studies. CIMMYT (International Maize and Wheat Improvement Center) investigators have also
observed a similar proportion of wheat area affected with lodging in North West Mexico [13].

Lodging is associated with height reduction due to a bending of the shoot from the vertical
position. This is most prevalent in the canopies of modern irrigated and deep-watered rice growing in
the fields under tropical conditions and is accompanied by yield reductions up to 2 t ha−1 [14]. They
also reported that lodged plants during stem elongation and grain-filling stages had a 40% reduction
in yield by using a semi-dwarf rice cultivar. It has been observed that lodging during the grain filling
stage occurring at 25–90◦ angle from the perpendicular could reduce grain yield which varies from
20–61% in wheat [4].

Weng et al. [15] described that stem lodging in rice significantly disturbed the photosynthetic
capability of the canopy by affecting the grain filling stage. As a result, reduction in grain yield and
quality, higher crop harvest cost, and severe inhibition of the balanced yield in rice occurred as reported
by Haghdoost et al. [16]. For example, lodging negatively affected both rice grain yield and quality [17]
on account of 60–80% by reducing rice canopy photosynthesis [18]. Tall rice genotypes either artificially
induced to lodge or allowed to lodge showed a 35% reduction of 2 t ha–1 in grain yield [19]. Grain
yield decreased up to 80% in the wet season and up to 50% in the dry season due to lodging in the
thin stemmed genotypes, despite the abundant nitrogen application [20–22]. Moreover, lodging stress
posed difficulties in machine harvesting and hampered the working efficiency by up to 25% [23].

In wheat and rice, the traits which are most commonly associated with lodging resistance are
plant height, culm diameter and thickness, strength of upper and lower internodes, thickness of stem
wall, lignin and cellulose accumulation in the stem wall, and spike weight (Figure 1) [24]. This review
article focused on the recent knowledge about the plant traits which primarily play a crucial role in
improving lodging resistance in wheat and rice. Various approaches, like genetics, agronomic, and
chemical that reduce lodging in wheat and rice are also discussed. Moreover, we analyzed the basis
of lodging, and enlighten the fact that any cultivar susceptibility to lodging depends on three main
factors: (i) what are the exact size and dynamics of the forces to which it is exposed to? [25], (ii) the
correlation of stem bending strength to lodging resistance [26], and (iii) the anchorage power of the
root system.
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Figure 1. Major traits associated with the reduction of lodging in wheat and rice. Factors associated with 
the lodging resistance are shown by (blue) arrows, whilst resistant plants through these contributing 
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2.1. Plant Height and Inter-Nodal Length 

Plant height plays a pivotal role in the lodging resistance of cereal crops [15,27,28]. Plant height 
is strongly associated with lodging resistance (Table 1) at all developmental stages in cereals [29,30]. 
Thus, their strong and positive association and the subsequent relationship of plant height with yield 
and yield-related components have previously been reported by Yu et al. [31]. Genotypes with tall 
height are highly prone to lodging, in contrast with the genotypes which have shorter plant height 
as they have the potential to withstand under lodging pressure [32,33].  

At the flowering time and milky phase of grain formation in wheat [34], the weight increment 
of the spikes occurs. It increases the center of gravity of height and the continuous translocation of 
material deposited in the stem to spikes reduces the stem bending strength [30,35], which in turn 
negatively affects the plant’s storm resistance capacity.  

Another factor is desirable internode length in rice and wheat, which enhances the resistance to 
lodging, supporting the fact that plant height is not only the single key element which is associated 
with lodging resistance [5,36,37] but also explains the enhancement in stem strength of the basal 

Figure 1. Major traits associated with the reduction of lodging in wheat and rice. Factors associated with
the lodging resistance are shown by (blue) arrows, whilst resistant plants through these contributing
elements are encircled in (green) arrows.

2. Morphological Traits and their Responses under Lodging Stress

2.1. Plant Height and Inter-Nodal Length

Plant height plays a pivotal role in the lodging resistance of cereal crops [15,27,28]. Plant height
is strongly associated with lodging resistance (Table 1) at all developmental stages in cereals [29,30].
Thus, their strong and positive association and the subsequent relationship of plant height with yield
and yield-related components have previously been reported by Yu et al. [31]. Genotypes with tall
height are highly prone to lodging, in contrast with the genotypes which have shorter plant height as
they have the potential to withstand under lodging pressure [32,33].

At the flowering time and milky phase of grain formation in wheat [34], the weight increment
of the spikes occurs. It increases the center of gravity of height and the continuous translocation of
material deposited in the stem to spikes reduces the stem bending strength [30,35], which in turn
negatively affects the plant’s storm resistance capacity.

Another factor is desirable internode length in rice and wheat, which enhances the resistance to
lodging, supporting the fact that plant height is not only the single key element which is associated with
lodging resistance [5,36,37] but also explains the enhancement in stem strength of the basal portion of
the culm internode: is one of the key factors to develop resistance against lodging. Moreover, they
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reported a positive relationship of internodes number, plant height, and inter-nodal length with the
lodging score, which depicts the role of these plant attributes for lodging resistance in wheat.

Studies have revealed that resistance to lodging is entirely dependent on and influenced by
internodal length, plant height, and stem bending strength [38]. Reduction in plant height develops
tolerance to lodging on the account of comparatively low center of gravity and reduction of the
above-ground load of plant on the lower stem in rice [39–41], while semi-dwarf varieties in rice
decreased their internode length, which then improved their tolerance to lodging. The short length
of primary internodes can support to construct an ideal culm structure for resistance to lodging
whereas the reduction in the length of the upper internode could have an adverse impact on panicle
exertion [42–44]. A negative relationship of the basal internode length with lodging score has been
observed, which suggests that the longer internodes at base could result in a higher lodging score in
wheat [45] and rice [46].

2.2. Culm Wall Thickness, Culm Diameter, and Panicle Weight

Culm wall thickness and culm diameter confer resistance to lodging [39]. Li et al. [33] reported
that plant culm diameter was generally greater at the first internode but reduced progressively in
the upper direction of the plant portion. It was also observed that greater culm diameter strongly
associated with the culm wall thickness which has an integral element to improve resistance to lodging
in wheat and rice [36,39,44,47]. Likewise, culm diameter and stem strength in wheat and rice are
correlated with length of the last internode from the base of the plant, leaf sheath length, and the
cross-sectional area of stem [11]. Heavier and thicker culms also confer resistance to lodging in cereal
crops particularly in wheat and rice [48,49].

Culm thickness is substantially associated with the resistance conferred by culm diameter and the
lowest three internodes of the rice plant [50]. Moreover, the length of elongated internode of basal stem,
culm wall thickness and culm diameter greatly influence the lodging resistance capacity in rice [51–53].

Cui et al. [54] reported that the expression of the culm diameter of the second internode resulted
from dominant and additive gene effects. A significant variation for culm wall thickness in the second
internode region among lodging-resistant and susceptible wheat genotypes (0.75 mm and 0.69 mm,
respectively) have been observed [27]. Similar results were reported in a study of four common wheat
cultivars, where a significant association was observed for lodging resistance with culm wall thickness
(R = 0.972) and heaviness of the lowest three internodes (R = 0.986) [37] (Table 1). Subsequently, it has
also been reported that lodging-resistant wheat genotypes have higher culm wall thickness and culm
diameter of the lower internodes [55–57].

Under lodging stress, reduction in grain yield was linked to panicle weight and grain weight
per panicle, as described in the past experiments [58]. Days to panicle and maturity were negatively
correlated with lodging, while culm diameter, culm length, panicle weight, and panicle length were
significantly and positively correlated (Table 1) with resistance to lodging in rice [59]. In the context of
lodging index, it has been reported to correlate positively with the length of the internode, plant height,
and gravity height, but remarkably negatively associated with both cellulose and lignin contents in
wheat plant [60]. Stem bending movements in the direction of soil was the primary causal factor of
lodging which occurred when rice panicle [61] or wheat spike [8,62] gained high weight at the period
of maturation or due to some environmental factors like wind and rain. Nevertheless, the positive
associations of panicle neck thickness (Table 1) with the number of panicle neck vascular bundles
were reported by Xu et al. [63] and panicle neck angle lower than 40◦ was considered as an erect-type
panicle [64]. In addition, lodging incidences were reduced by shorter peduncle with reduced center of
gravity causing an increase in panicle erectness (Figure 2) [64,65].
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2.3. Root Lodging 

Root system architecture (RSA) primarily plays important roles in growth and development, 
anchoring the plant into its growth substrate, facilitating water and nutrient uptake from the soil. 
While, it is also considered crucial to combat under extreme environmental signals such as biotic and 
abiotic stresses, including root lodging [66]. Basically, plants have two main root systems: a taproot 
system and a fibrous root system. In case of wheat and rice, as they both are monocot species so 
contain fibrous root system [67]. It consists of a dense mass of adventitious roots (also called crown 
roots in cereals) that arise from the stem, which are distinct from the primary root, lateral roots (LRs), 
and root hairs [68]. Because the primary roots (embryonic root) dies within the growth age of 
monocots, whereas the adventitious roots are the main root tissues in the fibrous root system of 
monocot plants.  

Root traits which are associated with root system architecture significantly contribute to 
overcome abiotic constraints and are critical to maintain the structural and functional properties of 
roots, and thus considered first order targets in the breeding programs. Root characteristics, such as 
deep root system, increased root density in subsoil, increased root hair length and density, and/or 
xylem diameters, may contribute to enhance the lodging resistance [69,70]. For example, rice varieties 
resistant to lodging developed more roots in deeper soil layers than lodging-susceptible varieties, 
while contribution of unit root weight to lodging tolerance was higher in deeper than in shallower 
soil layers. Their work confirmed that, in rice, a greater ability to form roots with a higher bulk density 

Figure 2. Various types of lodging that are devastatingly reducing yield in (a) wheat, (b) rice:
diagrammatically presented as follow: culm breaking; basal internode lodging; panicle shadow on a
leaf during sunlight and the force of the panicle on the stem between erect (EP) and curve panicle (CP)
plants; lowers the center of gravity due to decrease in plant height and increases bending type lodging
resistance, and root lodging.

2.3. Root Lodging

Root system architecture (RSA) primarily plays important roles in growth and development,
anchoring the plant into its growth substrate, facilitating water and nutrient uptake from the soil.
While, it is also considered crucial to combat under extreme environmental signals such as biotic and
abiotic stresses, including root lodging [66]. Basically, plants have two main root systems: a taproot
system and a fibrous root system. In case of wheat and rice, as they both are monocot species so contain
fibrous root system [67]. It consists of a dense mass of adventitious roots (also called crown roots in
cereals) that arise from the stem, which are distinct from the primary root, lateral roots (LRs), and
root hairs [68]. Because the primary roots (embryonic root) dies within the growth age of monocots,
whereas the adventitious roots are the main root tissues in the fibrous root system of monocot plants.

Root traits which are associated with root system architecture significantly contribute to overcome
abiotic constraints and are critical to maintain the structural and functional properties of roots, and thus
considered first order targets in the breeding programs. Root characteristics, such as deep root system,
increased root density in subsoil, increased root hair length and density, and/or xylem diameters, may
contribute to enhance the lodging resistance [69,70]. For example, rice varieties resistant to lodging
developed more roots in deeper soil layers than lodging-susceptible varieties, while contribution
of unit root weight to lodging tolerance was higher in deeper than in shallower soil layers. Their
work confirmed that, in rice, a greater ability to form roots with a higher bulk density in subsoil was
one of the most important characteristics for root lodging tolerance [71]. Moreover, researchers in
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References [72,73] studied the mechanism of roots and root systems, and explicitly explained the
implication of roots, root system, and soil factors in lodging phenomenon in winter wheat. They
reported that, lodging resistance was not related to the strength and stiffness of the stems but rather
was dependent on a cone of rigid coronal roots which emerge from around the stem base. Despite
this, one theoretical model of anchorage suggested that lodging resistance should be dependent on the
diameter of the root–soil cone, coronal root bending strength, and soil shear strength. Aerenchyma
formation in roots is another key element which is considered to be linked to establish stronger and
deeper roots to support lodging tolerance. In wheat, adventitious roots formation and shoots growth
have positive association even under hypoxia condition [74]. In rice, formation of primary aerenchyma
provides a favorable condition to grow plants well by improving root efficiency in flooded paddy
conditions and enhances the tolerance to lodging; thereby they are considered to play a vital role in
lodging indirectly [75].

Furthermore, major attentions have also been focused on the root system and the associated
mechanics of root anchorage, as most of the cereal crops, particularly wheat and rice, are more prone
to root lodging in comparison to stem lodging [47]. Root lodging occurs when the underground roots
grow straight while intact culms lean from the crown owing to heavier head/inflorescence and wet
soil [34]. Likewise, Pinthus [25] reported that lodging is the result of either tender culms or weakly
anchored roots which could be a consequence of genetic or environmental factors such as insects or
disease invasions. Robust root anchorage mechanisms of any plant are reliant on two characteristics of
the root system: the angle of spread of the basal coronal roots and the bending strength [34]. They also
explained that the force required for lodging plants enhanced linearly with deflection before leveling
slightly at an angle greater than 30◦ in wheat.

Several studies have reported the association between culm strength and vigorous root anchorage
in the upper layer of soil in wheat [34,76]. Phenotypic differences between the root system of highly
lodging-resistant and lodging-vulnerable cultivars are quite obvious. For instance, plants that were
standing on bundles of flexible vertical roots and stem had no penetration into soil at great extent
thereby, have shallow crown depth, which then decreased anchorage strength of wheat plants [77].
In wheat, a positive correlation has been observed between the culm lodging resistance and the spread
of the coronal roots [78]: expressed as the angle from the vertical points at which these flexible roots
penetrate into the soil [77]. This association seems to be having a distinct impact as it was observed
in those cultivars which were displaying similarities to other lodging-resistant characters related to
roots and stem [25]. In addition, the root lodging resistance depends on the diameter of the root-soil
cone, the bending strength of the crown and the shear strength of the soil. It was reported that the root
system of wheat was weaker than the shoot system in wet soil [72]. Sterling et al. [79] also found that
root lodging may occur if the maximum bending moment at the base exceeds soil strength, which is
the function of soil parameters and soil moisture contents.

Globally, other scientists have implicated the root architecture system and its failure as an
accountable element in rice lodging. Although rice plant has relatively shallow rooting system [70],
which penetrates perpendicularly into the soil, but spreading of roots has been considered an important
factor in rice cultivation. For example, high yielding rice populations often had a large number of
downward growing nodal roots, which generally penetrate and develop well in relatively deeper
layers of soil [80].

In contrast, both wheat and rice have a different root architecture system. Izumi et al. [81]
explained the branching pattern in rice roots and this is more likely to be herringbone type. Though
this does not imply a particular specific anchorage system in rice plant, the time-course varies in the
root growth compared to the branching system, which may affect the resistance or lead to root lodging.
Besides the growth angle of nodal roots, the size of nodal roots is also considered as a fundamental
element in determining the spatial distribution of the plant root system in soil, which was observed to
be involved in crop yield and under lodging resistance [82]. Ogata and Matsue [83] demonstrated
the clear image of the rice root system’s impact and its nature where they found that the crown root’s
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thickness at different intervals after sowing is a prominent decisive aspect in lodging resistance in
direct-sown rice. Therefore, this is crucial to have a comprehensive and thoughtful understanding of
mechanics in root anchorage and lodging resistance in rice. It is expected to improve the resistance to
root lodging under a high ratio of carbon dioxide (CO2) if we have a great proportion of root biomass
per tiller [84].

Table 1. Plant constituents associated with lodging resistance in wheat and rice.

Trait (s) Crop Behavior Reference (s)

1. Morphological Features

Plant height Wheat and rice Positively correlated with lodging [27,29,30,37,39]

Primary inter-nodal length Wheat and rice Negatively correlated with lodging
resistance [45]

Culm diameter Wheat and rice Strongly positively association with
resistance to lodging [30,36,39,47]

Culm length Wheat and rice Positively correlated with lodging [59]

Culm diameter, panicle
weight, panicle length Rice Positively correlated with resistance

to lodging [59]

2. Anatomical Aspects

Number of vascular bundles Rice Strongly positively associated with
resistance to lodging [63]

Width of mechanical tissue
layer Wheat Strongly positively associated with

resistance to lodging [37]

3. Biochemical Features

Lignin and cellulose contents Wheat and rice
Strongly positively correlated with
culm strength, secondary cell wall
strength, and lodging resistance

[37]

4-Plant Root System

Root lodging resistance Wheat and rice
Associated to diameter of the root soil
cone, bending strength of the crown,

and the shear strength of the soil
[70,72,79]

The contribution of unit root weight to enhance lodging resistance was extremely higher in deeper
soil in comparison to the shallow soil layer [70]. Thus, their finding affirmed that, in rice, a greater
tendency to develop roots under higher bulk density in subsoil has been acknowledged as one of the
most essential characteristics for tolerance to root lodging. The rice plant roots anchorage strength and
increments towards the lodging resistance were particularly determined at seedling and maturing
stages [85]. At the 7th and 8th leaf stages, the diameter of the crown roots was observed to be thicker
in lodging-tolerant rice cultivars in comparison with susceptible cultivars. Similar results of a positive
association of crown diameter with enhanced lodging resistance have been observed at maturity stages
of the plant [51].

2.4. Carbohydrates and Role of Lignin Biosynthesis

Lignin and cellulose contents are the major components of the cell wall and their components are
essential for plant vigor, and against biotic and abiotic stresses including plant lodging [86]. A high
concentration of lignin in vascular bundles can enhance cell wall strength and improves the physical
strength of plant stalk. The total lignin contents of basal second internode of wheat and rice were
significantly associated with the breaking stability and elasticity of stems [39,57]. Lignin accumulation
in higher amounts enhances the physical stability of culm internode in wheat [5]. During secondary
cell wall formation, lignin is accumulated in the carbohydrate matrix of the cell wall, making the entire
plant body robust, enabling the plant to grow upwards [87,88]. Structural carbohydrates and lignin
concentrations in the cell wall of the lower internodes were not consistently associated with lodging
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in wheat cultivars [89]. It has been reported that the arrangement and interaction of the different
structural carbohydrates and lignin in the culm cell wall could be more important in lodging resistance
in wheat. Culm and secondary cell wall strength in mutant rice genotypes [90] and wheat [37] were
due to the accumulation of cellulose, lignin, and hemicellulose in a significant amount. Lignin and
cellulose contents in the cell wall also enhance lodging resistance in rice [15,51].

The association of the lodging resistance with higher concentrations of lignin, pectin, cellulose, and
protein in the plant stem has been reported in several studies [37]. The amount of hemicellulose and
lignin of culms in susceptible varieties have been observed low, as compared to that of lodging-resistant
wheat varieties [47,86]. Enzymatic activities of Tyrosine ammonia-lyase (TAL), phenylalanine ammonia
lyase (PAL), and peroxidase (POD) enzymes were significantly associated with the lignin build-up and
accumulation in wheat culms [91,92]. Lodging resistance in wheat, thus, could be improved through
the lignin accumulation in higher amounts with the help of the enhanced activities of the enzymes
involved for lignin accumulation. Here, we discussed and enlightened the some information about
lignin biosynthesis, its regulatory mechanism, and pivotal role to prevent or increase the sensitivity
to lodging.

Generally, the formation of lignin in plants is accomplished by an oxidative coupling reaction of
three monolignols which are considered as building blocks i.e., coniferyl, sinapyl, and p-coumaryl
alcohols [93] as illustrated in Figure 3. These monolignols are the synthesized products of phenylalanine
through the general phenylpropanoid and by means of monolignol-specific pathways. After the
succeeding dehydrogenative polymerization reactions which then produce the three units, namely:
guaiacyl (G), syringyl (S), and hydroxyphenyl (H); they finally make a complex and three-dimensional
structure of lignin polymer [93].

Some previously conducted experiments had characterized the expression pattern of wheat
homologs of lignin biosynthetic genes. Studies showed that transcripts of these homologs were highly
expressed in the stem tissue in comparison to other plant tissues, such as in leaf sheath and leaf blade. A
significant correlation among PAL6, C4H, 4CL1, C3H1, CCR2, F5H1, and F5H2 enzymes expression and
lignin content was observed [94]. Moreover, CCR1 and CAD1 transcripts were abundantly present in
the stem along with the greater activity of the corresponding enzymes than that of measured quantity
in other tissues, whereas COMT1 was expressed constitutively throughout the stem, leaf, and root
tissues [95–97]. It has also been observed in lodging-tolerant wheat cultivars that the varying extent to
resistance for lodging is considerably dependent on the amount of transcript abundance (i.e., CCR1,
COMT1, and CAD1 genes) and on the contribution of the corresponding enzymes higher activities in
the stem following at the heading stage, while these elements also showed close association with lignin
contents and with the mechanical strength of the stem [96]. Despite the undeniable key role of lignin in
lodging, until now, the lignin biosynthesis pathway has not been elucidated widely in the wheat plant.

In the recent studies of Tran-Nguyen et al. [92], they examined the lignin biosynthesis in wheat
cultivars and concluded the strong, close association between lodging resistance with lignin contents and
the expression of 4-coumarate: CoA ligase1 (4CL1), cinnamoyl-CoA reductase2 (CCR2), p-coumarate
3-hydroxylase1 (C3H1), ferulate 5-hydroxylase2 (F5H2), and caffeic acid O-methyltransferase2 (COMT2)
in the plant internode. They revealed that these genes were greatly expressed in the wheat tissues,
indicating the significance of these genes in the intervening lignin accumulation in wheat culm.
However, the underlying molecular mechanisms for lignin synthesis in wheat tissues are poorly
understood [92].

On the other hand, some factors including cellular signaling molecules such as plant
hormones, biotic, and abiotic stresses [98–100] play an integral role in the up regulation of lignin
biosynthesis or may cause hindrance in its synthesis. Auxin and cytokinin, for instance, prompt the
expression of genes related to lignin biosynthetic, peroxidase (Prx) in Zinnia elegans, and secondary
growth/lignification [101]. In Arabidopsis, auxin accumulation was induced by hyper-gravity that led
to a high expression level of selected lignin biosynthetic genes, and sequentially led to lignification
in the inflorescence stem [102]. Previous experiments also showed that salicylic acid (SA) level is
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inversely linked to lignin contents in plants where lignin contents decreased by down regulation of
specific lignin biosynthetic genes, and salicylic acid accelerated growth suppression in those plants.
Nevertheless, genetic reduction of SA level was found to restore growth but not lignin contents [103].
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Figure 3. General steps involved in lignin biosynthesis pathway in plants. (A): Phenylpropanoid
pathway showing the synthesis process of monolignols from phenylalanine, (B): monolignol-specific
pathway, (C): Sub units namely: (guaiacyl), S (syringyl), and H (hydroxyphenyl oxidized from above
steps form three-dimensional polymer of lignin.

In wheat, the relationship between lignin level and plant hormones that are associated with
regulation of lignin biosynthesis was measured by the amounts of indole-3-acetic acid (IAA), isopentenyl
adenosine (IPA), t-zeatin, and salicylic acid (SA) in two cultivars (cv. Harvest and cv. Kane) in the
internode tissues. Results depicted that cv. Harvest was found to be more tolerant to lodging by
containing the high intensity of IPA, t-zeatin, and salicylic acid in the internode than that observed
in cv. Kane, whilst the IAA contents showed no differences [92]. In addition to cellular signaling,
the environmental factors are also another contributing factor in lignin synthesis and deposition,
for example, waterlogging, which decreased lignin content and led to a significant reduction in IPA
and t-zeatin levels [92]. This may cause a reduction in leaf photosynthetic capacity [104,105] and
in the accumulation of soluble carbohydrate in plant biomass [106]. Moreover, it leads towards the
channeling of more phosphoenol pyruvate to glycolysis by triggering increased demand for soluble
sugars, especially of glucose instead of shikimate pathway through which phenylalanine synthesis
occurs, a crucial lignin precursor [107–109]. These modifications have vital consequences on the level
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or configuration of structural carbohydrate polymers, for instance on cellulose, hemicellulose, and
lignin [110,111].

Further to this, Ma et al. [96] designed a research experiment to explore the Cinnamoyl-CoA
reductase (CCR) pathway, which is involved in CoA ester to aldehyde conversion in monolignol
biosynthesis that diverts phenylpropanoid-derived metabolites into lignin biosynthesis. RNA gel-blot
analysis revealed that in wheat, Ta-CCR1 is significantly expressed in the plant stem, with lesser
expression in leaves, and unnoticeable expression in roots. By progressively increase in the CCR
enzyme activity, lignin biosynthesis also went up along with stem maturity. Results suggested that
up-regulation of Ta-CCR1 mRNA levels and greater CCR enzyme activity were positively linked to
high lignin contents in wheat stem with significant mechanical strength. This concluded that Ta-CCR1
and its related CCR enzyme are intricate in lignin regulation during the process of stem maturity,
thereby linked to stem strength support in wheat plant [96].

In rice, lignin biosynthesis pathway, its molecular and genetic regulation is not explicitly clear,
just as in wheat. However, Ke et al. [112] conducted an experiment in rice to identify and characterize
semi-dominant dwarf mutant (pex1) with stiff culm, and exposed that the phenotype of pex1 resulted
from ectopic expression of OsPEX1: a leucine-rich repeat extension-like gene. An important point
of this research was that a positive association between the pex1 mutant and higher lignin contents
was observed and it also enhanced the expression levels of lignin-related genes. Results summarized
that the OsPEX1 gene intercedes lignin biosynthesis and/or accumulation in rice, whereas transgenic
rice cultivar without semi-dwarf alleles but expressing the OsPEX1 gene showed a reduction in
plant height, so we can conclude it has a key role to enhance lodging-tolerant and regulating lignin
biosynthesis in rice. To comprehensively understand the molecular and biological cellular pathway,
recent progress in CRISPR/Cas9-mediated genome editing could be a vital tool, as lignin-enriched
transgenic rice by using CRISPR/Cas9-targeted mutagenesis of the transcriptional repressor OsMYB108
was achieved. Rice mutants of OsMYB108-knockout revealed a considerable rise in the expression
levels of lignin biosynthetic genes by enhancing lignin deposition in culm cell walls [113]. Hence, this
study suggested that scientists should have to further investigate the regulation and complexity of
biochemical pathways that counter lodging problem.

Moreover, some physiological processes such as high photosynthetic rate, photochemical efficiency
of photosystem II, leaf water potential, stomatal conductance and activities of the antioxidant enzymes,
and osmolytes consistency are closely correlated with root length and root length density to maintain
water uptake by means of plant mechanical wounding to better perform under waterlogged conditions.
Mechanical wounding also enhances lignin deposition and activity of those enzymes which play
a role in synthesizing lignin contents to make plants more robust against lodging [114]. However,
in cereals (such as in wheat and rice), more attentions from biologists and physiologists are still needed
to investigate more profoundly on the subject; how plant physiological activities, and biochemical
changes are linked to lodging stress and how could cell signaling molecules either regulate lignin
biosynthesis up or down?

3. Plant Hormones in Lodging Stress as a Key Regulator

Plant hormones serve as a key element to regulate many plant traits which have a crucial role in
lodging tolerance, for instance, tillers per plant. It is an important factor to control root lodging in
wheat plant [115–117]. However, the researchers have no detailed knowledge and understanding about
the underlying mechanism between hormones and wheat tillers, which trigger through respective
exogenous hormones. Cai et al. [115] investigated the effects of indole-3-acetic acid (IAA) and zeatin (Z)
applications on the wheat tillering and explored the subsequent mechanism which regulate the tillering
occurrence in wheat. They found IAA repressed the rate of tillering, whereas external Z application
stimulated the occurrence of tillers under the condition of low nitrogen. Moreover, the application of
exogenous IAA entirely inhibited tillers bud growth, while Z hormone substantially accelerated the
buds’ growth level in low nitrogen conditions. Their experiments concluded a considerably positive
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correlation between tiller buds’ growth and content of endogenous Z hormone. Whereas, insignificant
weak association have been observed between tiller buds’ growth, and exogenous IAA, gibberellins
(GAs), and ABA contents. So, their results suggested that zeatin (Z) hormone has an indispensable role
in regulating the tiller occurrence and its buds’ growth by influencing the Z content. Therefore, it plays
a vital role to assist plants in stronger soil anchorage, and this trait ultimately makes them tolerant to
lodging stress environment.

As we have discussed earlier, semi-dwarf plants are more tolerant to the devastating effects
of lodging stress under extreme environmental conditions, such as winds and floods. To date,
70 mutants related to dwarfism have been reported in rice (Oryza sativa), and many of them have been
characterized as gibberellic acid (GA)-deficient or GA-insensitive mutants. The phytohormone GA
has a pivotal role in many developmental processes of plants, including shoot and stem elongation,
and plant height [118,119]. We know that these traits are also linked to lodging stress. OsWOX3A is
a GA-responsive gene and categorized into the USCHEL-related homeobox (WOX) nuclear protein
family. OsWOX3A has an important key role in the development of tillers, lateral roots, and root hairs
by producing a rice dwarfism phenotype. On the other hand, it was reported to be involved in negative
feedback regulation of the gibberellic acid biosynthetic pathway [120]. In this scenario, its function
was completely protected by the application of exogenous GA3 that implies how gibberellic acid (GA)
is inevitably rescued plant dwarf phenotype by maintaining lodging-related characters throughout the
developmental process in rice.

Another important primary signal to regulate and to avoid lodging in plants is “ethylene”. Along
with ethylene, alterations in ABA, gibberellin, and auxin concentration are also essentially required
to improve faster growth under water conditions [121]. The question is: how ethylene is involved
in escaping flooding effects in the case of wheat and rice? In rice, which has wider genetic diversity
and to avoid flooding damage, two mechanisms are involved: first, increased ethylene production up
regulates the expression of snorkel1/2 (SK1/2) through OsEIL1b/OsEIL2 binding to the SK1 and SK2
promoters, where it up regulates the GA contents to stimulate internode elongation in deep water
rice [122]. Secondly, by negatively regulating the GA response through SUB1A, an Ethylene-Responsive
Element Binding Factor (ERF) which restricts Slender Rice-1 (SLR1) and SLR-like1 (SLRL1) degradation
to impede the stem elongation at the seedling stage during severe flooding [123]. To enlighten more
about its function, a large body of physiologist’s research concluded in their experiments that rapid
internodal elongation in rice occurs due to the involvement of ethylene and gibberellin. A rice AP2/

Ethylene-Responsive Element Binding Factor (ERF) gene, OsEATB (linked to rice tillering) was cloned
from rice and its ectopic expression revealed cross-talk between ethylene and gibberellin arbitrated by
the OsEATB gene, probably trigger internodal elongation differences in rice [124]. As it is obvious that
plant height is highly negatively associated with tiller numbers, we can thereby interpret ethylene’s
role to obtain dwarfism and to escape lodging in important cereal crops like rice.

Moving to the next primary attribution of ethylene for aerenchyma formation in roots, which
has been considered decisive for roots function under oxygen-deficient soils, this trait supports
the plant for flooding tolerance. A positive association has been reported between aerenchyma
formations in adventitious roots and shoots growth under hopoxia [74]. Further to this, aerenchyma is
positively linked to wheat yield in the waterlogging situation. Some previous results also witnessed
that ethylene signaling in rice not only triggers aerenchyma development in primary roots together
with its involvement in the regulation process of constitutive aerenchyma, but also plays a role in
root elongation [125]. To enlighten the crucial role of ethylene in the complex lodging mechanism,
one example related to study in Zea mays plant where Shi et al. [126] investigated the effects of
ethylene on the development of nodal roots, which are considered to be responsible for root-lodging
resistance. Results revealed that ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC)
strongly support nodal roots emergence in maize. Further study of the transcriptomic analysis showed
that genes expression which is involved in metabolic processes and cell wall biogenesis went up under
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the treatment application of ACC [126]. This implies the notion that ethylene is positively associated to
regulate the outgrowth of young root primordial to ensure root-lodging resistance in maize.

Divte et al. [127] conducted an experiment in wheat, looking at how ethylene regulates root growth
and phytosiderophore (PS) biosynthesis defines iron deficiency tolerance. We concluded from their
research discussion that ethylene is an important factor in determining root architecture and traits like
root growth, root hairs formation, elongation, and cluster root formation. These characteristics are also
linked to biotic stress tolerance such as wheat lodging [127]. Despite the fundamental role of ethylene
and its precursor in root lodging in cereal crops, for instance in rice and maize, it is also a prerequisite
to conduct experiments in the wheat plant to explore the further role of ethylene in lodging.

4. Genetic Manipulation for Lodging Resistance

4.1. Quantitative Trait Loci

Several quantitative trait loci (QTLs) revealed resistance to lodging and its related traits have been
reported in rice, wheat, and barley [30,59,128,129]. Identification of genes conferring resistance against
lodging is required for enhancing cereal crops production in lodging-affected areas [19]. Conventional
breeding techniques combined with recent advancements in biotechnology and genomics have the
potential to identify and transfer lodging-resistance genes for enhancing the physical strength of wheat
and rice crops and to increase the grain production. In addition, QTL mapping of lodging- resistance
genes and their transfer to lodging susceptible genotypes provide the opportunity for cost-effective
and to increase the grain production of wheat and rice in lodging prone zones.

The QTL mapping studies (Table 2) have been conducted on populations developed from Wheat x
Spelt crosses, which exhibited extraordinarily high lodging resistance [130]. Keller et al. [131] reported
lodging- resistance QTLs by using RFLP-based markers (Restriction fragment length polymorphism)
in a Wheat x Spelt population. Three QTLs for culm thickness and five QTLs were identified that
could reduce plant height. Composite interval mapping established the QTL for lodging resistance on
chromosomes 4B (related to Rhi-Bl), while QTL for plant height was observed on chromosome 4D
(related to Rht-DJ) [132]. Hai et al. [133] stated that two QTLs QSs-3A and QSs-3B were associated with
plant stalk strength, whereas two QTLs QPd-1A and QPd-2D had been controlling pith diameter in
wheat. They further investigated that one QTL (QSd-3B) was associated with culm diameter and one
QTL (QCwt-2D) was controlling the expression of culm wall thickness in wheat. Additionally, SSR
markers GWM340 and GWM247 were associated with a single strong stem QTL on chromosome 3BL in
a wheat population derived from the cross Xinongshixin (strong stem) x Line 3159 (hollow stem) [37].
The QTL regions that have impacted the highest number of lodging-related traits of wheat tended to
comprise the plant height (1D, 2A, 3A, 4A, 6A, 7D), culm diameter (3A, 4D), stem material strength
(3A), and stem failure moment (1A, 6A), as presented in Table 2 [30]. These QTLs have sufficient
meaningful effects on lodging risk in wheat and will be needed for further validation and fine mapping.
Rht5, a dominant gibberellic acid-responsive dwarfing gene of winter wheat, has been identified to
be located on chromosome 3BS and linked with the molecular marker Xbarc102 [134]. A major QTL
(QPH.caas6A) of plant height was identified between Xwmc256 and Xbarc103, which had accounted for
8.0% to 10.4% of the phenotypic variation across eight environments using an F2:4 wheat populations
derived from the cross between Jingdong 8 and Aikang 58 [135]. In a previous study, QPH.caas-6A
was detected for plant height, which also associated with marker Xwmc256 on chromosome 6AL
and accounted for 6.3–29.1% of the phenotypic variation [136]. To reduce plant height, more recently,
QPH.caas-6A designated as Rht24 (Table 3) was described as a novel Rht locus located on chromosome
6A and flanked by the two SSR markers, Xwmc256 and Xbarc103 (Table 2) [137]. This region showed
highly phenotypic variations and could be validated to further fine-mapping studies in wheat. A
QTL for plant height on chromosome 6A has also been reported by a few QTL mapping studies in
wheat [136,138].
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Table 2. Quantitative trait loci (QTLs) for plant height and culm thickness in wheat and rice.

Chromosomes/(QTLS) Flanking Marker Loci Impact on Plant Traits Reference (s)

Wheat

1BS, 4AS, 7BL
Xpsr949-Xgwm18,

Xgwm397-Xglk315,
Xpsr927-Xpsr350

Shorter plant height [131]

2AS, 3AS, 5AL
Xpsr958-Xpsr566c,
Xpsr598-Xpsr570,

Xpsr918b-Xpsr1201a
Culm wall thickness [131]

4B, 4D Xgmti538-Xgwm6,
XgKm60S-Xgdml29 Shorter plant height [132]

3A(QSs-3A), 3B (QSs-3B) Xwmc527-Xwmc21,
Xgwm108-Xwmc291 Stem strength [133]

QSd-3B Xgwm108-Xwmc291 Culm diameter [133]

1A(QPd-1A),2D (QPd-2D) Xgwm135-Xwmc84,
Xgwm311-Xgwm301 Pith diameter [133]

QCwt-2D Xgwm311-Xwmc301 Culm wall thickness [133]
3BL GWM247 and GWM340 Lignin contents [37]

1D, 2A, 3A, 4A, 6A, 7D
Xgwm642, Xgdm93, Xgdm93,

Xwmc313, Xgwm570, wPt-9690,
Xbarc184, respectively

Control Plant height [30]

3A, 4D Xwmc264, Xwmc48 8, respectively Meaningful effect on lodging risk [30]

3A Xgwm369 Association with lignin and cellulose [30]
1A, 6A Xcfa2153, Xwmc32 Association with gravity of the stem [30]

3BS Xbarc102 Reduce plant height [134]

6A Xwmc256-Xbarc103 Reduce plant height [137]

Rice

Chr. 1 (SCM1) RM8111-RM8067 Culm strength [52,128]

Chr. 6 (SCM2) RM6395 and RM5509 Culm strength, increased spikelet
number, and grain yield [52,128,129,138]

Chr. 3 (SCM3) RM15761-RM15782 Culm strength and spikelet number [52,128,139,140]

Chr. 2 (SCM4) RM3703-RM2468 Culm lodging resistance [52,128,140]

Chr. 4, 5 (prl5) 6,11(prl11), 12 C946, C1081, R2171, C82, G1406 Providing resistance to the basal
portion of the stalk [140]

Chr.1, 3, 6, 7, 8, 12 C885, C595, C358, C451, C10122,
R3375 Culm diameter [140]

Chr. 5, 5, 6 R1838, C246, R2549 Lodging resistance from typhoon [140]

1(qCL1.1); 2(qCL2.1); 7(qCL7.1) id1021344, id2004861, id7002801 Culm length [59]

1(qCD1.1); 2(qCD2.1);
7(qCD7.1) id1003559, id2007818, id7001246 Culm diameter [59]

1(qCS1.1); 2(qCS2.1); 2(qCS2.2);
2(qCS2.3); 6(qCS6.1); 6(qCS6.2)

id1003559, id2007818, id2006621,
id2008112, id6001960, id6010515 Culm strength [59]

For determining lodging resistance in rice, two near isogenic lines (NILs) were selected from
a series of chromosomal fragment substitution lines derived from the cross of two rice varieties,
namely Kasalath and Nipponbare [51]. They reported that isogenic line NIL114 has a QTL of single
culm diameter like sdm8 while isogenic line NIL2 has four QTLs of culm diameter such as sdm1,
sdm7, sdm8, and sdm12. Yano et al. [128] reported a new QTL for culm strength conferring resistance
against lodging in indica population Chugoku117. Ookawa et al. [52] identified a new QTL SCM2
regulating culm lodging resistance in a high grain-yielding indica cultivar Habataki. The SCM2 was
deployed into Japanese elite cultivar Koshihikari and near isogenic line NIL-SCM2 was developed
with culm lodging resistance and grain production. Guo et al. [139] isolated QTL SCM3 and reported
that SCM3 encodes the product of a rice gene Teosinte Branched 1 (OsTB1)/FINE CULM 1 (FC1)
which was considered to have a key role in stri-golactone signaling. Near isogenic line having SCM3
exhibited higher culm strength and produced a higher number of spikelet despite the decrease in tiller
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number [128]. Incorporation of SCM3 and SCM2 in a single population produced robust culms and
enhanced grain production in comparison with Koshihikari cultivar. The QTLs viz., prl5, SCM1, SCM2,
SCM3, and SCM4 showed a positive association with culm resistance to lodging was transferred from
the Moroberekan parent [52,128].

Five novel QTLs were reported in a rice population on chromosomes 4, 5, 6, 11, and 12 which
conferred resistance in the basal portion of the plant to lodging, derived from the cross of japonica
Nipponbare x indica Kasalath [140]. Six QTLs for culm diameter were identified on chromosomes 1,
3, 6, 7, 8, and 12. One QTL on chromosome 6 and one on chromosome 5 were mapped for lodging
resistance to a heavy storm, respectively. Twelve QTLs regulating culm diameter, culm strength, and
culm length were located on four various chromosomes 1, 2, 6, and 7 in the backcross population of
Swarna 3 x Moroberekan [59]. They also reported the presence of three QTLs (qCL1.1, qCL2.1, and
qCL7.1, are needed to explore the region by fine-mapping) for culm length on chromosomes 1, 2, and 7.
One QTL (qrl5) for root lodging resistance has also been reported [105].

Furthermore, six additive QTLs for culm length were detected on rice chromosomes 2, 3, 4, 5,
and 6 [141]. Four major QTLs for culm length were mapped on rice chromosome 1, 2, 5, and 6. One
QTL (qCL1.1) for culm length was identified at the physical location of 36 M bp on chromosome 1 and
accounted for 26% of phenotypic variation [142]. In addition, three QTLs associated with culm diameter
were identified on chromosomes qCD1.1 (1), qCD2.1 (2), and qCD7.1 (7) explaining 10–14% of phenotypic
variation [59]. Six QTL, namely CS1.1, qCS2.1, qCS2.2, qCS2.3, qCS6.1, and qCS6.2 on chromosomes 1, 2,
and 4 were identified for controlling culm lodging resistance. The effect of deep-rooting Dro1-NIL on
lodging resistance has been investigated in the study of Arai-Sanoh et al. [143]. However, the penetration
ability of roots QTL Dro1 is still unclear. Thus, further analysis using the other genetic backgrounds will
be needed to understand the relationship between deep rooting by DRO1 and its pleiotropic effect.

4.2. Gene’s Associated with Lodging Tolerance

The Indian Council of Agricultural Research successfully utilized the advantages of the green
revolution through the introduction of cultivar Norin-10, Gaines pedigree cultivars, and locally adapted
common wheat genotypes having Rht genes (Table 3) from Mexican varieties. This was resulted in to
produce shorter wheat genotypes which imparted the lodging resistance, high grain yielding, enhanced
uptake of nutrients and increased N fertilizers responsiveness attributes to these genotypes [144].
The most frequently used dwarfing genes, Rht1 (RhtB1b) and Rht2 (Rht-D1b) [145,146], were introduced
from Norin 10 (Japanese variety) [147]. Shortening of plant height, in particular, with the effect of
major dwarfing genes Rht1 [148] and Rht2 was observed in spring wheat [149]. These dwarfing genes
reduced the number of internodes in relation to gibberellic acid: a plant hormone which stimulates
growth and development [150,151]. Moreover, Rht1 and Rht2 genes decreased plant height by 14–17%
independently from each other and shortened the plant height by 42% accumulatively in Germany
and UK wheat varieties [152,153]. Another dwarfing gene Rht3 reduced plant height by 59%, but has
not yet been used in commercial wheat varieties [154].

Rht5, a gibberellic acid-responsive dwarfing wheat gene significantly decreased plant height by 25%
to55% without decreasing seedling vigor and coleoptile length, as reported in References [155–157]. Other
researchers reported that Rht5 considerably reduced plant height but delayed the flowering time by about
4.8% to 14.0% in a thermal environment [28,155–157]. They described that Ppd-D1 also reduced plant
height at about 10%, while the combination of both Rht5 and Ppd-D1 generated even shorter plants by 45%
and had achieved shorter genotypes with greater lodging resistance. Several genes, such as Rht7 [158]
and Rh8 [159], Rht-B1, Rht-B1a, Rht-B1a, Rht-D1, Rht8, Ppd-B1, and Ppd-D1 were associated in reducing
plant height in wheat [160]. The semi-shorter phenotype of wheat lines (e.g., contain Rht8 gene) was due
to shorter inter-nodal length along the thicker culm, achieved through decreased cell elongation [161,162].
Additionally, gibberellic acid-sensitive dwarfing genes Rht8 and Rht9 have been transferred into several
cultivars on account of superior early vigor in dry environments. These dwarfing genes (Rht8, Rht-B1b, or
Rht-D1b) had a slight shortening influence on the coleoptile length, which led it to either spread or grow
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deeply at high soil moisture levels and ultimately reduce plant height [163,164]. These genes have been
commonly used to decrease height of wheat cultivars in Eastern and Southern Europe, China, Japan, and
Russia [165]. Gibberellic acid-responsive height shortening genes encompassing Rht4, Rht5, Rht8, Rht9,
Rht12, and Rht13 have been reported in bread wheat [134]. Several plants dwarfing genes containing
Rht14, Rht15, Rht16, Rht18, Rht19, and Rht-R107 were also reported in durum wheat [166,167]. Recently,
Vikhe et al. [168] reported that the Rht18 gene was associated in reducing plant height in durum wheat.
Genes associated with plant height reduction containing Rht22, Rht-B1IC12196, and Rht-B1f were identified
in T. turgidum, T. polonicum, and T. aethiopicum, respectively [166,167,169]. The dwarfing genes Rht14,
Rht16, and Rht18 were associated with the reduction of plant height in durum wheat [167]. Ma et al. [170]
reported that the COMT gene W-cm5-1 was expressed in root, plant stalk, and leaf tissues in wheat and
the transcriptome level of the W-cm5-1 gene in the up-growing wheat stem was accompanied with the
stem thickness and tolerance to lodging stress.

Several improved semi-dwarf varieties of rice have been introduced and grown throughout the
world. However, despite their short-statured nature conferred by the semi-dwarf1 (sd1) gene [171,172],
lodging happens in several rice cultivars during robust typhoons smash in Eastern and Southeast Asian
countries. Almost 53 semi-dwarf maximum yielding rice cultivars were collected from the USA, China,
and Japan, among them 38 cultivars were found to contain an sd-1 allele (Table 4) [171]. The sd-1 gene
has been utilized in several breeding programs to decrease plant height and has substantially improved
lodging tolerance in rice [41]. Ashikari et al. [173] reported that dwarfing gene sd-1 was deployed into
improved rice lines to produce semi-dwarf rice variety. Several genes are involved in the biosynthesis
of the primary and secondary cell wall. Some genes like OsCesA1 (Cellulose synthases), OsCesA3, and
OsCesA8 genes are expressed in the primary cell wall [174] while other genes like OsCesA4, OsCesA7, and
OsCesA9 are predominantly expressed in secondary cell walls [38,175]. Some polycomb group genes
mutants showed a shorter phenotype in rice [176]. These polycomb genes containing OsCLF, OsEMF2b,
and OsFIE2 reduced plant height when they down regulated their expression. Furthermore, the OsEMF2b
mutant emf2b showed a reduced plant height [177,178]. Similarly, OsFIE2 RNA interference (RNAi)
transgenic genotypes and mutant fie2 also exhibited a dwarf phenotype [179].

Table 3. Resistance genes associated with lodging resistance in wheat and rice.

Gene (s) Crop Impact on Plant Traits Reference (s)

Rht1 and Rht2 Wheat Reduced internode length, Reduce plant
height (Wheat) [145–149]

Rht3 Wheat Reduce plant height (Wheat) [154]

Rht5 and Ppd-D1 Wheat Reduce plant height [28,155–157]

Rht7 and Rh8 Wheat Reduce plant height [158,159]

Rht-B1, Rht-B1a, Rht-B1a, Rht-D1, Rht8,
Ppd-B1 and Ppd-D1 Wheat Reduce plant height [160]

Rht4, Rht5, Rht8, Rht9, Rht12 and Rht13 Wheat Shortening plant height [134]

Rht8 and Rht-B1b or Rht-D1b Wheat Increased roots and reduced plant height [163,164]

Rht14, Rht15, Rht16, Rht18 and Rht19 Wheat Reduced plant height [166,167]

Rht22, Rht-B1IC12196 and Rht-B1f Wheat Dwarfing genes [166,167,169]

Rht24 Wheat Dwarfing genes [137]

COMT (W-cm5-1) Wheat Expressed in root, plant stalk, and leaf tissues [170]

semidwarf1 (sd1) Rice Reduce plant height [19]

OsCesA1, OsCesA3 and OsCesA8 Rice Cellulose synthases [174]

OsCesA4, OsCesA9, and OsCesA7 Rice Expressed in secondary cell walls [175]

OsCLF, OsEMF2b and OsFIE2 Rice Dwarf phenotype [176]

OsEMF2b Rice Dwarf phenotype [178]

TaCM, Wheat Relationship with the accumulation of stem
lignin and stalk lodging mechanical strength [95]

PAL, CCR, CCoAOMT, COMT and CAD Wheat Lignin biosynthesis enzymes [180]
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Furthermore, lignin enhances the stem mechanical strength by involving in cell wall biosynthesis.
The expression of PAL, CCoAOMT, CCR, COMT, and CAD, which are involved in lignin biosynthesis are
accompanied with culm strength and resistance to lodging [180]. The role of COMT1, CCR1, and CAD1
genes in enhancing stem strength against lodging is greatly accompanied by stem lignin accumulation
and the strength of mechanical tissue [37,96]. Similarly, the TaCM gene involved in the biosynthesis of
lignin content was related to the stem rigidity, root tissue, and lodging tolerance [95].

5. Agronomical Management

5.1. Sowing Time

Sowing time is one of the most important factors affecting lodging resistance in cereal crops.
So, selecting an appropriate sowing time is considered to be a vital perspective to reduce lodging
threat in winter wheat [181]. It has been witnessed that late sowing substantially reduced the threat of
lodging in wheat, particularly by shortening the internode lengths, plant height, and culm length at
the center of gravity, and via increasing culm wall thickness, diameter, and grain filling duration [182].
For example, delayed sowing by only two weeks could decrease the risk of wheat lodging by up
to 30% [183]. Further to this, earlier winter wheat sowing resulted in a higher number of extended
internodes and could increase the incidence of stem base infection such as Fusarium foot rot [184],
which, therefore, enhances the chances of lodging occurring by a weakened stem base [30,185]. About
71% of plant height differences among wheat plants were manifested using various sowing times on
account of the number of extended internodes [185]. Moreover, Kirby et al. [186] reported that wheat
cultivated during the first weeks of September and December showed heights of 94 cm and 66 cm with
6.2 and 4.8 extended internodes, respectively. Substantial increases in grain yield could be possible
from even earlier planting but this would require appropriate cultivars with maximum resistance to
diseases and lodging [187,188]. Cultivating rice after the optimum sowing time increased the insect
and disease incidences, tropical storm-related lodging, and cold stress damage during heading and
the grain filling with reduced grain production [184,189]. On the other hand, late cultivated cereal
crops are generally shorter than the ones cultivated earlier [2,182,190]. Reduced plant height is often
accompanied by a decrease in the number of extended internodes [191].

5.2. Sowing Depth

Deep sowing enhances the depth at which the root crown is located along with its length [192].
This increased sowing depth makes the stronger anchorage of the plants into the soil, thereby enhance
the lodging tolerance. Even deeper sowing has been found to play a role in reducing lodging [25],
however, until now published articles’ data have not reported sowing depth effects on lodging widely.
Moreover, it was reported that the direction of drilling had no effect on the severity of lodging [193].
Deeper drilling helps in adjusting the depth of crown roots of plants to a depth of 40 cm. Hence,
it is better to sow within a 4–7 cm distance. Shallow drilling more than 4 cm may be expected to
raise the crown and its structural roots, as a result, weakening the mechanism of anchorage [194].
Along with the sowing time, sowing depth also affects the resistance capacities of wheat and rice
plants to lodging [191]. Sowing depth considerably impacted the emergence and vigor of seedlings
contributes greatly to crop stand and grain yield [191,195,196]. Ali et al. [197] had sown three wheat
varieties as broadcast at the medium rate from 2003 to 2006. Field experiments comprising three wheat
varieties sown at different depths revealed that the relatively deeply sown seeds up to 6–7 cm had
better soil anchorage with reduced lodging [194,196]. Similarly, plant height was affected by deep
planting and reduced after deeper sowing of wheat seeds up to the optimum level, which indicated less
lodging [195]. In conclusion, deep sowing in wheat at optimum levels resulted in reduced growth and
tillering, which affected the plant canopy with better plant anchorage and minimized the possibility
of lodging. In contrast, transplantation of rice seedling at deeper depths could result in delayed and
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retarded plant growth and consequently lead to poor crop stand [198]. In case of direct seeding, rice
seeding should be no deeper than 2.5–3.0 cm so that rice coleoptile could emerge properly [198].

In addition, among the three cultivation methods (mechanical transplantation, dry direct-sowing
and wet direct-sowing), rice sowed with mechanical transplantation method under shallow depth
showed the strong resistance to lodging [172]. However, they also reported that the average lodging
index of the two basal internodes was reduced by 16.08% and 24.69% under mechanical transplantation
in comparisons to dry direct-sowing and wet direct-sowing. Similarly, the first, second, and third basal
internodes of rice plants under the mechanical transplantation substantially increased the breaking
resistance of the stem and bending moment of the rice panicle, but greatly decreased the lodging index,
which benefited from their thicker culm wall, larger culm diameter, greater biomass accumulation,
and greater lignin accumulation in the stem [199,200]. Moreover, shallower sowing in comparison
to the aforementioned level could produce seed drying prior to the emergence. Direct-seeded rice
is more prone to lodging in comparison to transplanted on account of its higher plant population.
Furthermore, in direct-seeded rice, the base of the plant is above-soil with poor anchorage [201,202].
Ahmad and Mahmood [203] reported that less impact of lodging was observed in bed planting (20.5%)
in comparison to wheat cultivated by flat method (34.6%). Minimum lodging in raised beds was due to
drainage of excessive rain water from the fields and stronger plant anchorage on the beds, as a result,
higher grain yield.

5.3. Planting Density

High plant populations have been widely used to enhance grain production in wheat and rice.
This, however, results in a high risk of lodging and crop yield losses [199]. Increased wheat population
(planting density) results in a greater competition between plants for light and nutrients, which may
weaken the diameter and number of nodal roots [204], as a result, reduces the lodging resistance [205].
In addition, high seed-density will also make a greater chance of lodging stress by accelerating culm
length and lessening culm diameter along with total root mass [193]. Due to dense population, plant
anchorage strength was reduced because it caused the lesser spread of the root plate [77]. In contrast,
lower plant density and less dense canopy reduce disease build-up and vulnerability to lodging
in wheat [187,206]. The intensity of lodging was enhanced in wheat due to increasing plants from
150–400 plants/m2 [11]. These factors reduced the lodging risk due to minimizing plant density from
400 plants/m2 to 100 plants/m2. Hence, maintaining a lower plant population results in more crown
roots and thus, better anchorage [194].

Guyer and Quadranti [207] reported that in most of the cases, seed rate is applied up to 200 kg ha−1

to plant a dry-seeded rice crop. Usually, the use of higher seed rates per unit area is applied to achieve
getting a higher number of panicle and increased grain yield [208]. However, maintaining dense plant
population at high seed rates could lead to promising environments for disease (e.g., sheath blight)
and insect attacks in rice (e.g., brown plant hoppers), making plants highly vulnerable to lodging [149].
The biggest disadvantage of the densely planted rice field is the highly interspecific (with wild relatives
and weeds) and intraspecific competition among the plants, which results in continuous shading and
lodging resulting in straw production instead of grains [209,210]. The influence of spacing on the
grain production and lodging resistance was studied using tall indica rice cultivars and the spacing
of 20 cm × 10 cm highly contributed to the grain production in the medium- and late-planted rice
cultivars [211]. In addition, reduction in the plant density of rice is beneficial to increase culm diameter
and reduce the length of basal internodes, dry matter weight per unit internode, and culm wall
thickness resulting in increased breaking resistance and reduced lodging index [139,210].

5.4. Irrigation Method

Lodging causes the stable displacement/movement of plant stalks from their vertical position
under storms. The huge amount of irrigation or rainfall increases the lodging strength of the soil. This
prominent moist condition makes the soil more vulnerable to reduce the anchorage strength of the
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plant, and ultimately lead to plant lodging stress [11]. The risk of root lodging increases when the soil
surface is heavily moisture saturated [73,193]. Root lodging happened more frequently when the plant
had a heavy spike or panicle in waterlogged soil after irrigation [9] or rainfall [73]. Moreover, a portable
wind tunnel was used in the field and root lodging happened only when soil contained high moisture
content [212]. Lodging was forced due to high-velocity winds in February–April coupled with rainfall
particularly in February and March at the milky stage of the wheat crop [213]. The situation was further
enforced due to silty and clay soil, which made a temporarily waterlogged condition and this, favored
the root lodging of the crop in wheat [214]. In wheat, lodging occurred on account of being highly
moisture-saturated in the irrigated environment and it was concluded that there was always a root
lodging threat in the fields when the upper land surface and lower soil were moisture-saturated [13].
Peake et al. [215] reported grain production loss of 1.7 t ha−1 due to lodging in the irrigated spring
wheat of subtropical Australia.

In cereal crops, sprinkling irrigation could promote lodging at the early vegetative developmental
stages. Water supply through sprinkler irrigation favored lodging when practiced at preliminary
developmental stages in thickly planted wheat genotypes [216]. They also recommended that supplying
water by sprinkler irrigation in space-planted genotypes should be withheld until plants reached the
booting period. Ma et al. [217] stated that by an appropriate degree of regulated deficit irrigation
from the period of the beginning of spring growth to the end of the stem elongation stage of wheat
shortened the length of the first and second internodes, and increased their weight per unit length,
and thereby enhanced stem lodging resistance. Moreover, flood irrigation could make the soil surface
softer with a negative impact on the anchorage of roots in soil [15].

Root lodging is caused by heavy wind action into the canopy (wet soil) – forces which can cause
root lodging in which the root system rotates in the soil [34]. However, heavy and continued rainfall
may also cause failure to the root system, because of deep moist soil increasing the soil weakness to a
point where structural roots lose anchorage in the soil, and even a light wind may exert a sufficient
torque to induce root lodging in wheat [25,218]. In heavy irrigated soil the roots and crowns were
rotated due to heavy wind, and as a result, root lodging was developed in cereal crops [194]. In contrast,
dryness and/or cracks of the upper soil may restrict the development of the coronal root system and
thus, promote lodging [194]. However, Griffin [219] reported that root lodging was often associated
with the development of cracks in the soil on the opposite side of the plant to the lodging in wheat.

5.5. Effect of Nitrogen

Regarding nitrogen (N) concentration, the period of the N fertilizer application also affects the
lodging score of wheat and rice [46,48]. Culm strength or thickness plays a critical role in imparting
resistance to lodging as it gives a better control to hold the plant upright [26] and because culm breakage
usually occurs at lower internodes [36]. Kong et al. [220] observed that mostly culm breaking happens
at lower or basal internodes due to high NH+ application in the wheat plant. Similarly, a substantial
enhance in lodging score was detected in wheat when N fertilizer was broadcast before the culm
elongation phase [46] while no noteworthy influence was reported beyond the flowering stage [221].
Crook and Ennos [222] reported that at high levels of N application (approximately 240 kg ha−1) in
wheat, the root and stem were 17% and 20% more prone to lodging respectively, in comparison with
the application of 160 kg N ha−1. Similarly, Kong et al. [220] reported that the application of high
NH+4 substantially reduced culm thickness. The low N application resulted in increased water-soluble
carbohydrate concentrations (25% in the peduncle, 21% in the middle internode, and 42% in the lower
internodes) compared to high N in wheat [89]. Morphological traits associated with lodging of rice
genotypes increased with the increasing of N rate under low soil fertility [223]. They suggested that
high N application results in enhanced vegetative growth that reduces the root penetration in the
underground soil, which in turn inhibits plant root anchorage in soil, thereby, increasing the lodging
risk. High amounts of inorganic fertilizers containing N decreased the thickness of the stem cell
wall components (especially lignin content) in the early sown wheat [57,224,225]. Zhang et al. [44]
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reported that constituents of plant cell wall thickness were decreased by greater N application in rice.
Furthermore, high N levels decreased lignin concentration in sclerenchyma tissue accompanied by the
weakening of sclerenchyma cell wall strength [44]. A recent report by Shah et al. [191] stated that even
though N-deficient genotypes had thin basal internodes and thin stem wall, these genotypes were
observed to be least prone to lodging in comparison with the genotypes provided with sufficient N.
Several studies had shown that wheat [56] and rice [226] genotypes provided with higher N levels had
high lodging index on account of reduced lignin accumulation, thinner stems, and enhanced lodging
angle growth pattern. Strong stemmed genotypes with enhanced stem thickness could be developed
with low levels of N application in wheat and rice [222,227]. Berry et al. [77] also reported that
lowering N application in spring wheat could decrease the height of the plant but would improve stem
strength with enhanced stem diameter and wall width. Plant cell wall components including lignin
and cellulose contents enhanced at first and then reduced progressively with the increasing N amounts
in wheat [224]. Numerous studies have shown that lodging reduction has been attained at the cost of
sacrificing yield potential by reducing N concentration and delaying N fertilizer applications [77,228].

5.6. Effect of Potassium

Nitrogen (N), phosphorus (P), and potassium (K) are macro-elements essential for plant growth
and development [229]. The association between N and K has a pivotal role towards the improvement
of crop grain yield and quality in rice [229,230]. However, elevated K+ levels along with high NH+4

could account for reducing culm diameter. For example, a grain yield reduction of 30–35% in rice due
to lodging could be associated with the provision of higher levels of N and P fertilizers in the absence
of K [231]. Imbalanced applications of N and K produced a taller rice genotype, which was highly
prone to lodging as compared to semi-dwarf varieties. In rice plants, stem lodging could occur at
three sites [231]: from the base [232], at the inter-nodal portion, and heavy panicles [172]. Moreover,
the breaking strength of the stem was enhanced by K application response in rice [229] and wheat [233].
Balanced application of N and K positively enhanced the root growth and better root anchorage with
soil-reducing lodging incidence in rice [231].

High amounts of K+ culm constituents were strongly associated with culm strength and lodging
resistance in rice as optimum K+ nourishment was correlated with the lignin deposition into vascular
bundles and sclerenchyma cells of the cell wall [37]. Similarly, K+ substantially decreased the negative
effects associated with higher concentrations of NH+4, resulting in about 20–27% enhancement in culm
mechanical strength at the time of grain filling and about 34.6% increment in the N remobilization
efficiency in wheat [220]. Furthermore, it is extensively recognized that K+ has a major role
in the photosynthetic process and metabolism of the resultant carbohydrates in plants [234,235].
Kong et al. [220] reported that K is tangled in the cellulose and lignin contents of the cell wall providing
stem strength in wheat.

5.7. Effect of Silicon

Silicon is also a pivotal factor for rice growth and development. It has a positive impact on
plant height, lodging resistance, inter-node length, bending strength, and enhances tolerance capacity
to lodging in rice [236,237]. Application of silicon-enhanced lodging-associated traits like panicle
length, stem length, plant height, and the third internode length, but the fourth internode length was
decreased which is vital for resistance against lodging [238]. Silicon solution significantly reduced
lodging percentage of rice by enhancing stem breaking resistance and inter-nodal length [239]. It was
revealed that the silicon application could be distributed between the third and fourth internode, which
enhanced the lodging resistance [238].

In previous rice and wheat studies, resistances to lodging in response to the dressing of soil with
low and high amounts of silicon have also been reported [240,241]. Accumulation of silicon element in
rice shoots increased the cell wall thickness of stem and the size of the vascular bundles [242] with the
reduced lodging index. Strong storms causing lodging also enhance evaporation of water from leaves and
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dehydrate the plant tissues [243]. The application of silicon prevents these water losses [244]. Moreover,
this element also affects the architecture of plant leaves to increase the amount of light interception
by leaves [245], thereby improving sclerenchyma, vascular tissues, and vascular sheaths [246,247], and
preventing lodging in wheat and rice. This micronutrient can be utilized to stimulate silicification and
lignification in thick-walled cells, thicken collenchyma cells, and improve keratinocyte development and
enhance cellulose content, as a result increasing lodging resistance in rice [248].

Table 4. Wheat and rice genotypes along with lodging vulnerability status.

Genotype (s) Lodging Rating Reference (s)

Wheat

PBW 343, UP 2338 Tolerant [249]

Baviacora 92, Seri 82, Star, Munia/Kauz, Weaver Tolerant [249]

Baviacora 92 Moderately resistant [250]

Zhoumai 18, Zhoumai 22 and Pingan 6, Aikang 58 Resistant [251]

Kalyansona and Sonalika Resistant [252]

Savannah, Rialto, Buster, Hereward Resistant [47]

Norin 10 Resistant [253,254]

Hereward, Spark, Cadenza, Mercia Resistant [222]

H4564 and C6001 Resistant [170]

Oslo, Sapphire, AC Foremost, ND695 and AC Vista and Kohika Tolerant [27]

Rice

Wuyunjing 23 Resistant [38,46]

IR-8 Resistant [255]

Pusa Basmati-1, Pusa-1121, RH-10 Resistant [256]

Dontokoi, IR24 Resistant [257]

T5105 Resistant [258]

Yliangyou2 Resistant [15]

Takanari Resistant [129]
Peiai64, Zhefu802, Liantangzhao, 76-27B, Chunjiang025,

Xiushui04, Xiushui63, Jia02-43, ZH222, Bing02-133, Taihunuo,
HanfenB, Kinmaze, HZ0302, Jia02-5, Minghui63, Teqing, 9308,

Guangsi, K17B, QingreB, 486B, 5N-76B, Bing02-09, DiguB, V20B,
Aijao-Nante, Zhaiyeqing8,GuangB, Guichao, lemont, M202, M201,

98–110, Bing02-105, R0308, Shirasenbon, Fukuhibiki

High-yielding semi-dwarf rice
cultivars contain Sd1 gene [171]

5.8. Lodging-Resistant Cultivars

Agronomists categorized the rice and wheat genotypes into three groups based on the response of
the genotypes to lodging stress: highly, moderately, and susceptible [50]. Several wheat genotypes
(Table 4) e.g., UP 2338; Munia/Kauz PBW 343, Seri 82, Star, Baviacora 92, and Weaver exhibited a crop
falling score of less than 10 and were considered as lodging-resistant genotypes [249]. Several studies
have depicted that Baviacora-92 is a wheat variety with a single dwarfing gene and is comparatively
more lodging-resistant than those varieties which have two dwarfing genes [250]. Some of the wheat
varieties e.g., Rialto, Buster, Hereward, and Savannah were more resistance to root lodging than
the stem lodging [47]. While wheat varieties which were superior in resistance to stem lodging in
comparison to root lodging includes: Spark, Cadenza, Mercia, Hereward [222], H4564 and C6001 [170],
and Yangmai 20 [44].

Additionally, resistance to root lodging in four wheat genotypes: Riband, Hereward, Widgeon,
and Galahad was due to the lesser “self-weight” moment of the stalk with impact on the capacity of the
root system to resist the overturning moments [34]. Crook and Ennos [222] reported that genotypes
resistant to lodging had robust anchorage that could resist the self-weight moments produced by the
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stems. In contrast, they also reported that cultivars vulnerability to lodging either had weak coronal
root systems either generating greater self-weight moments or poor anchorage resulting in the longer
stems. Aikang 58, Zhoumai 22, Zhoumai 18, and Pingan are the wheat genotypes planted in China
and they enhanced the resistance against lodging [251].

Kalyansona and Sonalika were semi-dwarf, lodging-resistant wheat cultivars developed in
the late sixties and occupied the wheat growing zones particularly in the Indo Gangetic Plains of
India [252]. Wheat cultivars such as Kohika, Oslo, Sapphire, AC Foremost, ND695, and AC Vista were
semi-dwarf lodging-tolerant and introduced into elite western Canadian bread wheat germplasm
to increase lodging resistance [27]. Similarly, the semi-dwarf wheat variety Norin 10, which has
an important source of dwarfing genes to reduce plant height and still has been utilized in wheat
breeding programs [253]. This variety was originated from the cross of Daruma (native Japanese dwarf
wheat cultivar) with two American wheat cultivars, Turkey Red and Fultz [254]. The japonica rice
cultivar Wuyunjing 23 is lodging-resistant on account of strong mechanical strength of the stem [38,46].
The indica rice variety Takanari has robust culm characteristics due to its large section modulus, which
exhibits the strong culm thickness [129]. Rice grain yield across Asia was increased from 1–2 tons
ha−1 through cultivation of the lodging rice-resistant cultivar IR-8, in comparison with traditional rice
cultivars grown on irrigated soils [255].

However, rice cultivars such as IR-8 and other IR series were used as parents in rice breeding
programs under the National Agricultural Research System, resulting in the development of
high-yielding rice varieties with desirable attributes such as resistance to lodging and diseases [252].
Pusa Basmati, a high yielding dwarf aromatic basmati variety was developed using marker-aided
selection. Similarly, basmati rice hybrids, Pusa-1121 and RH-10, were developed through the utilization
of marker-assisted selection method [256]. Semi-dwarf japonica cultivars Dontokoi and IR24 having
high grain yield and quality were released in Japan. Both the cultivars were lodging tolerant with high
tillering capability under waterlogged conditions [257]. Similarly, the advanced line (T5105) of rice has
a semi-dwarf phenotype with improved resistance to lodging and a superior harvest index, in contrast
KDML105, cultivated in the same field, encountered greater lodging occurrence at the time of seed
setting stage as a result of its tall plant type [258]. Two other lodging-resistant varieties Wuyunjing23
and Yliangyou2 produced about 12% and 31% higher grain yields when compared with lodging prone
cultivars W3668 and IIyou084 at low temperature, respectively [15].

6. Chemical Management

Spraying plant growth regulators at the appropriate crop growth stage can improve stem strength,
shorten plant height, and prevent lodging [11,259]. Plant growth regulators that prevent gibberellins
biosynthesis are most commonly being utilized in high input cereal management to reduce straw,
which also enhances resistance to lodging [259]. Previously, several plant growth regulators were
substantially applied in several crops to reduce lodging through decreasing plant height and to achieve
a stable development in grain yield [11,260]. The plant growth regulators (most commonly gibberellins
inhibitors) which have been utilized to shorten the stem growth are the onium-type compounds
which contain Mepiquat-Cl and Chlormequate chloride (2-chloroethyl-N,N,N-trimethyl-ammonium
chloride, CCC). Mepiquat-Cl interferes with ent-kaurene synthesis while Chlormequate chloride acts
at the primary stages of gibberellin biosynthesis (Rademacher, 2000) (Figure 4). Inhibition of the
transmitting of Geranyl-geranyl diphosphate synthase (GGPP) into Copalyl diphosphate synthase
(CPP) on the binding of CCC to the enzyme CPP-synthase decreases the availability of bioactive
gibberellins [261–264]. Some plant growth regulators like N comprising heterocycles, e.g., imidazoles
and triazoles [265] are also used to control lodging. These growth regulators affect the activities
of paclobutrazol (PBZ) and are nearly associated with uniconazole-P [263]. The aforementioned
compounds affect the oxidation of ent-kaurene to ent-kaurenoic acid [263], whereas the prevention
of oxidation of mono-oxygenases occurs when the oxygen is displaced from the binding site of the
enzyme at the proto-heme iron site making oxygenase non-functional. Several gibberellins inhibitors
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have cimectacarps (trinexapac-ethyl), react or interfere with the gibberellins metabolic activity by
interfering with 3ß-hydroxylation of GA20 to make the bioactive GA1 [260,266,267].
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The application of Chlormequat at 3–5 leaf stages in wheat decreased the plant height by
3.3–14.5% [268]. Similarly, Chlormequat decreased plant height by 1–29% [269], 6% [270], and 3–15% [7]
(Table 5). When applied at second node detectable/third node visible and pseudo stem erection-first
node visible, pseudo stem erection/first node visible respectively, in winter wheat. Treated with
Ethephon and CCC, cellulose, hemicellulose, and lignin concentrations in the cell wall of the middle
internode and lower internodes changed less than 5% in the wheat [89]. At the vegetative development
of spring wheat, Chlormequat decreased plant height by 20 cm [271]. Leśniowska-Nowak et al. [272]
stated that chemical Chlormequat inhibits the biosynthesis of gibberellic acid in plants and enhances
the culm length at the period of shoot extension. The applications of Chlormequat and Ethephon in
combination at stem elongation stage substantially decreased the plant height in wheat [273]. Ethephon
decreased plant height from 2–12% (12 cm) along with enhanced grain production up to 5.4% in
wheat [271,274]. The application of plant growth regulators like ethephon, Chlormequat chloride,
trinexapac-ethyl, and their integrations had no effect on the head diameter of sunflower [275]. Head
diameter of the plant was affected by the growth or developmental stages and the application of
aforementioned growth regulators at the early growth stages (for example, two visibly extended
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internodes) were observed to be more efficient in comparison to those applied at the late plant
growth stage [275].

Application of Paclobutrazol drastically enhanced lignin concentration in the stem cell wall and
it is closely associated with enzymes functioned in the basal second internode [276]. It increased
culm diameter, filling degree of the internode, and wall thickness with cumulative affect by escalating
resistance to lodging in wheat [5]. The applications of Palisade and Manipulator separately, and in
integration, reduced the plant height of the wheat and lodging index, and consequently enhanced the
grain production. Moreover, these growth regulators increased the wall thickness and stem breaking
strength [277]. The application of paclobutrazol (for example, PP333) improved the phenylalanine
ammonia-lyase (PAL), tyrosine ammonia-lyase (TAL), cinnamyl alcohol dehydrogenase (CAD) activities,
enhanced lignin content, breaking resistance and culm lodging resistance index, and thus reduced
lodging in wheat [86]. Trinexapac-ethyl, plant growth regulator, has proven the efficiency to reduce
plant height in wheat [272,278]. The application of trinexapac-ethyl to the wheat cultivars OR-1, CEP-24,
and CD-104 at two different early growth stages (between the first and the second nodes and between
the second and the third visible nodes) has reduced plant height in comparison to their applications
at the later growth stages [279,280]. The mode of action of this plant growth inhibitor involves the
modification and lowering the stability of gibberellins through inhibition of the 3 â-hydroxylase enzyme
which in turn inhibits cell elongation [279].

The application of PGRs can increase wheat grain production [273], however, in some instances;
the use of PGRs does not substantially affect wheat grain yields [280]. The application of paclobutrazol
and Chlormequat can reduce the stem length and thus, increase grain production, while gibberellin
has the contrasting effect [78]. The use of trinexapac-ethyl at a greater concentration decreased grain
yields [278], while trinexapac-ethyl and Chlormequat did not affect the grain yield [281]. However,
the use of Chlormequat and trinexapac-ethyl at mid tillering and early stem elongation increased
grain yield by 4% and 8% respectively, compared with the control in wheat [282]. As gibberellins
plays a critical role in cell division during stem elongation and vegetative growth stages, reduction
in gibberellin levels resulted in retarded plant growth in rice [283]. The application of gibberellic
acid inhibitors, especially paclobutrazol, affected different physiological and yield-associated traits in
rice [284]. For example, the application of paclobutrazol to Japanese paddy rice reduced the plant height
by 15–25%, enhanced the resistance to lodging by 60%, and increased the grain production by 15% [285].
Trinexapac-ethyl and Prohexadione-calcium have drastically decreased gibberellic acid biosynthesis
resulting in a reduced stem length and decreased lodging index in rice [286]. Kim et al. [287] reported
that the application of Prohexadione-calcium at early growth stages in rice was highly effective to reduce
lodging in comparison to its application at later growth stages. Culm length and the third internode
length were decreased while stem strength was enhanced by the application of Trinexapac-ethyl
and Prohexadione-calcium.

Application of PBZ with 50 mg L-1 at the booting stage could enhance the number of spikelets
per panicle, seed setting rate, and grain production (8–13%) in Huayou86 and Peizataifeng in both
seasons in rice [288]. Similarly, application of PBZ on the leaves surface at the late growth period of the
late-season rice could enhance seed setting rate and grain production by delaying leaves senescence [44].
Grain yield was increased 10% and 6% by spraying exogenous PBZ and GA3 at five days before the
flowering stage, respectively [289]. Greater grain production was obtained when cycocel was sprayed,
followed by nitrogen and K2O fertilizers [290]. The spraying trinexapac-ethyl significantly enhanced
grain yield in rice [20,291].
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Table 5. Role of plant growth regulators for reducing lodging stress in wheat and rice.

Crop Application Time Height Reduction Grain Yield Reference (s)

Effect of Chlormequat

Wheat leaf growth stages (from
stage 3 to 5) 3.3–14.5% No effect [268]

Spring wheat Second node
detectable/third node visible 1–29% No effect [269]

Winter wheat Pseudo stem erection-first
node visible 6% No effect [270]

Winter wheat Pseudo stem erection/first
node visible 3–15% No effect [7]

Spring wheat Vegetative development 20 cm Smaller effect [271]

Effect of Ethephon

Spring wheat 12 cm No effect [271]

Spring wheat Booting stage 1–12% Increase grain yield (5.4%) [274]

Wheat Before anthesis 9.0% Reduced grain yield (8.3%) [249]

Effect of
Trinexapac-ethyl

Wheat Stem elongation Reduced plant
height Reduced wheat yield [279,280]

Paclobutrazol

Wheat Stem elongation stage 10–20% Increased grain yield [5]

Rice First growing seedlings 20–30% Increased grain yield [284]

Rice 15–10 days before heading 15–25% Increased yield (15%) [285]

Prohexadione-calcium (Pro-Ca) and trinexapac-ethyl (TNE) Effect

Rice 5–10 days before heading 5–10% No effects [287]

7. Future Prospects

In wheat and rice, lodging drastically reduces both grain yield and quality. These crops are highly
prone to lodging at late vegetative and reproductive stages. The impact of lodging regarding grain yield
reduction varies from genotype to genotype, while a significant reduction in yield on account of lodging is
usually observed under the condition of high input and mechanized agriculture. This review focused on
emphasizing the presence of genetic variation among the wheat and rice genotypes for various plant traits
controlling the lodging resistance. The lodging-induced damages in wheat and rice could be significantly
reduced with more focus on these traits in crop breeding programs. But we realized, in terms of plant
physiology, no significant research has been done precisely to understand the physiology parameters like
photosynthesis, transpiration efficiency, and stomatal conductance that could be related to understand
the complex lodging phenomenon not only in cereals plants but also in other crop plants, so it could
be a vital topic of interest for breeders and physiologist to investigate further. From the morphological
point of view, plants have an association between morphological traits and lodging-resistance and these
characteristics are critical for conferring lodging resistance to crops. For example, stem lodging research
has concentrated on stem diameter strength with the findings that a stronger stem is more resistant to
lodging in comparison to a weaker stalk, regardless of others morphological characteristics, chemical
composition, or weather conditions. However, sometimes it is argued that the estimation of these factors
is not considered reliable for lodging resistance and hence, further deep attention is required to figure out
other precise agronomical and morphological parameters that evidently confer lodging resistance.

As we know, lignin contents are the major constituents of the plant cell wall and recognized
as indispensable components essential for plant vigor and play a role against biotic and abiotic
stresses including plant lodging. Unfortunately, detailed dissection of the molecular mechanism of
lignin formation has not been studied thoroughly. Therefore, it is suggested to researchers to design
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projects and conduct experiments to explore biochemical pathways particularly associated with lignin
biosynthesis in wheat and rice. Moreover, they must design new tools and approaches to alter the
quantity and quality of lignin in these staple food plants without disturbing its functions in conferring
structural support for normal growth and development.

In terms of natural disasters like high frequencies of winds and rainfall can be a leading source
of catastrophic crop lodging. Therefore, to escape the occurrence and devastating effects of lodging,
deliberate efforts should be planned aiming towards enhancing the anchorage strength rather than
stem strength. This could be approached in two ways: (i) breeding for rice plants along with stronger
and stiffer roots, with no reduction in the existing number of roots per plant, and (ii) the soil medium
mixture could be changed in such a way that would make it stronger to favor plant anchorage.

Proper agronomical managements (Figure 5) of wheat and rice crops related to use of
lodging-tolerant cultivars, sowing time, planting density, irrigation methods, fertilizer applications,
crop protection, and more importantly, application of plant growth regulators to manipulate plant
height can reduce losses on account of lodging. Plant growth regulators can reduce the lodging
susceptibility through modification of plant architecture, improvement of canopy structure, reduction
of stem length, lowering the leverage of the ear and other upper plant parts. Future studies are needed
to focus on investigating the impact of plant growth regulators on stalk and root anchorage. Moreover,
it is inevitably indeed to develop and investigate new growth regulators that could strengthen
lodging-resistant traits. The use of optimum levels of N, P, K, and silicon fertilizers are important in
cereal crop production systems. Generally, P application enhances grain yield while K is important for
flowering. The amount of green leaf area and efficient use of solar radiation input are important aspects
in determining carbohydrate productivity. Appropriate plant canopy area is an essential feature of
modern agronomy systems and is usually achieved through the use of balanced nitrogen.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 26 of 39 
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Despite our current understanding of growth regulators and plant hormones associated with
lodging, still many questions remain to be answered, for example, the role and the mechanisms of
ethylene perception, signal transduction, and transcriptional regulation. Further characterization of
ethylene’s character would assist agronomists and breeders to provide new insights to explore the
complex genetic traits of lodging.

Moreover, there is a need for stringent research actions to group modern wheat and rice genotypes
for lodging-resistant traits which could be used in the future as a basis for identification of QTLs
conferring lodging resistance. It would be interesting to study and establish a linkage relationship
between lodging-resistant QTLs and QTLs for other agronomic traits e.g., stronger stem and shorter
plant stature could be linked to lodging-resistant loci. Thorough investigations are required to be
performed on the development of reliable morphological and molecular markers for plant height, stem
diameter, the spread of the root plate, the material strength of the stem wall, and stem failure moment to
improve lodging resistance in wheat and rice. In conclusion, we also propose a novel high-throughput
phenotyping (HTP) approach to understand the underlying complex genetic architecture of lodging
and to understand genotype-to-phenotype relationship to accelerate the plant breeding program. It
would enable us to accurately measure huge populations under field conditions that are required for
genomics studies and breeding progress.
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