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Abstract: It is known that single or isolated tumor cells enter cancer patients’ circulatory systems.
These circulating tumor cells (CTCs) are thought to be an effective tool for diagnosing cancer
malignancy. However, handling CTC samples and evaluating CTC sequence analysis results are
challenging. Recently, the convolutional neural network (CNN) model, a type of deep learning model,
has been increasingly adopted for medical image analyses. However, it is controversial whether cell
characteristics can be identified at the single-cell level by using machine learning methods. This study
intends to verify whether an AI system could classify the sensitivity of anticancer drugs, based on cell
morphology during culture. We constructed a CNN based on the VGG16 model that could predict
the efficiency of antitumor drugs at the single-cell level. The machine learning revealed that our
model could identify the effects of antitumor drugs with ~0.80 accuracies. Our results show that, in
the future, realizing precision medicine to identify effective antitumor drugs for individual patients
may be possible by extracting CTCs from blood and performing classification by using an AI system.
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1. Introduction

The anticancer chemotherapy is an important first-line treatment in unresectable advanced
tumors, such as colorectal cancer [1]. In the cases of colorectal cancer, if the chemotherapy produces
a therapeutic effect, subsequent conversion therapy allows R0 resection, and a long-term prognosis
can be expected [2]. However, if first-line chemotherapy is not effective, patients will miss valuable
treatment opportunities. In the current treatment of colorectal cancer, the evaluation of EGFR and RAS
expression from colorectal cancer resected specimens and biopsy specimens selects anticancer drugs
and molecular targeted drugs that can be expected to have therapeutic effects [1].

The ability to predict the effect of an anticancer drug by liquid biopsy would be useful, because
it is a minimally invasive procedure. Circulating tumor cells (CTCs) can be used as a type of
liquid biopsy [3]. Recently, various methods have been developed for recovering CTCs, and their
accuracy is improving [4]. Many studies that focus on sequence analysis of CTCs to examine gene
mutations exist [5,6]. However, CTC sequence analysis obtained a large amount of data, making the
analysis time-consuming.

Conversely, computer-based analyses of large volumes of data recently have become widely used,
as computer performance has improved [7,8]. Many analytical methods, such as statistical analysis,
model analysis, simulation analysis and theoretical analysis, have emerged. These computational
methods have been successful in many research areas, and numerous machine learning research
projects have been reported in recent years [9–11].

Techniques using AI trained on convolutional neural networks (CNNs) that mimic optical neural
networks have recently been developed. To use it in medical applications, there have been various
attempts to train AI on medical imaging. Esteva et al. made the first report on the analysis of clinical
information using AI [12]. They trained CNN using 129,450 clinical images of 2032 different diseases.
Surprisingly, CNN’s performance was comparable to the level of the diagnosis of dermatologists in
classifying skin cancer.

In the field of cancer research, CNN, one of the deep learning algorithms, is rapidly being
adopted for analyzing medical images [11]. Therefore, we applied artificial intelligence-based image
recognition technology and researched whether it would be possible to simply evaluate anticancer
drug resistance from cancer cell morphology, using CNN. In this study, we have constructed the
recognition system of single-cell level characters that can be adapted for examining circulating tumor
cells, using the deep learning method. As the first step of this strategy, the character of drug-resistance
of colorectal carcinoma cell lines to antitumor drugs, 5-fluorouracil (5-FU) and trifluorothymidine
(FTD), was determined.

2. Results

2.1. Models Constructed to Discriminate Resistance and Non-Resistance of Cancer Cells to Anticancer Drugs in
the Confluent Category

Using two types of colorectal cancer cell lines, DLD-1 and HCT-116, we constructed the discriminant
model using the VGG16 deep learning process (Figure 1). We used a model based on VGG16, and
trained the VGG16 model with each of 7500 images of cancer cells that displayed different levels of
resistance to anticancer drugs. For this study, we trained only the last three convolutional layers and
three connected layers with the selected images. Machine learning was performed for discrimination
at the confluence level of cell culture. Figure 2A,B shows the representative input images of the control
DLD-1 cells and those resistant to 5-FU anticancer drugs, respectively. The accuracy variation per
epoch is shown in Figure 2C. In this figure, the dotted line indicates the accuracy rate on the training
data during the learning steps, and the dashed line indicates the accuracy rate on the test data during
the validation steps. As shown in this figure, VGG16 trained in discriminant mode could determine
which cell class was resistant or non-resistant to anticancer drugs, with an accuracy score of ~0.98. This
process was replicated, and machine learning for discriminating which HCT-116 cells were resistant
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or non-resistant to anticancer drugs was performed. The representative input images of the control
and FTD resistant HCT-116 cells are shown in Figure 3A,B, respectively. The time-course variation
of accuracy is shown in Figure 3C. The dotted and dashed lines have the same meanings as above.
The accuracy rate is higher than in the case of DLD-1 cells. This figure shows that the accuracy rate
converges to almost 1.00.
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Figure 3. Machine learning at confluence level for HCT-116 cells resistant and non-resistant to anticancer
drugs. Scale bar; 50 µm (A) Representative input image of the control HCT-116 cells. Scale bar; 50 µm
(B) Representative input image of drug-resistant HCT-116 cells. (C) Accuracy variation per epoch.

2.2. Discrimination Model of the Single-Cell Level

To use CTC for diagnosis in the future, we attempted discrimination at the single-cell level. In
this step, we attempted to construct a discrimination model with machine learning using HCT-116
cell images that are either resistant or non-resistant to FTD anticancer drugs. As in the case of the
confluence level training described above, Figure 4A,B shows the representative input of 1000 images
of a control cell and a cell resistant to FTD anticancer drugs. Figure 4C indicates the time-course
variation of the accuracy rate. The dotted and dashed lines have the same representation as above.
The accuracy rate of the discrimination model using the training data and test data increased to 0.7–0.8,
respectively, as the number of epochs increased; the sensitivity was 0.68, the specificity was 0.76, and
the accuracy was 0.72, at the 20th epochs.
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3. Discussion

Conventionally, in many reports on cancer cell imaging, much effort has been put into classifying
cell populations. However, in this study, for the first time, machine learning could discriminate the
characteristics of cancer cells, even at the single-cell level. In this study, it was possible to classify
cell populations according to their characteristics with more than 0.98 accuracies, using the modified
VGG16 neural network model, as shown in Figures 2 and 3. This is an improvement on the results from
previous studies. Our model could discriminate cell characteristics with 0.7–0.8 accuracies even at the
single-cell level. It is more difficult to discriminate for single cells by the CNN image recognition system
than to do so for a cell population; however, the result demonstrates that single-cell discrimination
may be possible at an acceptable level. As previously mentioned, we employed the DLD-1 cell line
to determine whether it was resistant to 5-FU. HCT-116 was employed to determine whether it was
resistant to FTD. Below are some of the reasons why the resistance level of DLD-1 to 5-FU is lower than
that of HCT-116, and the resistance level to FTD of HCT-116 is lower than that of DLD-1. For machine
learning at the single-cell level, we selected cases of FTD resistance in HCT-116. When comparing
the degree of resistance, the ratio of the IC50 value between the control and resistant cells, HCT-116
in FTD resistance, was 31.1 µM, whereas DLD-1 in 5-FU resistance exceeded an estimated 80.0 µM
(data not shown). This is the reason why we selected the HCT-116 cell line for machine learning at the
single-cell level.

Considering that our model maintained ~0.80 accuracies, even with a cell line having such a low
level of resistance, it is no exaggeration to say that we have established a foundation that is a great step
forward in devising a single-cell-level character recognition system that is adaptable for examining
circulating tumor cells. Figure 5 shows a future ideal model of precision medicine that predicts the
effect of an anticancer drug using AI analysis of CTCs. A blood sample would be collected from the
patient with multiple metastatic tumors, and CTCs would be extracted. The AI analysis of CTCs would
be able to predict the effective anticancer drug for the patient and is expected to construct the optimal
treatment strategy for the patient. Our results advance predictive medicine, including the prediction of
treatment effects, and contribute to the realization of personalized medicine.
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Figure 5. Schematic diagram of colorectal cancer precision medicine using AI. Based on the circulating
tumor cell (CTC) morphology detected in the liquid biopsies of patients with unresectable advanced
colorectal cancer, the presence or absence of anticancer drug resistance is determined by image
recognition technology, using deep learning.
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4. Materials and Methods

4.1. Cell Lines and Cell Culture

In this study, we used human colorectal carcinoma cell lines, HCT-116 and DLD-1, as controls.
These were purchased from the American Type Culture Collection (Manassas, VA, USA) and maintained
in Dulbecco’s Modified Eagle’s Medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
10% FBS at 37 ◦C and 5% CO2 in a humidified incubator. In our previous study [13] on resistance
to anticancer drugs, cell lines for 5-FU and FTD were established for the machine learning process.
We also used the HCT-116 cell line, which is characteristically FTD resistant, and the DLD-1 cell line,
which is 5-FU resistant. The resistance level of HCT-116 to FTD is lower than that of DLD-1. However,
the resistance level of DLD-1 to 5-FU is lower than that of HCT-116. To establish the single-cell level
character recognition system that is adaptable for examining circulating tumor cells, the system must
be able to determine whether there is resistance to anticancer drugs or not, even if the resistance
difference, when compared with control cells, is not large. This was the reason for selecting these
anticancer drug-resistant cell lines.

4.2. Cytotoxicity Assay

The cell lines were seeded at a density of 4 × 103 cells per well in 96-well plates and then
pre-cultured for 24 h. They were exposed to various concentrations of FTD and 5-FU antitumor
drugs, for 72 h. The in vitro cytotoxic effects were assayed using the Cell Counting Kit-8 (Dojindo,
Tokyo, Japan).

4.3. Preparation of Image for Deep Learning

The phase-contrast images of the colorectal cell lines, HCT-116 and DLD-1, were obtained with a
microscope (B-X700, KEYENCE). The machine learning datasets were comprised of two categories
with 9000 images of cell confluence and 1100 images of single cells. The images in each dataset were
240 × 240 pixels in size. The confluence category training dataset had 7500 images and its test set had
1500 images. For the single-cell dataset, 1000 images were used as the training set, and 100 images
were used as the test set. During preparation, the samples were all converted to gray-scale images.

4.4. The Machine Learning Process with a Neural Network System

A convolutional neural network (CNN) is a machine learning model, which is a system of
convolutional, pooling layers and fully connected layers [14,15]. The convolutional layers detect local
features in the input data, whereas the pooling layers reduce the computational load as well as the
risks of overfitting and image shift. VGG16 is one of the CNN model systems and is pre-trained to
classify 1.2 million images into 1000 categories. Many target classes can be classified easily using
this VGG16 model even without pre-learning the 1000 categories. We, therefore, trained the VGG16
model (as shown in Figure 1) with images of cancer cells that displayed different levels of resistance
to anticancer drugs. For this study, we trained only the last three convolutional layers and three
connected layers with the selected images. For testing our model and to validate the training, we used
Google’s TensorFlow [14] deep learning framework, and Keras [16,17] using TensorFlow backend.

Author Contributions: Conceptualization, K.Y., M.K., and H.I.; methodology, K.Y., M.T., and H.N.; formal analysis,
K.Y., M.T., A.A., M.K., and H.I.; funding acquisition, T.S., and H.I.; investigation, K.Y., M.T., and H.N.; project
administration, H.I.; resources, K.Y., T.M., H.N., and H.I.; supervision, H.I.; writing (original draft preparation),
K.Y.; writing (review and editing), K.Y., A.A., M.K., T.M., T.S., J.M., K.O., A.V., Y.D., H.E., and H.I. All authors
have read and approved the manuscript.

Funding: This study was funded partially by Taiho Pharmaceutical Co., Ltd. (Tokyo, Japan), Unitech Co., Ltd.
(Chiba, Japan), HIROTSU BIO SCIENCE INC. (Tokyo, Japan); IDEA Consultants Inc. (Tokyo, Japan), Kinshu-kai
Medical Corporation (Osaka, Japan), and Kyowa-kai Medical Corporation (Osaka, Japan) [to H.I.]; Chugai Co.,
Ltd., Yakult Honsha Co., Ltd., and Ono Pharmaceutical Co., Ltd. [to T.S.].



Int. J. Mol. Sci. 2020, 21, 3166 7 of 7

Acknowledgments: We thank Jun Koseki, for the support of analysis; M. Ozaki and Y. Noguchi, for excellent
technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry
of Education, Culture, Sports, Science, and Technology (15H05791; 17H04282; 17K19698; 18K16356; 18K16355;
18KK0251; 19K22658; 19K09172; 19K07688); AMED, Japan (16cm0106414h0001; 17cm0106414h0002). Partial
support was received from the Princess Takamatsu Cancer Research Fund and the Suzuken Memorial Foundation.

Conflicts of Interest: The authors declare no conflict of interest. These funders had no role in the main experimental
equipment, supply expenses, study design, data collection and analysis, decision to publish, or preparation of
this manuscript.

References

1. Watanabe, T.; Muro, K.; Ajioka, Y.; Hashiguchi, Y.; Ito, Y.; Saito, Y.; Hamaguchi, T.; Ishida, H.; Ishiguro, M.;
Ishihara, S.; et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the
treatment of colorectal cancer. Int. J. Clin. Oncol. 2018, 23, 1–34. [CrossRef] [PubMed]

2. Colvin, H.; Mizushima, T.; Eguchi, H.; Takiguchi, S.; Doki, Y.; Mori, M. Gastroenterological surgery in Japan:
The past, the present and the future. Ann. Gastroenterol. Surg. 2017, 1, 5–10. [CrossRef] [PubMed]

3. Hench, I.B.; Hench, J.; Tolnay, M. Liquid Biopsy in Clinical Management of Breast, Lung, and Colorectal
Cancer. Front. Med. 2018, 5, 9. [CrossRef] [PubMed]

4. Khoo, B.L.; Grenci, G.; Lim, Y.B.; Lee, S.C.; Han, J.; Lim, C.T. Expansion of patient-derived circulating tumor
cells from liquid biopsies using a CTC microfluidic culture device. Nat. Protoc. 2018, 13, 34–58. [CrossRef]
[PubMed]

5. Sharma, S.; Zhuang, R.; Long, M.; Pavlovic, M.; Kang, Y.; Ilyas, A.; Asghar, W. Circulating tumor cell isolation,
culture, and downstream molecular analysis. Biotechnol. Adv. 2018, 36, 1063–1078. [CrossRef] [PubMed]

6. Batth, I.S.; Mitra, A.; Rood, S.; Kopetz, S.; Menter, D.; Li, S. CTC analysis: An update on technological
progress. Transl. Res. 2019, 212, 14–25. [CrossRef]

7. Koseki, J.; Konno, M.; Ishii, H. Computational analyses for cancer biology based on exhaustive experimental
backgrounds. Cancer Drug Resist. 2019, 2, 419–427. [CrossRef]

8. Metzcar, J.; Wang, Y.; Heiland, R.; Macklin, P. A Review of Cell-Based Computational Modeling in Cancer
Biology. JCO Clin. Cancer Inform. 2019, 3, 1–13. [CrossRef]

9. Libbrecht, M.W.; Noble, W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015,
16, 321–332. [CrossRef] [PubMed]

10. Zou, J.; Huss, M.; Abid, A.; Mohammadi, P.; Torkamani, A.; Telenti, A. A primer on deep learning in genomics.
Nat. Genet. 2019, 51, 12–18. [CrossRef] [PubMed]

11. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.;
van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017,
42, 60–88. [CrossRef] [PubMed]

12. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level
classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [CrossRef] [PubMed]

13. Tsunekuni, K.; Konno, M.; Asai, A.; Koseki, J.; Kobunai, T.; Takechi, T.; Doki, Y.; Mori, M.; Ishii, H. MicroRNA
profiles involved in trifluridine resistance. Oncotarget 2017, 8, 53017–53027. [CrossRef] [PubMed]

14. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507. [PubMed]

15. Toratani, M.; Konno, M.; Asai, A.; Koseki, J.; Kawamoto, K.; Tamari, K.; Li, Z.; Sakai, D.; Kudo, T.; Satoh, T.;
et al. A Convolutional Neural Network Uses Microscopic Images to Differentiate between Mouse and
Human Cell Lines and Their Radioresistant Clones. Cancer Res. 2018, 78, 6703–6707. [CrossRef] [PubMed]

16. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. Available
online: https://arxiv.org/abs/1603.04467 (accessed on 29 April 2020).

17. Chollet, F. Keras. GitHub. 2015. Available online: https://github.com/fchollet/keras (accessed on
29 April 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10147-017-1101-6
http://www.ncbi.nlm.nih.gov/pubmed/28349281
http://dx.doi.org/10.1002/ags3.12008
http://www.ncbi.nlm.nih.gov/pubmed/29863129
http://dx.doi.org/10.3389/fmed.2018.00009
http://www.ncbi.nlm.nih.gov/pubmed/29441349
http://dx.doi.org/10.1038/nprot.2017.125
http://www.ncbi.nlm.nih.gov/pubmed/29215634
http://dx.doi.org/10.1016/j.biotechadv.2018.03.007
http://www.ncbi.nlm.nih.gov/pubmed/29559380
http://dx.doi.org/10.1016/j.trsl.2019.07.003
http://dx.doi.org/10.20517/cdr.2019.33
http://dx.doi.org/10.1200/CCI.18.00069
http://dx.doi.org/10.1038/nrg3920
http://www.ncbi.nlm.nih.gov/pubmed/25948244
http://dx.doi.org/10.1038/s41588-018-0295-5
http://www.ncbi.nlm.nih.gov/pubmed/30478442
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1038/nature21056
http://www.ncbi.nlm.nih.gov/pubmed/28117445
http://dx.doi.org/10.18632/oncotarget.18078
http://www.ncbi.nlm.nih.gov/pubmed/28881790
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1158/0008-5472.CAN-18-0653
http://www.ncbi.nlm.nih.gov/pubmed/30254144
https://arxiv.org/abs/1603.04467
https://github.com/fchollet/keras
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Models Constructed to Discriminate Resistance and Non-Resistance of Cancer Cells to Anticancer Drugs in the Confluent Category 
	Discrimination Model of the Single-Cell Level 

	Discussion 
	Materials and Methods 
	Cell Lines and Cell Culture 
	Cytotoxicity Assay 
	Preparation of Image for Deep Learning 
	The Machine Learning Process with a Neural Network System 

	References

