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Abstract: The epithelial sodium channel (ENaC) can increase the colonic absorptive capacity for
salt and water. Campylobacter concisus is a common pathogenic epsilonproteobacterium, causing
enteritis and diarrhea. It can induce barrier dysfunction in the intestine, but its influence on intestinal
transport function is still unknown. Therefore, our study aimed to characterize C. concisus effects on
ENaC using the HT-29/B6-GR/MR (epithelial cell line HT-29/B6 transfected with glucocorticoid and
mineralocorticoid receptors) cell model and mouse colon. In Ussing chambers, C. concisus infection
inhibited ENaC-dependent Na+ transport as indicated by a reduction in amiloride-sensitive short
circuit current (−55%, n = 15, p < 0.001). This occurred via down-regulation of β- and γ-ENaC
mRNA expression and ENaC ubiquitination due to extracellular signal-regulated kinase (ERK)1/2
activation, predicted by Ingenuity Pathway Analysis (IPA). In parallel, C. concisus reduced the
expression of the sealing tight junction (TJ) protein claudin-8 and induced claudin-8 redistribution off

the TJ domain of the enterocytes, which facilitates the back leakage of Na+ ions into the intestinal
lumen. In conclusion, C. concisus caused ENaC dysfunction via interleukin-32-regulated ERK1/2,
as well as claudin-8-dependent barrier dysfunction—both of which contribute to Na+ malabsorption
and diarrhea.

Keywords: sodium transport; epithelial sodium channel, extracellular signal-regulated kinase,
Campylobacter concisus; diarrhea; tight junction; claudin-8

1. Introduction

Campylobacter concisus (C. concisus) is a Gram-negative, hydrogen (H2)-utilizing microorganism,
first identified in periodontal pockets [1]. Extensive colonization by C. concisus and other anaerobic
bacteria contributes to inflammation of the oral mucosa [2,3]. A clinical study first detected C. concisus,
zoonotic Campylobacter jejuni/Campylobacter coli and other Campylobacter spp. in fecal samples of children
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with diarrhea, whereas fecal samples of adult patients with diarrhea mainly contained C. jejuni/C. coli
without C. concisus [4]. C. concisus is also a frequent cause of diarrhea in immunocompromised
patients [5]. However, C. concisus has been identified in oral and fecal samples of healthy patients
with the same frequency as in diarrheal patients [6,7]. Thus, it has been difficult to determine whether
C. concisus has a role in the pathophysiology of acute infective diarrhea.

A large cohort study revealed that C. concisus infection caused watery stools in most patients
with diarrhea, which was prolonged compared to patients with diarrhea caused by C. jejuni [8].
Furthermore, C. concisus promoted intestinal barrier dysfunction [9], although the effects of C.
concisus on intestinal transport function remains unclear. While sodium-hydrogen exchanger 3
(NHE3)-mediated electroneutral Na+ transport predominates in ileum and proximal colon, epithelial
sodium channel (ENaC)-mediated electrogenic Na+ absorption is more important in distal colon,
especially when activated by corticoids in diarrheal states [10]. ENaC is composed of three subunits
(α, β and γ) [11]. α-ENaC is constitutively expressed, whereas β- and γ-ENaC expression is regulated
by gluco- and mineralocorticoids [12]. Enhanced Na+ absorption via activated ENaC in the distal
colon is accompanied by transcriptional up-regulation of β- and γ-ENaC-subunits [13,14].

To study ENaC activity in vitro, we used HT-29/B6-GR/MR cell model, in which classical human
intestinal epithelial cells HT-29/B6 are stably transfected with glucocorticoid (GR) and mineralocorticoid
(MR) receptors. Glucocorticoid receptor (GR)/mineralocorticoid receptor (MR) activation is crucial
for ENaC activity in this in vitro model [15]. Furthermore, other regulatory inputs, such as the
phosphorylation and activation of mitogen-activated protein kinase (MAPK) p38, extracellular
signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and signal transducer and activator of
transcription 6 (STAT-6), influence ENaC function [16,17]. Among different MAPK enzymes, ERK
activation plays a central role in inhibiting ENaC function in inflammatory conditions such as ulcerative
colitis, lymphocytic colitis and Crohn’s disease [18–20].

C. concisus also induces intestinal epithelial barrier dysfunction through apoptosis and moderate
modifications to tight junctions (TJ) [9], which supports the concept of a leak-flux diarrheal
pathomechanism. The main aim of this study was to determine whether C. concisus impairs
ENaC-dependent Na+ transport in the colon, which would implicate Na+ malabsorption in the
pathogenesis of diarrhea caused by C. concisus.

TJs are important components of the intestinal epithelial barrier. They seal the paracellular space
between enterocytes in the intestinal epithelium (fence function) [21]. Although the primary role
of most TJ proteins like occludin, junctional adhesion molecules (JAM) and tricellulin in intestinal
epithelia is to seal the paracellular spaces [22], some TJ proteins of the claudin family (e.g., claudin-2
and -15) act as paracellular channels (gate function) for water and ions [23,24]. In the colon, claudin-8
seals the lateral paracellular space and forms a barrier to prevent back leakage of absorbed Na+ into the
lumen [25]. In a previous study, we found claudin-8 to be down-regulated in parallel with impaired
ENaC-mediated electrogenic Na+ absorption in human colon during acute C. jejuni infection [26].
However, it remains unclear whether C. concisus might also promote down-regulation of claudin-8,
which could contribute to diarrhea. Therefore, in addition to an electrophysiological approach to
determine the regulatory effects of C. concisus on ENaC function, we investigated at a molecular level
the effects of C. concisus on paracellular barrier disruption, particularly claudin-8 down-regulation,
in colonic epithelial cells.

2. Results

2.1. Campylobacter concisus Impairs Sodium Absorption via ENaC Dysfunction In Vitro

ENaC-dependent Na+ absorption in vitro was studied using HT-29/B6-GR/MR colonic cell
monolayers. We then established a model of infected HT-29/B6-GR/MR (epithelial cell line HT-29/B6
transfected with glucocorticoid receptors (GR) and mineralocorticoid receptors (MR); [15]) cells to
study the effects of C. concisus on ENaC-dependent Na+ absorption (see also Methods, Section 4.1).
Polarized and confluent cell monolayers were treated with dexamethasone, butyrate and aldosterone
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(DBA) to induce glucocorticoid (GR) and mineralocorticoid (MR) receptors as a means of activating
ENaC-dependent Na+ absorption prior to infection. An increase in amiloride-sensitive short circuit
current (ISC in µA/cm2) was observed after DBA stimulation compared with unstimulated controls
and recorded as ∆ISC (Figure 1). Forty-eight hours post-infection, a significant reduction in ∆ISC was
observed in C. concisus-infected cell monolayers, which was similar to that seen with C. jejuni infection
(Figure 1).
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Figure 1. Epithelial sodium channel (ENaC) impairment in HT-29/B6-GR/MR (epithelial cell line
HT-29/B6 transfected with glucocorticoid and mineralocorticoid receptors) cells 48 h after Campylobacter
concisus and Campylobacter jejuni infections. Changes in short circuit current (∆ISC in µA/cm2) were
recorded in Ussing chambers followed by 100 µM amiloride addition to the apical compartment of the
Ussing chamber (n = 15, *** p < 0.001). HT-29/B6-GR/MR cells were stimulated with DBA from both
apical and basolateral sides of the cell monolayers. DBA; glucocorticoid dexamethasone (D, 50 nM),
butyrate (B, 2 mM sodium salt) and mineralocorticoid aldosterone (A, 3 nM).

To confirm that HT-29/B6-GR/MR cells retained functional viability at this time point, electrogenic
chloride (Cl−) secretion was determined after the addition of prostaglandin E2 (PGE2) and theophylline
(both acting via cyclic adenosine monophosphate (cAMP) stimulation), or the cholinergic agonist
carbachol (acting via calcium as second messenger). No significant difference in the increase in ISC was
observed between controls and C. concisus-infected cell monolayers, either in response to PGE2 and
theophylline, or to carbachol treatment (Figure 2). This confirmed that cells 48 h post-infection were as
functionally viable as control cells.
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Figure 2. Functional viability of HT-29/B6-GR/MR cell monolayers 48 h after Campylobacter concisus
infection as indicated by chloride (Cl−) channel activation. Cl− secretion was determined as peak increase
in short circuit current (∆ISC in µA/cm2) 2–3 min after addition of Prostaglandin E2 (PGE2) (10 µM,
basolateral side) and theophylline (10 mM, apical and basolateral side) to the Ussing chamber. Peak ∆ISC

was also measured 2–3 min after addition of carbachol (100 µM, basolateral side). C. concisus-infected
cell monolayers were compared to untreated and DBA-stimulated controls (n = 4–5 each, ns = not
significant). DBA = dexamethasone, butyrate, and aldosterone.
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2.2. Campylobacter concisus Down-Regulates the mRNA Expression of β- and γ-ENaC Subunits

C. concisus was associated with a significant decrease in the mRNA expression of β- and γ-ENaC
subunits compared with DBA-stimulated controls, whereas α-ENaC subunit (SCNN1A) mRNA
expression was not significantly changed (Figure 3). Thus, C. concisus down-regulated the mRNA
expression of β- and γ-ENaC genes (SCNN1B, SCNN1G) might be sufficient to impair ENaC-mediated
Na+ absorption.
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Figure 3. mRNA expression changes in ENaC subunits (-α, -β, -γ) in HT-29/B6-GR/MR cells
48 h after Camplyobacter concisus infection through RT-qPCR. (A) α-ENaC gene (SCNN1A) mRNA
expression in DBA-stimulated controls and C. concisus-infected cell monolayers (n = 4 each, ns = not
significant, p > 0.05). (B) β-ENaC gene (SCNN1B) mRNA expression in DBA-stimulated controls and
C. concisus-infected cell monolayers (n = 4 each, ** p < 0.01). (C) γ-ENaC gene (SCNN1G) mRNA
expression in DBA-stimulated controls and C. concisus-infected cell monolayers (n = 4 each, * p < 0.05).
Changes in ENaC subunit mRNA expression in DBA-stimulated controls with respect to unstimulated
controls are indicated in Supplementary Figure S1. DBA = dexamethasone, butyrate, and aldosterone.

In addition, we determined the mRNA expression of ENaC subunits (-α, -β, -γ) in unstimulated
controls, as well as in DBA-stimulated controls and C. concisus-infected cells. α-ENaC subunit (SCNN1A)
mRNA expression was not significantly altered after DBA-stimulation (Supplementary Figure S1A),
whereas β- and γ-ENaC (SCNN1B, SCNN1G) mRNA expressions were significantly increased with
DBA stimulation (Supplementary Figure S1B,C).

Gene expression analysis of RNA-Seq data revealed that 1667 genes were affected (p < 0.05) 48 h
after C. concisus infection. RNA-Seq data are publicly available at Gene Expression Omnibus (GEO)
archive under National Centre for Biotechnology Information (NCBI) website with GEO accession
ID 141217 [Campylobacter concisus impairs sodium absorption via ENaC dysfunction and claudin-8
disruption. Available online: https://www.ncbi.nlm.nih.gov/gds/?term=GSE141217 (1 January 2020)].
The p-values, adjusted for multiple testing using the Benjamini–Hochberg procedure, revealed that
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186 genes were differentially expressed (adjusted p < 0.05)—of which, 66 genes were up-regulated,
and 120 genes were down-regulated (Supplementary Table S1). Importantly, the mRNA expression of
the pro-inflammatory cytokine interleukin-32 (IL-32) was increased in HT-29/B6-GR/MR cell monolayers
48 h after C. concisus infection (Figure 4). Furthermore, the downstream signaling pathways and
upstream regulators modulating ENaC function was evaluated by bioinformatics prediction using
Ingenuity Pathway Analysis (IPA) software (Supplementary Table S2).
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Figure 4. mRNA expression changes in interleukin-32 in HT-29/B6-GR/MR cells 48 h after Campylobacter
concisus infection. The mRNA expression of the IL-32 gene (IL32) in DBA-stimulated controls and
C. concisus-infected cell monolayers expressed in counts per million (CPM) calculated by differential
gene expression analysis using RNA-Seq (n = 3, ** p < 0.01). DBA = dexamethasone, butyrate,
and aldosterone.

Furthermore, we analyzed the mRNA expression of different absorptive and secretory transporters
that influence the Na+ absorption and ENaC function after C. concisus infection through RNA-seq
data (Supplementary Table S2). It revealed that the mRNA expression of Na+K+ATPase was not
down-regulated after C. concisus infection. The mRNA expression of secretory chloride channels Na-K-Cl
cotransporter 1 (NKCC1) and calcium-activated chloride channels (CaCC) was not up-regulated
(as would have been expected for a diarrheal state) after C. concisus infection. Cystic fibrosis
transmembrane conductance regulator (CFTR) does not impact the inhibition of ENaC function by C.
concisus either, as the mRNA expression of CFTR was not up-regulated but rather down-regulated.
The mRNA expression of NHE3 was not changed after C. concisus infection, which might imply the
unaltered electroneutral NaCl-absorption during C. concisus infection.

2.3. C. jejuni and C. concisus Dysregulate ENaC Function via ERK Activation

Forty-eight hours post-infection, Western blots of phosphorylated ERK (p-ERK1/2) and total
ERK (ERK1/2) 15 min after DBA stimulation and Campylobacter spp. infection were performed.
Phosphorylation of isoform ERK1 (44 kDa band) and ERK2 (42 kDa band) were increased by both
C. concisus and C. jejuni (Figure 5A).

Densitometry analysis revealed that C. concisus and C. jejuni increased ERK phosphorylation after
DBA stimulation (Figure 5B), indicating that C. concisus and C. jejuni induced ERK activation in parallel
with ENaC dysfunction in HT-29/B6-GR/MR cells.

To determine whether C. concisus-induced ERK activation caused functional impairment of
ENaC, the specific inhibitor U0126 was used to block ERK activation by upstream inhibition of MEK.
C. concisus-induced ENaC dysfunction was then tested again during inhibition of ERK activation. Based
on measurements of the amiloride-sensitive increase in ISC 48 h post-infection, U0126 significantly
decreased the damaging effect of C. concisus infection on ENaC (Figure 6), suggesting that ERK blockade
attenuates C. concisus-induced ENaC dysfunction.
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concisus and Campylobacter jejuni infections. (A) Western blots of phosphorylated extracellular
signal-regulated kinase (ERK) (p-ERK1/2) and total ERK (ERK1/2) 15 min after DBA stimulation
and C. concisus or C. jejuni infection. (B) Densitometric analysis of Western blots shown as bar graphs
representing fold-change in the band intensity ratio of p-ERK1/2 to ERK1/2 (normalized to β-actin) in
C. concisus and C. jejuni infections compared with DBA-stimulated controls, indicated by dotted line
(n = 4–6 each, ** p < 0.01). DBA = dexamethasone, butyrate, and aldosterone.
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Figure 6. ERK inhibition by U0126 ameliorates the functional impairment of ENaC by Campylobacter
concisus in HT-29/B6-GR/MR cell monolayers. The specific ERK inhibitor U0126 (10 µM) was applied to
the cell monolayers 2 h before C. concisus infection. Parallel control monolayers were only stimulated by
DBA (dexamethasone, butyrate, and aldosterone) without infection. Amiloride-sensitive short circuit
current (ISC) was recorded 48 h post-infection to determine ENaC function. The decrease in short circuit
current was measured 20 min after addition of amiloride (100 µM) to the apical side (n = 6–8, * p < 0.05,
*** p < 0.001, ns = not significant).

2.4. Campylobacter concisus Decreases Transepithelial Electrical Resistance and Promotes Changes in Tight
Junction Protein Expression

To investigate the barrier function of infected cell monolayers 48 h post-infection, transepithelial
electrical resistance (TER) was measured 20 min after adding amiloride, when ENaC was completely
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blocked. Under these conditions, TER reflected paracellular sealing by TJ proteins. In C. concisus-infected
cell monolayers, TER 48 h post-infection was decreased compared with DBA-stimulated controls
(Figure 7A). This is direct evidence that C. concisus impaired paracellular barrier function. We also
examined changes in TJ integrity at the molecular level, and using RT-qPCR, found claudin-8 (CLDN8)
mRNA expression to be decreased (Figure 7B).
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Figure 7. Changes in TER and tight junction protein expression changes in HT-29/B6-GR/MR cell
monolayers 48 h after Campylobacter concisus infection. (A) Transepithelial resistance (TER) was
measured 20 min after addition of amiloride (100 µM). C. concisus-infected cell monolayers were
compared with DBA-stimulated controls (n = 7–8, * p < 0.05). (B) Claudin-8 (CLDN8) mRNA expression
in C. concisus-infected cell monolayers compared with DBA-stimulated controls (n = 4, ** p < 0.01).
(C) Western blots and the corresponding densitometric analysis were performed to detect changes
in tight junction protein expression after C. concisus infection compared with controls after DBA
stimulation (n = 3–5, * p < 0.05, *** p < 0.001, ns = not significant). DBA = dexamethasone, butyrate,
and aldosterone.

We also analyzed the expression of different TJ proteins by Western blotting and densitometric
analysis, which indicated that C. concisus decreased claudin-8 expression and increased occludin
expression when compared with DBA-stimulated controls (Figure 7C). The expression of the other TJ
proteins was not affected by C. concisus infection.

In order to further study the functional importance of this change in claudin-8, parallel experiments
were done to determine the effect of C. concisus infection on the subcellular distribution of claudin-8 using
confocal laser-scanning microscopy (CLSM). We observed subcellular redistribution of claudin-8 protein
signals away from the TJ. Z-stack analysis of CLSM images revealed that claudin-8 was delocalized
from TJs and accumulated as intracellular aggregates in C. concisus-infected cell monolayers, whereas
clear co-localization of zonula occludens protein-1 (ZO-1) and claudin-8 was observed in TJs in control
cell monolayers (Figure 8).
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Figure 8. Subcellular redistribution of claudin-8 in Campylobacter concisus-infected HT-29/B6-GR/MR
cell monolayers 48 h post-infection. Claudin-8 (green) and zonula occludens protein-1 (ZO-1) (red)
co-localized in the tight junction of DBA-stimulated control monolayers. Nuclei (blue) were stained
by 4′-6-diamidino-2-phenylindole dihydrochloride (DAPI). In C. concisus-infected cell monolayers,
claudin-8 was redistributed from continuous tight junction strands into intracellular compartments,
indicated by white arrows. DBA = dexamethasone, butyrate, and aldosterone.

To confirm cell viability 48 h after C. concisus infection, cell proliferation rate and cytotoxicity of the
cells were tested using the CCK-8 (Cell Counting Kit-8) assay. This revealed no significant differences
in the cell viability after C. concisus infection when compared with controls (Figure 9), indicating that
C. concisus-induced paracellular barrier defects were independent of cytotoxicity.
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Figure 9. Evaluation of cell viability in Campylobacter concisus-infected HT-29/B6-GR/MR cell monolayers
48 h post-infection. Absorbance values were recorded at 450 nm with a reference wavelength of 600 nm
in DBA-stimulated control cells and C. concisus-infected cells, which reflected cellular activity 2 h after
addition of water-soluble tetrazolium salt (WST-8 in the CCK8 assay; n = 8, ns p > 0.05, ns = not
significant). DBA = dexamethasone, butyrate, and aldosterone.

2.5. Campylobacter concisus Impairs Sodium Absorption via ENaC in the Colon of IL-10−/− Mouse

The abiotic IL-10−/− mouse is an ideal model to study the functionality of inflamed intestine
following experimental Campylobacter jejuni infection [27,28]. This mouse model was used to determine
the transport effects of C. concisus in vivo, particularly ENaC-mediated Na+ absorption in infected
distal colon. Similar to our in vitro cell monolayer model, changes in Isc across tissues obtained from
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infected IL-10−/− mice were measured in Ussing chambers. Six days post-infection, C. concisus infection
in IL-10−/− mouse colon caused a decrease in the amiloride-sensitive ISC when compared with control
mice, indicating marked ENaC dysfunction (Figure 10).
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Figure 10. Impaired ENaC function in colon of Campylobacter concisus-infected abiotic IL-10−/− mice
6 days post-infection. Colon specimens were obtained from infected mice and stimulated with the
mineralocorticoid aldosterone (3 nM) in the Ussing chamber for 6 h. The colon samples of IL-10−/−

mice infected with commensal Escherichia coli were used as controls. The decrease in short circuit
current (∆ISC; µA/cm2) 20 min after addition of amiloride (100 µM) was measured and represented
ENaC-dependent Na+ absorption (n = 8–9, ** p < 0.05).

In order to test the viability of colonic tissue in Ussing chambers 6 h after aldosterone stimulation,
we determined changes in ISC (∆ISC, µA/cm2) after stimulation of electrogenic Cl− secretion by
prostaglandin E2 (PGE2) and theophylline, and its subsequent inhibition by bumetanide. As shown
in Table 1, in all mucosae Cl− secretion was stimulated by PGE2 and theophylline and inhibited by
bumetanide. No significant differences in ∆ISC were observed between controls and C. concisus-infected
IL-10−/− mice, indicating that mucosal viability was maintained (Table 1). Furthermore, impedance
measurements indicated that there were no differences in epithelial resistance (Repi) and subepithelial
resistance (Rsub) between the two groups (Table 1), which implies that colonic ENaC dysfunction
induced by C. concisus in IL-10−/− mice was independent of epithelial barrier changes (e.g., leaks or
tissue destruction).

Table 1. Evaluation of colonic viability.

Abiotic IL-10−/−
Mice

∆ISC (µA/cm2) after
PGE2 + Theophylline

∆ISC (µA/cm2)
after Bumetanide

Resistance

Repi Rsub Rtotal

Control (n = 4–8) 27 ± 7.99 −15 ± 4.08 28.4 ± 3.62 24.8 ± 2.15 52.4 ± 3.55
C. concisus-infection

(n = 5–8) 25 ± 8.12 −16 ± 5.57 33.2 ± 3.10 28.5 ± 2.57 61.7 ± 3.90

Significance ns ns ns ns ns

ns, not significant; PGE2, prostaglandin E2; Rtotal, total transepithelial resistance; Rsub, subepithelial resistance;
Repi, epithelial resistance. Data represent the mean ± SEM (p > 0.05, ns). No significant difference in correction
factors (Rtotal/Repi) for active transport rates (i.e., ISC) were observed between controls and C. concisus-infected mice
[controls = 1.99 ± 0.18 and C. concisus = 1.91 ± 0.10, n = 8, p > 0.05, ns].

3. Discussion

The first main finding was that C. concisus infection impaired ENaC activity in colonic epithelial cells,
which was reflected by a decrease in amiloride-sensitive ISC and the transcriptional down-regulation
of β- and γ-ENaC subunits in our HT-29/B6-GR/MR (HT-29/B6 colonic epithelial cells stably
transfected with glucocorticoid receptors (GR) and mineralocorticoid receptors (MR)) cell model
in vitro. The HT-29/B6-GR/MR epithelial cell model is the only steroid hormone-sensitive intestinal
cell model available. Basic glucocorticoids levels like 50 nM dexamethasone in the present study
are necessary for a localization of the de novo expressed ENaC subunits in the apical enterocyte cell
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membrane. Butyrate inhibits histone deacetylation and thereby intensify β- and γ-ENaC subunit
expression via increased binding of the transcription factor SP3 and histone acetylation [29]. Put
together, the HT-29/B6-GR/MR epithelial cell model also allowed us to investigate the intracellular cell
signaling pathways that regulate or impair ENaC function.

During diarrheal states, ENaC-mediated electrogenic sodium absorption is activated in the distal
colon as a reserve absorption system to minimize the loss of Na+. C. concisus impaired ENaC-mediated
Na+ absorption in this cell model. ENaC dysfunction has been identified as a pathomechanism
that reduces the overall transport capacity for Na+ and directly contributes to Na+ malabsorption
and watery diarrhea, a predominant intestinal symptom in C. concisus infection [8]. Furthermore,
C. concisus was frequently detected in fecal samples of diarrheal patients [4,5]. Interestingly, C. concisus
is the main non-zoonotic Campylobacter species identified so far in human specimens and a source of
infection is yet to be identified in the environment or animals. Indeed, for many years it was unclear
whether colonization of C. concisus in the human intestinal mucosa is cause or consequence of intestinal
inflammation. Nielsen and co-workers demonstrated that C. concisus induced barrier dysfunction
by epithelial apoptosis and moderate TJ changes in HT-29/B6 cells [9]. The study also supported the
pathogenetic principle of a paracellular leak-flux mechanism exhibited by C. concisus to induce diarrhea.
However, a clinical epidemiological observation found that C. concisus-infected patients present
prolonged watery diarrhea with the milder intestinal inflammatory outcome and less fever compared
to C. jejuni-infected patients [8]. The symptom of watery diarrhea correlates with our experimental
finding that C. concisus impairs ENaC-dependent sodium absorption in the distal colon leading to
watery rather than bloody diarrhea which is frequently induced by other cytotoxic enteropathogens.
This feature of C. concisus infection was also reflected by our experimental findings of unchanged cell
viability with retention of active Cl− secretion, defined TJ changes with claudin-8 dysregulation, and
no induction of lesions or cytotoxic destruction of the tissue after C. concisus infection.

As the second main result, we showed that C. concisus induced ERK activation in HT-29/B6-GR/MR
cell monolayers. In the corresponding blockade experiment, ERK inhibition with U0126 ameliorated
ENaC dysfunction after C. concisus infection, which is direct evidence that C. concisus infection impaired
ENaC function via ERK activation. This means the bacteria not only caused general cell damage, but
they also decreased ENaC function via ERK activation. Moreover, a reduction in the mRNA expression
of regulatory ENaC subunits (-β and -γ) 48 h after C. concisus infection (Figure 3) indicated that
C. concisus dysregulates ENaC function. Similar mechanisms of functional ENaC dysregulation were
previously reported in Crohn’s disease and ulcerative colitis as well as for lymphocytic colitis [18–20].

Tumor necrosis factor (TNF)-α was identified as an important pro-inflammatory cytokine that
could down-regulate colonic ENaC expression in different studies [18,30]. C. concisus also induced
the release of pro-inflammatory cytokines such as interleukin-8 and TNF-α from intestinal epithelial
cells, macrophages and/or THP1 immune cells [31]. Hence, we presumed that TNFα-mediated ERK
activation might contribute to ENaC dysfunction in C. concisus infection, as previously demonstrated
for Crohn’s disease [19] and lymphocytic colitis [20]. However, our RNA-Seq analysis indicated that
IL-32 is the cytokine with the highest mRNA expression change rather than TNF-α in C. concisus
infection. The bioinformatics prediction through Ingenuity Pathway Analysis (IPA) from our RNA-Seq
data indicated that C. concisus could promote ERK activation via IL-32, which might lead to ENaC
dysfunction in TNF-α-independent pathway (scheme, Figure 11). IL-32 has been reported to induce
activation of ERK in fibroblast-like synoviocytes in rheumatoid arthritis [32] and human calcified aortic
valves [33].

Interestingly, IL-32 can also be activated by interferon-γ (IFN-γ) and interleukin-1β (IL-1β)
or through bacterial lipopolysaccharides (LPS) according to our Ingenuity Pathway Analysis (IPA)
analysis (Supplementary Table S3). Thus, it may be reasonable to conclude that in the presence of the
sub-epithelial immune compartment, cytokines like IFN-γ and IL-1β released in response to C. concisus
infection could intensify the ENaC dysfunction observed in the HT-29/B6-GR/MR cell model in our
present study.
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Figure 11. Scheme of Campylobacter concisus-induced impairment of ENaC-dependent Na+ absorption
in colonic epithelial cells. In diarrheal state, glucocorticoid and mineralocorticoid receptors (GR and
MR) are activated by glucocorticoids (GC) like dexamethasone and mineralocorticoids (MC) like
aldosterone respectively. GR and MR forms a heterodimer, binds to steroid-responsive element (SRE)
and activates the expression of β/γ ENaC genes with the subsequent protein synthesis to enhance the
electrogenic Na+ absorption. Butyrate inhibits histone deacetylation to intensify the expression of
β/γ ENaC genes. GC (dexamethasone), MC (aldosterone) and butyrate were the activators of ENaC
used in our experimental setup [17]. From the findings of our study, the red arrows in the figure
represent C. concisus-induced transcriptional down-regulation or dysregulation of protein synthesis.
The green arrows in the figure represent the transcriptional up-regulation and activation of signaling
pathways (ERK pathway) by C. concisus. C. concisus promoted the transcriptional up-regulation of
interleukin-32 (IL-32), which might increase its protein expression (indicated by upward green arrow)
and lead to activation of neural precursor cell expressed developmentally down-regulated protein
(NEED4-2)-dependent ubiquitination of ENaC (via ERK) and impair ENaC-dependent Na+ absorption.
The dotted green lines represent the predicted activation of IL-32 by upstream regulators IFN-γ, IL-1β
and bacterial LPS (lipopolysaccharides), which could contribute to ERK activation leading to ENaC
dysfunction in DBA-stimulated controls 48 h after C. concisus infection (bioinformatics prediction from
RNA-Seq data by Ingenuity Pathway Analysis (IPA) software). The mRNA expression of NEED4-2
in the HT-29/B6-GR/MR cell model is confirmed through RNA-Seq data. However, the regulation of
NEDD4-2 via ERK1/2 and ubiquitination of ENaC which might lead to disassembly of ENaC subunits
from epithelium is also a prediction through IPA. The reduction in claudin-8 protein expression by
C. concisus is indicated by red color. The reduction in claudin-8 expression and protein redistribution
perturbs the ionic paracellular barrier and leads to back leakage of Na+ into the apical side, contributing
to the net loss of Na+.

We used amiloride, which selectively inhibited apical ENaC-mediated Na+ entry. In parallel
with the initial aldosterone-dependent and ENaC-mediated increase and the subsequent amiloride-
dependent inhibition of Na+ absorption, an initial decrease and subsequent amiloride-induced increase
in TER were observed. These changes in TER simply reflect the opening and closure of the ENaC and
do not give any information on the effect of C. concisus infection on the paracellular barrier function.
However, the overall TER after amiloride directly reflects the integrity of the paracellular barrier in
HT-29/B6-GR/MR cell monolayer. Thus, a direct comparison becomes possible between infected and
control monolayers. In this context, TJ protein claudin-8 plays a crucial role as it seals the paracellular
space, in order to prevent the back leakage of Na+ into the apical compartment [25].
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The third important finding of our study shows that C. concisus-induced Na+ malabsorption is
accompanied by a decrease in TER, mediated by a reduction in the mRNA and protein expression
of claudin-8. This might point to a paracellular barrier dysfunction promoted by C. concisus either
as a parallel or as a subsequent effect to ENaC dysfunction. Moreover, a redistribution of claudin-8
from the TJ domain of the cells to intracellular compartments was observed after C. concisus infection.
Hence, we could confirm that C. concisus impairs Na+ absorption in colonocytes not only by ENaC
dysfunction but also by claudin-8 disruption, leading to a loss of Na+ via the paracellular pathway
(scheme, Figure 11). A possible explanation for the proposed paracellular barrier dysfunction promoted
by C. concisus, comes from one of our previous studies on claudin-8 regulation in response to ENaC
activity [25], which revealed that ENaC stimulation also induces claudin-8 expression. Hence, we could
ascertain that functional ENaC impairment by C. concisus could contribute to claudin-8 expression
changes and might contribute to paracellular barrier dysfunction.

Previously, claudin-8 down-regulation was determined in C. jejuni infection in the human colon
mucosa. However, this had not been linked with Na+ malabsorption and was rather discussed in the
context of a general pro-inflammatory barrier dysfunction [26]. From the findings of our present study
on C. concisus, a specific contribution of claudin-8 to the loss of Na+ seems much more likely. Very
few claudins exist with paracellular channel function, like claudin-2 and -15 which are predominantly
expressed in proximal intestinal segments like the jejunum. Other claudins like claudin-8 have rather
sealing functions. Together with the expression of distinct transport proteins in the plasma membrane
of the enterocytes, TJ proteins define the properties of a specific intestinal segment to be leaky or tight.
Thus, a co-regulation of specific claudins and the corresponding channels is predictable but not yet
shown. The signaling connection between MAPK and claudin-8 was shown in Yersinia enterocolitica
infection and JNK [34] and colorectal cancer and ERK [35]. From this, we can hypothesize that the
ENaC and claudin-8 co-regulation could happen via ERK/MAPK in Campylobacter infection. However,
this should be confirmed only after a detailed investigation.

In our present study, a similar pathomechanism was seen after C. concisus infection as previously
described in lymphocytic colitis, in which claudin-8 disruption and ENaC dysfunction synergistically
promote watery diarrhea [19,36]. Interestingly, a clinical study found that 12% of C. concisus-infected
patients with prolonged diarrhea developed microscopic colitis (lymphocytic colitis is a subtype of
microscopic colitis) in a six-month follow-up period [37]. We also observed a significant increase in
the expression of the TJ protein occludin in HT-29/B6-GR/MR cell monolayers after infection with
C. concisus. This could be a result of host cell autophagy modulation required for intracellular survival
of C. concisus [38,39]. Besides, occludin was demonstrated not to affect the ionic barrier properties
of intestinal epithelia in an occludin knockout mouse model, since the transepithelial electrical
resistance did not differ between occludin-deficient mice and their wild-type littermates [40,41]. Hence,
the increase in occludin expression has to be interpreted as an independent phenomenon regardless of
the paracellular barrier change induced by C. concisus.

In order to confirm the effects of C. concisus on ENaC function in vivo, we employed the
abiotic IL-10−/− mouse model. Mice display a strong physiological colonization resistance of the
intestine due to the mouse-specific gut microbiota composition and are therefore protected from
infection with enteropathogens including C. jejuni [42,43]. Furthermore, mice are per se approximately
10,000-fold more resistant to LOS and lipopolysaccharide (LPS), the major cell wall constituents of
C. jejuni or other Gram-negative bacteria [44,45] as compared to humans [46]. It was recently shown
that the abiotic IL-10−/− mice (gut microbiota depleted by broad-spectrum antibiotic treatment) are
effectively colonized by C. jejuni upon peroral infection and develop key features of acute human
Campylobacteriosis [27]. The main reasons for these severe C. jejuni-induced immunopathological
responses in the acute stages of enterocolitis in mice are (i) the absence of colonization resistance
following microbiota depletion and (ii) the lack of IL-10 enhancing susceptibility of mice to C. jejuni
LOS [27,47]. In consequence, abiotic IL-10−/− mice infected with C. jejuni display a pronounced
LOS-induced and Toll-like receptor (TLR)-4-dependent innate and adaptive immune response in the
intestine [27]. Since then, abiotic IL-10−/− mouse model has been successfully employed in many
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studies [48–51]. In recent studies, the abiotic IL-10−/− mouse model was also used to determine the
barrier protective and anti-inflammatory effects on C. jejuni infection using curcumin or vitamin
D [52,53].

The first experimental infection of mice by C. concisus to study inflammatory effects on the intestine
was carried out in Bagg Albino/c (BALB/c) mice [54]. However, this study reported poor colonization
of C. concisus in the intestine of BALB/c mice without any substantial inflammation and proposed an
improved mouse model from a different mouse strain for future investigations. In the current study,
we achieved successful bacterial colonization of the colon in C. concisus-infected abiotic IL-10−/− mice
(C57BL/6 strain). Further, in concordance to our in vitro model, a decrease in ENaC-dependent Na+

transport could be measured in the colon of C. concisus-infected IL-10−/− mice 6 days post-infection.
This gives us a solid piece of evidence for C. concisus-induced ENaC dysfunction in vivo. However, we
have not observed any differences in Repi and Rsub values between the colon mucosa of controls and
C. concisus-infected mice. This indicates that C. concisus neither induces massive inflammation nor
impairs epithelial barrier function in the colon but can still cause ENaC dysfunction.

Taken together, C. concisus impairs ENaC-dependent Na+ absorption via down-regulation ofβ- and
γ-ENaC mRNA expression and ERK activation. The mRNA expression of pro-inflammatory cytokine
IL-32 is up-regulated after C. concisus infection, which might contribute to ERK activation, in turn
leading to ENaC dysfunction. In parallel, C. concisus disrupts claudin-8 and facilitates back leakage of
Na+ ions. Thus, C. concisus induces ENaC dysfunction via ERK activation and claudin-8-dependent
barrier dysfunction—both of which contribute to Na+ malabsorption and diarrhea.

4. Materials and Methods

4.1. Cell Culture and Campylobacter Infection

HT-29/B6-GR/MR cell monolayers (epithelial cell line HT-29/B6 transfected with glucocorticoid
and mineralocorticoid receptors; [15]) were used to determine functional ENaC activity in vitro.
Fresh HT-29/B6-GR/MR cells were cultured in Roswell Park Memorial Institute (RPMI) medium
(Sigma Aldrich, St. Louis, MO, USA) for one week at 37 ◦C in humidified atmosphere (95% air/5%
CO2). RPMI media were supplemented with 10% fetal calf serum (FCS; Gibco, Carlsbad, CA, USA),
1% penicillin/streptomycin (Gibco, Carlsbad, CA, USA), 500 IU/mL G418 (Merck Millipore, Billerica,
MA, USA) and 200 µg/mL hygromycin B (Biochrom GmbH, Berlin, Germany). After one week,
trypsinized cells were seeded on Millicell PCF filters of 3 µm pore size (Merck Millipore, Billerica,
MA, USA) and cultured for 7–10 days. Experiments were performed when cell monolayers reached
a transepithelial electrical resistance (TER) of 1500–2100 Ω·cm2. Cells were incubated with 10%
hormone-free FCS (h-f FCS; Sigma-Aldrich, St. Louis, MO, USA) for 24 h and stimulated with DBA
(a combination of dexamethasone (D, 50 nM; Sigma-Aldrich, St. Louis, MO, USA), Na+ butyrate
(B, 2 mM; Merck-Schuchardt, Hohenbrunn, Germany) and aldosterone (A, 3 nM; Sigma-Aldrich,
St. Louis, MO, USA)) for four days.

Three days after DBA stimulation, cell monolayers were washed and incubated with
heat-inactivated 10% h-f FCS without any antibiotic supplements for 24 h. Four days post-DBA
stimulation, TER values were recorded with chop-stick electrodes and cell monolayers were infected
with C. concisus (C. concisus AAuH 37 UC oral [55]) or C. jejuni (C. jejuni wild-type strain 81–176)
on both apical and basolateral sides of the cell monolayers at a multiplicity of infection (MOI) of
400 (Figure 12). After infection, cell monolayers were incubated in a H2-containing atmospheric
condition [microaerophilic/CO2-enriched gas pack (BD GasPak EZ CampyPak container system sachets,
BD Biosciences, San Jose, CA, USA) and 10% hydrogen gas 0.082 g of sodium borohydride (NaBH4) in
10 mL of distilled water in 2.5 L airtight plastic jar] at 37 ◦C for approximately 30 h. Cell monolayers
were then placed in a humidified atmosphere at 37 ◦C. Forty-eight hours post-infection, cell monolayers
were used for amiloride-sensitive short circuit current (ISC) measurements in Ussing chambers, total
RNA isolation, Western blot analysis, confocal laser-scanning microscopy (CLSM, Zeiss LSM 780, Jena,
Germany) and CCK-8 assay.
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Figure 12. Study design to determine ENaC activity and tight junctional changes after Campylobacter
concisus or Campylobacter jejuni infections using the HT-29/B6-GR/MR in vitro cell model.

4.2. Electrophysiological Determination of ENaC Function In Vitro

Forty-eight hours post-infection with Campylobacter spp., HT-29/B6-GR/MR cell monolayers grown
on filters were mounted in Ussing chambers (epithelial surface area of 0.6 cm2; Institute of Clinical
Physiology, Charité, Berlin). The composition of the bathing solution in the Ussing chambers was as
follows: Na+ 140.0 mM; Cl− 123.8 mM; K+ 5.4 mM; Ca2+ 1.2 mM; Mg2+ 1.2 mM; HPO4

2− 2.4 mM;
H2PO4

− 0.6 mM and HCO3− 21.0 mM. The solution was gassed with carbogen gas (95% O2 and 5%
CO2) by bubble lift. Temperature was maintained at 37 ◦C, pH 7.4. TER (Ω·cm2) and short circuit
current (ISC; µA/cm2) were recorded using voltage clamp devices (CVC6, Fiebig Hard & Software,
Berlin, Germany). Cell monolayers were allowed to stabilize and ENaC-dependent Na+ transport
recorded as a decrease in ISC (∆ISC; µA/cm2) 20 min after the apical addition of the ENaC blocker
amiloride (100 µM; Sigma-Aldrich, St. Louis, MO, USA). For the complete inhibition of ENaC in the
colonic epithelium and mucous-producing HT-29/B6-GR/MR cells, which is covered by a mucous
layer, an amiloride concentration of 100 µM was employed. This concentration is ten-fold higher than
concentrations usually used to completely block the ENaC in kidney cell models (10 µM), but still
specific for Na+ transport via the ENaC, as NHE3, the other transport system for Na+ in the apical cell
membrane of colonocytes, is only affected by amiloride concentrations at 1 mM [17]. To ensure that
epithelial cells were functionally viable during ∆ISC measurements, electrogenic chloride Cl− secretion
by the cells was determined by measuring the increase in ISC at end of each experiment in response to
the addition of theophylline (10 mM) and PGE2 (10 µM), or carbachol (100 µM).

4.3. Western Blot Assessment of Tight Junction Protein Expression

Forty-eight hours post-infection, TERs of cell monolayers were recorded 20 min after measuring
the amiloride-induced changes in ISC. Cell monolayers of HT-29/B6-GR/MR were then prepared prior
to evaluating changes in TJ protein expression. Control and infected cells were scraped carefully from
the cell monolayers and subjected to total cell lysis using a lysis buffer (150 mM NaCl, 10 mM Tris buffer
pH of 7.5, 0.5% Triton X-100, and 1% SDS). The concentration of the proteins isolated was estimated
by the Pierce bicinchoninic acid (BCA) assay (Thermo Scientific, Waltham, MA, USA) according to
manufacturer’s instruction. Proteins were resolved using 12.5% SDS-PAGE gel, and 15 µg of proteins
were used from each sample. The resolved proteins were electro-transferred to PVDF nitrocellulose
membranes (Thermo Scientific, Waltham, MA, USA) using the Trans-Blot system (Bio-Rad Laboratories,
Inc., Hercules, CA, USA) at 25 V for 15–17 min.
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PVDF membranes were subjected to incubation, shaking with a blocking solution containing
1% polyvinylpyrrolidone (PVP-40; Sigma Aldrich, St. Louis, MO, USA) in tris-buffered saline (TBS)
supplemented with 0.05% Tween-20 buffer at room temperature (RT) for 2 h to avoid unspecific
protein signals. Membranes were incubated with primary antibodies rabbit (Rb) anti-claudin-1, -2,
-5, -8 (Invitrogen, Carlsbad, CA, USA), Rb anti-occludin (Sigma Aldrich, St. Louis, MO, USA), Rb
anti-tricellulin (Invitrogen, Carlsbad, CA, USA), mouse (M) anti-β-actin (Sigma Aldrich, St. Louis,
MO, USA), M anti-GAPDH (Merck KGaA, Darmstadt, Germany) overnight at 4 ◦C. Membranes were
then incubated with appropriate secondary antibodies (peroxidase-conjugated goat anti-Rb and goat
anti-M, Jackson ImmunoResearch, Ely, UK) at RT for 2 h. Membranes were evaluated for bands of
specific protein with a chemiluminescence solution (Thermo Scientific, Waltham, MA, USA) using the
FUSION FX7 system (Vilber Lourmat Deutschland GmbH, Eberhardzell, Germany). Protein bands
were quantified by ImageJ software (Rasband, W. S., ImageJ, National Institute of Health (NIH),
Bethesda, MD, USA). Densitometric analysis of the Western blots was performed by normalizing the
band intensity of TJ proteins to their respective β-actin or GAPDH band intensities.

4.4. Western Blot Assessment of ERK Phosphorylation

Forty-eight hours post-infection, HT-29/B6-GR/MR cell monolayers were washed and incubated
with RPMI media lacking h-f FCS and supplemented with 2 mg/mL gentamycin (Gibco, Carlsbad,
CA, USA) for 3 h to remove and kill all residual bacteria on the apical and basal sides of the cell
monolayers. Cell monolayers were then washed with heat-inactivated 10% h-f FCS to completely
remove gentamycin, after which cells were DBA stimulated and re-infected with C. concisus or C. jejuni
for 5, 15, 30, 60 and 120 min before detecting protein phosphorylation by Western blotting. Cells were
scraped carefully from control and the infected monolayers, and removed using complete cell lysis
buffer (pH 7.5) supplemented with phosphatase inhibitors (20 mM Tris, 150 mM NaCl, 1 mM Triton
X-100, 1 mM EDTA, 1 mM PMSF, 2.5 mM Na+ pyrophosphate, 1 mM β-glycerophosphate, 1 mM
Na+ orthovanadate, 1 mM EGTA, 1µg/mL leupeptin, complete protease inhibitor cocktail (Roche,
Mannheim, Germany)).

Proteins were isolated from lysed cells and their concentrations determined. Proteins were then
resolved and electro-transferred to PVDF nitrocellulose membranes (Thermo Scientific, Waltham,
MA, USA). PVDF membranes were blocked, incubated with primary and secondary antibodies and
evaluated for specific proteins using FUSION FX7, as described in the Section 4.3. Primary antibodies
used to determine ERK phosphorylation were Rb anti-p-ERK1/2, Rb anti-ERK1/2 (Cell Signaling
Technology Europe B.V., Frankfurt am Main, Germany) and M anti-β-actin (Sigma Aldrich, St. Louis,
MO, USA). Densitometric analysis of Western blots was performed by normalizing band intensities of
p-ERK1/2 and ERK1/2 (total ERK1/2) to their respective β-actin intensities.

4.5. Functional Blockade of ERK to Determine the Changes in ENaC Function In Vitro

Upstream MEK inhibitor U0126 (Biogems International, Inc. Westlake Village, CA, USA), which
functionally blocks ERK activity, was used to determine the changes in ENaC-dependent Na+ transport
(∆ISC) after C. concisus infection in HT-29/B6-GR/MR cells. For this purpose, we used the in vitro
infection model as described in Figure 11 and Section 4.1 with few modifications. Four days post-DBA
stimulation, the apical and basolateral compartments of the cell monolayers were treated with the
functional MEK inhibitor U0126 at a concentration of 10 µM supplemented along with heat-inactivated
10% h-f FCS without any antibiotic supplements. Then, the cell monolayers were incubated at 37
◦C in humidified atmosphere (95% air/5% CO2) for 2 h. Then, the cell monolayers were infected
with C. concisus on both apical and basolateral compartment of the cell monolayers at MOI of 400.
Following infection, the cell monolayers were incubated in a special microaerobic atmospheric condition
(as described in Section 4.1) but only for approximately 4 h. Then, the cell monolayers were replaced at
37 ◦C in humidified atmosphere. Forty-eight hours post-infection, ENaC-dependent Na+ transport
(∆ISC) was determined as described in Section 4.1.
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4.6. ENaC Regulatory β- and γ-Subunit and Claudin-8 mRNA Expression Analyzed by RT-qPCR

Total RNA was extracted from HT-29/B6-GR/MR cells using the mirVanaTM miRNA Isolation Kit
(Ambion, Life Technologies, Carlsbad, CA, USA). cDNA was synthesized by reverse-transcription
PCR using the High-Capacity cDNA Archive Kit (Applied Biosystems, Mannheim, Germany) with
oligo(dT) primer. Real-time PCR was performed according to the manufacturer’s instructions with
an 7500 FAST Real-Time PCR System (Applied Biosystems, Mannheim, Germany) device using
the TaqMan®Gene Expression protocol [HS00165722_m1 for human ENaC β-subunit (SCCN1B),
HS00168918_m1 for human ENaC γ-subunit (SCNN1G), HS00273282_s1 for human claudin-8 (CLDN8)]
with FAM™dye-labeled primers. GAPDH-cDNA was quantified using VIC®reporter dyes as
endogenous control (all Applied Biosystems, Mannheim, Germany). Differential gene expression was
determined by the 2−∆∆CT method [56] and represented as fold-induction with respect to controls.

4.7. Tight Junction Protein Localization Evaluated by Immunofluorescence and Confocal Laser Scanning
Microscopy

TJ protein distribution in HT-29/B6-GR/MR cell monolayers was investigated four days post-DBA
stimulation and 48 h post-infection with Campylobacter spp. Cell monolayers on 3 µM PCF filters were
fixed using 2% paraformaldehyde (PFA; Electron Microscopy Sciences, Hatfield, PA, USA) at RT for
20 min. After fixing, cell monolayers were quenched with 25 mM Glycin (Biomol GmBH, Hamburg,
Germany), washed twice with phosphate-buffered saline (PBS; with Ca2+/Mg2+; pH 7.4; Sigma Aldrich,
St. Louis, MO, USA) and permeabilized with 0.5% Triton X-100 (Sigma Aldrich, St. Louis Missouri,
MO, USA) for 7 min at RT. Permeabilized monolayers were then washed and incubated with a blocking
solution (1% (v/v) goat serum, Gibco, Carlsbad, CA, USA; diluted with Ca2+- and Mg2+-containing
PBS) at RT for 30 min. After blocking, cell monolayers were incubated for 45 min at 37 ◦C with the
primary antibodies Rb anti-claudin-8 (Thermo Scientific, Waltham, MA, USA) and M anti-human ZO-1
(BD Biosciences, Franklin Lakes, NJ, USA) at their optimal concentrations.

Following this, cell monolayers were washed twice with 1% goat serum and incubated with
secondary antibodies diluted at concentration of 1:400 in blocking solution (goat anti-Rb green, Alexa
Fluor Plus 488 nm and goat anti-M red, Alexa Fluor 594 nm (Invitrogen Carlsbad, CA, USA)) for
45 min at 37 ◦C. After incubation with secondary antibodies, monolayers were stained for nuclei
with 4′-6-diamidino-2-phenylindole dihydrochloride (DAPI; Roche AG, Basel, Switzerland) at a
dilution of 1:1000 in blocking solution. Monolayers were then washed with blocking solution and
Ca2+- and Mg2+-containing PBS and rinsed briefly with water and absolute ethanol. The cell filters
were dried and mounted on glass slides using the mounting solution ProTaq Mount Fluor (Biocyc,
Luckenwalde, Germany), and fixed with coverslips. Localization and/or redistribution of TJ protein
claudin-8 (co-stained with ZO-1) in control and the infected cell monolayers was determined by
confocal laser-scanning microscopy (CLSM, Zeiss LSM 780, Jena, Germany). Individual Z-stacks of the
cell monolayers were recorded using the laser scan function.

4.8. Electrophysiological Determination of ENaC Function in an In Vivo Model of C. concisus Infection

IL-10−/− mice were used as in vivo model of C. concisus infection. IL-10−/− mice (in C57BL/6j
background) were held under specific pathogen-free (SPF) conditions in the animal facilities of the
Forschungseinrichtung für Experimentelle Medizin (Charité—Universitätsmedizin Berlin). Mice were
transferred to sterile cages and treated for eight weeks with an antibiotic cocktail in the drinking water ad
libitum [supplemented with ampicillin/sulbactum (1.5 g/L), ciprofloxacin (200 mg/L), impenim/cilastatin
(250 mg/L)] to remove the commensal gut bacteria. Mice were then infected with C. concisus (C. concisus
AAuH 37 UC oral; [55]) via oral gavage at 108 colony-forming units (CFU) in a volume of 0.3 mL PBS.
Mice infected with commensal E. coli at same CFU were used as controls. Six days after infection,
animals were sacrificed by isoflurane inhalation and their colons carefully removed.

The distal parts of the colon were mounted in Ussing chambers and equilibrated with the bathing
solution (Na+ 140.0 mM; Cl− 123.8 mM; K+ 5.4 mM; Ca2+ 1.2 mM; Mg2+ 1.2 mM; HPO4

2− 2.4 mM;
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H2PO4
− 0.6 mM and HCO3− 21.0 mM) for approximately 30 min. The solution was gassed with

carbogen gas (95% O2 and 5% CO2) by bubble lift. Temperature was maintained at 37 ◦C, pH 7.4.
Transepithelial resistance (TER, Ω·cm2) and short circuit current (ISC, µA/cm2) were recorded using
voltage clamp devices (CVC6, Feibig Hard & Software, Berlin, Germany). Distal colons were then
treated with the mineralocorticoid aldosterone (3 nM) added to both the apical and basolateral
compartments of the Ussing chambers to stimulate ENaC activity. Six hours later, ENaC-dependent
Na+ transport was determined as the decrease in ISC 15 min after the addition of the ENaC blocker
amiloride (100 µM; Sigma-Aldrich, St. Louis, MO, USA) to the apical compartment. To confirm
viability of the colonic epithelium after 6 h of aldosterone exposure, the Cl− secretory response of the
epithelium was assessed by measuring increases in ISC at end of each experiment after the addition of
theophylline (10 mM) and prostaglandin E2 (10 µM). Subsequently, inhibition of the stimulated Cl−

secretion was assessed by measuring decreases in ISC after the addition of bumetanide (100 µM) to the
basolateral compartment.

In both control and inflamed colon, ISC measurements could be influenced to different degrees
by the thickness of the subepithelial tissue layers. Thus, in addition to ISC measurements, the total
transepithelial resistance (Rtotal) and subepithelial resistance (Rsub) of colonic samples were recorded
via one-path impedance spectroscopy, as described previously [57]. Epithelial resistance (Repi) was
determined by subtracting Rsub from Rtotal. To ensure that changes in Isc accurately reflected changes
in active transport, the contributions from subepithelial tissue were taken into account by calculating
the ratio Rtotal/Repi, as described previously [20,26].

4.9. Ethics Statement

Animal experiments were carried out in the animal facility at the Forschungseinrichtung für
Experimentelle Medizin (Charité—Universitätsmedizin Berlin) according to the German animal
protection law (approval number G0172/16 (13 October 2016), LaGeSo Berlin).

4.10. RNA-Seq Expression Analysis

Total RNA was obtained from HT-29/B6-GR/MR cells using the mirVanaTM miRNA Isolation Kit
(Ambion, Life Technologies, Carlsbad, CA, USA). RNA sequencing was performed using the TrueSeq
Stranded Total RNA method on a NovaSeqTM 6000 Sequencing System (https://www.illumina.com/)
with quality scores of ≥80%.

The reads from RNA-Seq were mapped against the human genome GRCh38 release 97 and sorted
using the STAR aligner version 2.7.1a in a two-pass mode [58]. First-pass read mapping utilized
coordinates from Ensembl annotation release 97 as a framework. Second-pass mapping added splice
sites that were found in the first run. Count tables containing gene-read coverages were obtained
using the feature Counts function of the Bioconductor package Rsubread [59], with coordinates from
aforementioned Ensembl annotation and default parameters.

The Bioconductor package DESeq2 [60] was used to quantify the differential expression of genes
between two conditions in form of log2-fold changes with their corresponding p-values. p-values
were adjusted for multiple testing using the Benjamini–Hochberg procedure. Pathway analysis
was performed with Ingenuity Pathway Analysis software (IPA, Qiagen Silicon Valley, Redwood,
CA, USA) to evaluate the C. concisus-dependent changes in the expression of different genes that
regulate ENaC function. Fastq files containing the unprocessed raw reads from sequencing and a raw
counts matrix table are publicly available at Gene Expression Omnibus (GEO) archive under National
Centre for Biotechnology Information (NCBI) website with GEO accession ID 141217 [Campylobacter
concisus impairs sodium absorption via ENaC dysfunction and claudin-8 disruption. Available online:
https://www.ncbi.nlm.nih.gov/gds/?term=GSE141217 (1 January 2020)].

In addition, counts per million and log-transformed counts per million (CPM) normalization was
performed using CPM function of the Bioconductor package edgeR [61], and the gene expression of
IL-32 was determined using CPM.

https://www.illumina.com/
https://www.ncbi.nlm.nih.gov/gds/?term=GSE141217
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4.11. Cell Proliferation and Cytotoxicity Assay

The possibility of cytotoxicity and the cell proliferation rate in HT-29/B6-GR/MR cell monolayers
48 h after C. concisus infection were evaluated by CCK-8 assay (Cell Counting Kit-8, Thermo Scientific,
Waltham, MA, USA). HT-29/B6-GR/MR cells were seeded into 96 well plates and incubated for
7–10 days at 37 ◦C in a humidified atmosphere (95% air/5% CO2). Cells were stimulated with DBA
(a combination of dexamethasone (D, 50 nM; Sigma-Aldrich, St. Louis, MO, USA), Na+ butyrate
(B, 2 mM; Merck-Schuchardt, Hohenbrunn, Germany) and aldosterone (A, 3 nM; Sigma-Aldrich,
St. Louis, MO, USA)) for four days after an overnight incubation with 10% hormone-free FCS (h-f
FCS; Sigma-Aldrich, St. Louis, MO, USA). Four days post-DBA stimulation, cells in 96 well plates
were infected with C. concisus (C. concisus AAuH 37 UC oral; [43]) at a multiplicity of infection (MOI)
of 400. Forty-eight hours post-infection, cell viability was determined by CCK-8 assay according
to manufacturer’s instructions. 10 µL of CCK-8 solution (WST-8 [2-(2-methoxy-4-nitrophenyl)-5-(2,
4-disulfophenyl)-2H-tetrazolium, monosodium salt]) was added to 100 µL of cell suspensions in 96
well plates. WST-8 produced a water-soluble formazan dye (orange colored product) generated by
oxidation of cellular dehydrogenases [62,63]. Two hours after addition of the CCK-8 solution to the 96
well plates, absorbance values were recorded using a spectrophotometer (Tecan GmbH, Maennedorf,
Switzerland) at 450 nm, with a reference wavelength of 600 nm. Absorbance values represented the
amount of formazan dye generated by cellular dehydrogenases and were directly proportional to the
number of living cells.

4.12. Statistical Analysis

All data are expressed as the mean value ± standard error of the mean (SEM). Statistical analyses
were performed with GraphPad Prism (GraphPad Software version 5.0, Inc., San Diego, CA, USA).
For data in Figures 1, 3–7 and 9, the unpaired t-test with Welch’s correction for unequal variances was
applied. For data that were not normally distributed (Figure 10 and Table 1), the Mann–Whitney U-Test
was used. To compare data sets from three different samples (data of Figure 2), two-way ANOVA with
Bonferroni–Holm adjustment was used. p < 0.05 was considered statistically significant.

5. Conclusions

Campylobacter concisus impairs ENaC-dependent Na+ absorption via down-regulation of β- and
γ-ENaC mRNA expression and ERK activation. The up-regulated mRNA expression of pro-inflammatory
cytokine IL-32 after C. concisus infection might contribute to ERK activation, in turn leading to
ENaC dysfunction. Besides, C. concisus disrupts claudin-8 and facilitates back leakage of Na+ ions.
Hence, C. concisus induces ENaC dysfunction via ERK activation and claudin-8-dependent barrier
dysfunction—both of which contribute to Na+ malabsorption and diarrhea.
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Abbreviations

cAMP Cyclic adenosine monophosphate
cDNA Complementary DNA
CFU Colony forming unit
CLSM Confocal laser scanning microscopy
DAPI 4′-6-diamidino-2-phenylindole dihydrochloride
DBA Dexamethasone, butyrate and aldosterone
EDTA Ethylenediaminetetraacetic acid
EGTA Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
ENaC Epithelial sodium channel
ERK Extracellular signal-regulated kinase
FCS Fetal calf serum
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GC Glucocorticoids
GR Glucocorticoid receptor
H2PO4

− Dihydrogen phosphate
HCO3

− Hydrogen carbonate
h-f FCS Hormone-free FCS
HPO4

2− Hydrogen phosphate
IFN Interferon
IL Interleukin
ISC Short circuit current
JAM Junctiunal adhesion molecule
JNK c-Jun N-terminal kinase
LaGeSo Landesamt für Gesundheit und Soziales
MAPK Mitogen-activated protein kinase
MC Mineralocorticoids
MEK Mitogen-activated protein kinase kinase
miRNA MicroRNA
MOI Multiplicity of infection
MR Mineralocorticoid receptor
mRNA Messenger RNA
PBS Phosphate-buffered saline
PGE2 Prostaglandin E2
PMSF Phenylmethylsulfonyl fluoride
PVDF Polyvinylidene fluoride
PVP Polyvinylpyrrolidone
STAT-6 Signal transducer and activator of transcription 6
TER Transepithelial electrical resistance
TJ Tight junction
TNF Tumor necrosis factor
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