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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus
disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies that
may result in either bleeding and thrombocytopenia or hypercoagulation and thrombosis. Thrombotic
and bleeding or thrombotic pathologies are significant accompaniments to acute respiratory syndrome
and lung complications in COVID-19. Thrombotic events and bleeding often occur in subjects with
weak constitutions, multiple risk factors and comorbidities. Of particular interest are the various
circulating inflammatory coagulation biomarkers involved directly in clotting, with specific focus on
fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Central to the activity of these
biomarkers are their receptors and signalling pathways on endothelial cells, platelets and erythrocytes.
In this review, we discuss vascular implications of COVID-19 and relate this to circulating biomarker,
endothelial, erythrocyte and platelet dysfunction. During the progression of the disease, these
markers may either be within healthy levels, upregulated or eventually depleted. Most significant is
that patients need to be treated early in the disease progression, when high levels of VWF, P-selectin
and fibrinogen are present, with normal or slightly increased levels of D-dimer (however, D-dimer
levels will rapidly increase as the disease progresses). Progression to VWF and fibrinogen depletion
with high D-dimer levels and even higher P-selectin levels, followed by the cytokine storm, will be
indicative of a poor prognosis. We conclude by looking at point-of-care devices and methodologies in
COVID-19 management and suggest that a personalized medicine approach should be considered in
the treatment of patients.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2), also known as coronavirus
disease 2019 (COVID-19)-induced infection, is strongly associated with various coagulopathies [1–5].
Pathology might also be consistent with infection-induced inflammatory changes as observed in
patients with disseminated intravascular coagulopathy [6]. Because of limited clinical patient data and
the current lack of clinical trial data, it is important to investigate all possible adjuvant therapies that may
contribute to a better patient outcome, specifically with regards to the coagulation profile. Of particular
interest are the various circulating inflammatory coagulation biomarkers involved directly in clotting,
with specific focus on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor (VWF). Changes in
their levels can lead to an imbalance between procoagulant and anticoagulant factors, e.g., fibrinogen
contributes to thrombus formation, while loss of high molecular VWF causes bleeding tendency [7].
During COVID-19 pathology, depending on the severity of the condition, dysregulation has been
noted in all of the mentioned biomarkers, where increased levels of P-selectin [8], fibrinogen and
D-dimer accompany COVID-19 progression [4,5,9–15] and VWFs [16,17] have been found. D-dimers
are normally not present in blood unless coagulation has occurred, and the D-dimer therefore serves
as a biomarker for thrombosis [18,19]. The normal range of D-dimers is <0.50 µg/mL Fibrinogen
Equivalent Units (FEU). Interestingly, during early onset of the condition, D-dimer levels are normal to
slightly increased (clinical observation by co-author Laubscher).

Although both low and high levels of fibrinogen (normal levels are between 2–4 mg/mL) have
been reported in COVID-19 [4], central to the presence of high levels of fibrinogen is the presence of
increased blood viscosity. COVID-19-associated hyperviscosity has been reported, and its presence has
been ascribed to a potentially severe consequence of infection [20]. An important marker of COVID-19
disease severity might thus also be erythrocyte sedimentation rate (ESR) [21]. However, it should be
noted that most patients with comorbidities will have an elevated ESR. It can be expected that, where
fibrinogen levels are increased, there will be greater tendency for rouleaux formation and thus a raised
ESR, as the relatively dense rouleaux will sink to the bottom faster [22]. Rouleaux formation may also
happen due to the presence of inflammation and an increase in acute phase proteins in circulation [22].
Al-Samkari and co-workers reported that ESR levels of >40 mm/h (adjusted OR, 2.64 (1.07–6.51)) [4] as
well as increased levels of CRP, fibrinogen, ferritin and procalcitonin could be found in patients with
thrombotic complications but that the opposite could also occur in a bimodal phenomenon, where
pathologically lower levels may lead to bleeding. The authors also mentioned that clinically relevant
thrombocytopenia and reduced fibrinogen were rare but, when present, were associated with significant
bleeding manifestations [4]. An important clinical dilemma in this pandemic is that the patient cohort
is extremely diverse, with no two patients with the same clinical profile. A one-treatment-for-all
regime is therefore not a useful clinical approach (and may be dangerous). Rather, a personalized
patient-orientated clinical approach should be followed, where various biomarker analysis, including
clotting profile point-of-care analysis, would be the most successful approach. However, there is a fine
balance between time, number of patients and viable options during this pandemic. Here, we focus on
some of the important biomarkers in coagulation pathology.

Fibrinogen, D-dimer, VWF and P-selectin are central in the development of coagulopathies, and
coagulopathies with diverse aetiologies have been described in COVID-19 patients. An example is
the augmented risk of venous thromboembolism [7]. In a cohort study involving 201 patients with
confirmed COVID-19 pneumonia, risk factors associated with the development of acute respiratory
distress syndrome (ARDS) and progression from ARDS to death included, among others. coagulation
dysfunction [23]. For patients with ARDS who died, coagulation function indices including D-dimer
(p = 0.001) were significantly elevated compared with patients with ARDS who survived; elevated
D-dimers were prognostic of worse outcome in other reports as well [23]. As mentioned previously,
during early onset of the condition, D-dimer is within normal ranges or only slightly increased but,
as the patient disease severity progresses, D-dimer levels are significantly increased (clinical observation
by co-author). It was also suggested that the early evaluation and continued monitoring of D-dimer
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levels after hospitalization may identify patients with cardiac injury and may predict further COVID-19
complications [24]. Disseminated intravascular coagulation (DIC) in COVID-19 was also found to be
accompanied by a significant decrease of fibrinogen and a marked increase of fibrin(ogen) degradation
product (FDP) formation and D-dimer [25]. Increased FDP and D-dimer are characteristics of DIC
with hyperfibrinolysis, whereas the DIC caused by infection is accompanied by plasminogen activator
inhibitor-1 release and suppression of fibrinolysis [25].

Furthermore, it was noted that, D-dimer levels on admission with fourfold increases could
effectively predict in-hospital mortality in patients with Covid-19 [26] (the normal range of D-dimers
is <0.50 µg/mL). One dilemma in using D-dimer or fibrinogen levels as biomarkers was pointed out
by Favaloro and Thackil in 2020 [14]. The authors argue that care should be taken with regards to
the units and to use standardized D-dimer and fibrinogen assays when looking at COVID-19 patient
data [14]. Recent recommendations also suggest that all hospitalized COVID-19 patients should receive
thromboprophylaxis or full therapeutic-intensity anticoagulation if such an indication is present [27].
However, we argue here that detailed measurement of levels of fibrin(ogen), D-dimer and other markers
of hypercoagulation, especially P-selectin and VWF, are of importance during thromboprophylaxis.

Platelet levels are typically in the range 150,000 to 450,000 platelets per µL. A platelet count of
less than 150,000 platelets per µL is lower than normal, and if it is below normal, the patient has
thrombocytopenia. Importantly, in the context of COVID-19, the risk for serious bleeding occurs when
the levels are as low as 10,000 or 20,000 platelets perµL. Together with fibrin(ogen) and D-dimer analysis,
thrombocytopenia in COVID-19 is also well recognized [28–31]. Low platelet count is associated with
increased risk of severe disease and mortality in patients with COVID-19 and, thus, should serve as a
clinical indicator of worsening illness during hospitalization [28]. Thrombocytopenia is a well-known
pathology during viral (and bacterial) infections [32]. One cause of depleted platelet numbers might be
because of an increase in circulating biomarkers (including fibrin(ogen), D-dimer, P-selectin and VWF)
that may directly bind to platelet receptors, followed by platelet hyperactivation and aggregation.
During such hyperactivation, platelet count is lower, as hyperactivated and aggregated platelets are not
counted during a platelet count analysis. During COVID-19 pathogenesis, endothelial activation and
interaction with the various inflammatory biomarkers as well as the virus material may also be crucial.

In this paper, we discuss the nexus between COVID-19 and circulating inflammatory biomarkers,
with a particular focus on fibrin(ogen), its breakdown products (especially D-dimer), P-selectin and
VWF. We review the literature that shows how circulating biomarkers could be used in the early
detection of risk of increased disease severity and argue that they should therefore be helpful markers
to improve the management of COVID-19 patients. We first discuss how fibrin(ogen) D-dimer,
VWF and P-selectin interact with platelets, endothelial cells and erythrocytes. We then propose
a mechanism regarding how these biomarkers and, particularly, fibrin(ogen) may be involved in
COVID-19 hypercoagulation and thrombocytopenia. See Figure 1 for a general layout of this review.
Figure 2A shows the typical pathology in bleeding and clotting, while Figure 2B shows the fine
balance between these biomarkers and the development of hyperclotting and thrombosis followed by
thrombocytopenia, bleeding and the cytokine storm during COVID-19.
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Figure 1. (1) Vascular implications of acute respiratory syndrome coronavirus 2 (COVID-19) (2) may 
result in clotting protein and circulating biomarker, endothelial, and erythrocyte and platelet 
dysfunctions. (3) We review the various biochemical processes associated with vascular dysfunction, 
focussing on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor. (4) We conclude by looking 
at point-of-care devices and methodologies in COVID-19 treatment and suggest that each patient 
should be treated using a (5) personalized medicine approach. This image was created with 
BioRender (https://biorender.com/). 

 

Figure 1. (1) Vascular implications of acute respiratory syndrome coronavirus 2 (COVID-19)
(2) may result in clotting protein and circulating biomarker, endothelial, and erythrocyte and platelet
dysfunctions. (3) We review the various biochemical processes associated with vascular dysfunction,
focussing on fibrin(ogen), D-dimer, P-selectin and von Willebrand Factor. (4) We conclude by looking
at point-of-care devices and methodologies in COVID-19 treatment and suggest that each patient
should be treated using a (5) personalized medicine approach. This image was created with BioRender
(https://biorender.com/).
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Figure 2. (A)Typical pathology in bleeding and clotting: the seesaw balancing act between bleeding 
and thrombocytopenia and hypercoagulation. This image was created with BioRender 
(https://biorender.com/). (B) Clinical manifestation of hypercoagulation, thrombocytopenia and 
bleeding during COVID-19 as well as clinical care options and optimal time for intervention: During 
the early stages of abnormal clotting, D-dimer levels are normal or slightly increased but will increase 
rapidly with progression of the disease (clinical observation). This image was created with BioRender 
(https://biorender.com/). 

2. Discussion 

2.1. The Importance of Fibrin(ogen) and Its Breakdown Product, D-Dimer, as Circulating Biomarkers 

Figure 3 shows the structure of soluble fibrinogen and how it polymerizes into insoluble fibrin fibre 
(blood) clots under the action of thrombin. Fibrinogen is a large, extracellular protein, synthesised 
by the liver and mainly found in the blood [33–35]. Fibrinogen is also an acute-phase protein that is 
upregulated during inflammation [33,36,37]. Upregulation of fibrin(ogen) is associated with 
hypercoagulability and endothelial dysfunction. Increased fibrinogen levels are also associated with 
many inflammatory conditions including hypertension, diabetes and thrombotic strokes [33,34,38–
40]. Blood clots are dissolved by plasmin, a protein which degrades fibrin networks, producing 
fibrin degradation products [33], which include D-dimer [41]. D-dimer is also an important 
circulating inflammatory biomarker [42–46]. The D-dimer protein contains two cross-linked D 
fragments from the fibrinogen protein formed upon degradation of the fibrin gel, the core 
component of blood clots [18]. Fragment D consists of all three (α-, β- and γ-) chains that are 
components of intact fibrinogen [47]. 

Enhanced fibrin synthesis activates plasminogen and the resulting plasmin cleaves the fibrin 
network into soluble fragments [41]. Plasmin cleavage between the D and E domains yields (DD)E, 
the noncovalent complex of D-dimer (DD) and fragment E. Further proteolysis liberates fragment E 
from DD [41]. Lysis of crosslinked fibrin by plasmin therefore produces D-dimer-containing γ-γ 
crosslinks that hold 2 D-regions together [48]. In short, the morphology of D-dimer is characterized 
by the cross-linked, cleaved, identical monomers which each serve as D-dimer domains (see Figure 
3). We also recognize the widespread prevalence in infection-related disease of an abnormal pathway 
of blood clotting to create an amyloid form of fibrin that is highly resistant to degradation [49–64]. 
Assessing this in COVID-19 patients would seem to be an important direction. 

Figure 2. (A) Typical pathology in bleeding and clotting: the seesaw balancing act between bleeding
and thrombocytopenia and hypercoagulation. This image was created with BioRender (https://
biorender.com/). (B) Clinical manifestation of hypercoagulation, thrombocytopenia and bleeding
during COVID-19 as well as clinical care options and optimal time for intervention: During the
early stages of abnormal clotting, D-dimer levels are normal or slightly increased but will increase
rapidly with progression of the disease (clinical observation). This image was created with BioRender
(https://biorender.com/).

2. Discussion

2.1. The Importance of Fibrin(Ogen) and Its Breakdown Product, D-Dimer, as Circulating Biomarkers

Figure 3 shows the structure of soluble fibrinogen and how it polymerizes into insoluble fibrin
fibre (blood) clots under the action of thrombin. Fibrinogen is a large, extracellular protein, synthesised
by the liver and mainly found in the blood [33–35]. Fibrinogen is also an acute-phase protein
that is upregulated during inflammation [33,36,37]. Upregulation of fibrin(ogen) is associated with
hypercoagulability and endothelial dysfunction. Increased fibrinogen levels are also associated with
many inflammatory conditions including hypertension, diabetes and thrombotic strokes [33,34,38–40].
Blood clots are dissolved by plasmin, a protein which degrades fibrin networks, producing fibrin
degradation products [33], which include D-dimer [41]. D-dimer is also an important circulating
inflammatory biomarker [42–46]. The D-dimer protein contains two cross-linked D fragments from the
fibrinogen protein formed upon degradation of the fibrin gel, the core component of blood clots [18].
Fragment D consists of all three (α-, β- and γ-) chains that are components of intact fibrinogen [47].

Enhanced fibrin synthesis activates plasminogen and the resulting plasmin cleaves the fibrin
network into soluble fragments [41]. Plasmin cleavage between the D and E domains yields (DD)E,
the noncovalent complex of D-dimer (DD) and fragment E. Further proteolysis liberates fragment
E from DD [41]. Lysis of crosslinked fibrin by plasmin therefore produces D-dimer-containing γ-γ
crosslinks that hold 2 D-regions together [48]. In short, the morphology of D-dimer is characterized by
the cross-linked, cleaved, identical monomers which each serve as D-dimer domains (see Figure 3). We
also recognize the widespread prevalence in infection-related disease of an abnormal pathway of blood
clotting to create an amyloid form of fibrin that is highly resistant to degradation [49–64]. Assessing
this in COVID-19 patients would seem to be an important direction.

https://biorender.com/
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Figure 3. Structure of soluble versus insoluble fibrin(ogen) and the action of thrombin and D-dimer 
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Fibrin(ogen) receptors are of particular importance, as binding of their ligands causes the activation 
of various inflammatory signalling pathways. These pathways are important in healthy physiological 
processes but play crucial roles in pathophysiology, including the cytokine storm in COVID-19. Poor 
outcomes in COVID-19 correlate with clinical and laboratory features of cytokine storm syndrome 
[65] and increased D-dimer levels. However, when the cytokine storm is present in a patient, bleeding 
is prevalent and a low survival rate is then noted (clinical observation). See Table 1 for fibrin(ogen) 
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Figure 3. Structure of soluble versus insoluble fibrin(ogen) and the action of thrombin and D-dimer
formation adapted from [41]: D-dimer levels are increased in very ill patients (clinical observation).
This image was created with BioRender (https://biorender.com/).

2.1.1. Interaction of Fibrin(Ogen) and D-Dimer with Cellular Receptors

Although coagulation is the primary function of fibrinogen, it also interacts with other plasma
components such as platelets, endothelial cells (ECs), erythrocytes and extracellular proteins [34].
Fibrin(ogen) receptors are of particular importance, as binding of their ligands causes the activation of
various inflammatory signalling pathways. These pathways are important in healthy physiological
processes but play crucial roles in pathophysiology, including the cytokine storm in COVID-19. Poor
outcomes in COVID-19 correlate with clinical and laboratory features of cytokine storm syndrome [65]
and increased D-dimer levels. However, when the cytokine storm is present in a patient, bleeding
is prevalent and a low survival rate is then noted (clinical observation). See Table 1 for fibrin(ogen)
platelet receptors.

https://biorender.com/
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Table 1. Receptors known to bind fibrinogen and D-dimer and the effects they elicit within different cell types.

Cell Type Receptor Effect References

Endothelial cells (EC)

Integrins αVβ3 and α5β1

Endothelial cell proliferation,
endothelial cell activation,

angiogenesis,
increased EC permeability

and vasoconstriction

[34,66–69]

Integrin αMβ2
Facilitates interaction fibrinogen with ICAM-1 during leukocyte

transmigration [70]

ICAM-1

Platelet adhesion,
leucocyte adhesion and transmigration to site of infection,

mitogenesis,
angiogenesis,
cell survival,

release of pro-inflammatory cytokines,
ICAM-1 receptor recruitment to EC membrane and

vasoconstriction

[70–75]

Platelets

Glycoprotein IIb/IIIa
Platelet activation and spreading,

integrin activation and
granule secretion

[71]

Glycoprotein VI (GPVI)

Platelet activation and
spreading,

integrin activation and
granule secretion

[40,48,76–78]

Integrins
αIIbβ3
αVβ3

Outside-in signalling in platelets—platelet spreading and granule secretion [34,40,67,79–81]

Erythrocytes αIIbβ3-related type integrin?
CD47 Erythrocyte aggregation and adhesion [47,82–84]

iD-dimer and/or Fragment D

Endothelial cells ICAM-1 Arterial constriction [47]

Platelets
Integrin αIIbβ3 Platelet spreading and aggregation [78]

GPVI (monomeric/dimeric?) Platelet spreading [48,85]
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2.1.2. Fibrin(Ogen) and D-Dimer Receptors and Pathways in Platelets

Platelets contain three types of granules—α-granules, dense granules and lysosomes [86]. Ligand
binding, including fibrin(ogen) and D-dimer to platelet receptors, followed by the activation of
signalling pathways, leads to the secretion of molecules stored in these granules. Granule secretion
results in platelet activation, aggregation and thrombus growth.

Soluble fibrinogen mainly binds to integrins on platelets, activating the platelets and promoting the
formation of a platelet clot [40,86,87]. Integrins are cell-surface transmembrane receptors responsible
for platelet aggregation and adhesion of cells to vessel walls [79,86,87]. Integrin αIIbβ3 signalling
is one of the important platelet processes where fibrinogen binding is involved [80] and is involved
in platelet spreading [88] (see Figure 4 for the integrin αIIbβ3 structure). Other integrins to which
fibrinogen binds have also been identified, not only on platelets but also on endothelial cells; see Table 1
for such receptors.
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Figure 4. Integrin αIIbβ3 structure adapted from [79,89–91]: This figure was created using BioRender
(https://biorender.com/).

Integrin αIIbβ3 receptors in the membranes of platelets are usually inactive, resulting in a low
affinity for ligands [79]. Activation of a platelet by other ligand-receptor binding events can convert
integrins to a higher affinity state, resulting in conformational changes to the receptors, and allows for
additional signalling events [40]. Such a signalling event is called “inside-out” signalling/activation [79].
When platelets are activated due to binding of biomarkers to a membrane receptor, inside-out signalling
pathways increase the affinity of αIIbβ3 for fibrinogen (and other ligands). The binding of biomarkers
to active integrin αIIbβ3 receptors then results in outside-in signalling. An example of this process is
where αIIbβ3 receptor binding is then dependent on FcγRIIa ITAM (immunoreceptor tyrosine-based
activation motif)/spleen tyrosine kinase (Syk)/PLCγ2 and phosphatidylinositide 3-kinase (PI3K)/Akt to
amplify the platelet activation [40,92,93] This integrin receptor activation is in many cases caused by
receptor clustering and where the integrins form complexes (or heteroclusters) with other receptors
(such as GPIb, glycoprotein VI (GPVI) or FcγRIIa) [79].

Both fibrin and fibrinogen may interact with αIIbβ3, each acting through distinct epitopes [40].
Fibrinogen binds toαIIbβ3 via the carboxy-terminal peptide sequence of theγC-peptide (GAKQAGDV),
while fibrin binds to the integrin through a unique sequence in the γC-peptide, ATWKTRWYSMKK,
which binds to the αIIb β-propeller [77]. It was also noted that platelet activation through αIIbβ3 is
required for expression of both immobilized D-dimer (iD-dimer) and fibrinogen binding [78].

https://biorender.com/
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Platelets also express glycoprotein VI (GPVI). GPVI is the main platelet receptor for collagen, which
is exposed during endothelial damage or dysfunction. GPVI may be found in two states, monomeric
and dimeric GPVI [48,78,94]. Collagen and other substrates bind monomeric GPVI, which induces its
dimerization with an adjacent GPVI [95]. Dimerization of GPVI is required for collagen binding and
initiation of signalling through the associated FcR-γ chain [85]. It was found by [78] that only dimeric
GPVI can interact with fibrinogen D-domain at a site proximate to its collagen binding site to support
platelet adhesion/activation/aggregate formation on immobilized fibrinogen and polymerized fibrin.
However, contrasting observations have been reported on whether fibrin(ogen) binds to monomeric or
dimeric GPVI or to neither forms [85]. Both fibrinogen [76,78] and fibrin [48,96] can interact with GPVI
on platelets [97].

Figure 5 shows some of the relevant signalling pathways where fibrin(ogen) and D-dimer
are involved in platelet activation [76,79,86,87]. These signalling events initially cause platelet
activation and aggregation and conformationally shape change, clot formation and eventually clot
retraction [40,79,86,87,90,98]. The increase in platelet activation and aggregation during COVID-19 is
therefore the result of increased mitogen-activated protein kinase (MAPK) pathway activation [99].
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Figure 5. Activation of a platelet, inside-out and outside-in signalling upon ligation of major
platelet membrane receptors. Adapted from [40,76,86,90,98]. Abbreviations: GPCR, G-protein
coupled receptor; GPVI, glycoprotein VI; VWF, von Willebrand’s factor; PIP2, phosphatidylinositol
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IP3, inositol triphosphate; PKC, protein kinase C; Ca2+, calcium ions; Cal-DAG-GEFI, diacylglycerol
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RASA3, Ras GTPase-activating protein 3; RIAM, Rap1-GTP interacting adapter molecule; MAPK,
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phosphatidylinositide 3-kinase. This image was made using BioRender (https://biorender.com/).
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2.1.3. Fibrin(Ogen) Binding to Endothelial Cells

Fibrinogen binds to endothelial cells (ECs) via the interactions with “intracellular” adhesion
molecule 1 (ICAM-1), integrin αVβ1 and integrin αVβ3 [100]. ICAM-1 is an immunoglobulin (Ig)-like
adhesion molecule expressed on the membrane of leukocytes and endothelial cells. Extracellularly,
ICAM-1 consists of five Ig-like domains, which are mostly hydrophobic, and form β-sheets when folded.
ICAM-1 has short transmembrane and cytoplasmic regions (24 and 28 amino acids, respectively) [75].
Activation of ICAM-1 leads to EC structure changes, creating gaps between ECs [70,72,75,100]. These
gaps are thought to facilitate the final steps of leukocyte transmigration [75]. Leucocyte transmigration
is an important occurrence in the inflammatory response and involves the recruitment of blood
leukocytes to a site of injury or infection, resulting in leukocyte adhesion to the endothelial lining,
diapedesis (the passage of blood cells through the intact walls of the capillaries) or transmigration
across the endothelial monolayer followed by directed migration to a site of infection or injury that
often involves transmigration across epithelia [101].

During inflammation, fibrin(ogen) contributes to the transmigration of leukocytes from blood
vessels to inflamed tissues. This is achieved by simultaneously binding to ICAM-1 and integrin
αMβ2 on ECs and leukocytes [70]. However, during hyperfibrinogenaemia, fibrinogen contributes
to endothelial dysfunction, proliferation and angiogenesis [66,70–75,100]. Endothelial dysfunction
also increases the risk of thrombus formation [7–72,75,100]. Vasoconstriction was also shown to be
mediated by fibrinogen and fragment D (early degradation product of fibrin(ogen)), when they bind to
vascular ICAM-1 [47]. This might suggest that iD-dimer, too, may bind to ICAM-1 and that it is, in part,
responsible for increased vascular tone and resistance, which compromises blood circulation. Figure 6
depicts some of the main intracellular pathways elicited upon fibrinogen (and possibly iD-dimer)
binding to their receptors on endothelial cells.
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adapted from [70–73,75,100,102]. Abbreviations: ICAM-1, intercellular adhesion molecule-1; RhoA,
activated Rho factor protein; iD-dimer, immobilised D-dimer; ROS, reactive oxygen species; Src,
sarcoma; MEKK316, endothelial MAP kinases 3 and 6 (MKK-3 and -6); FAK, focal adhesion kinase;
p130, retinoblastoma-like protein-2; p38, mitogen-activated protein kinase; HSP27, heat shock protein
27; ERK, extracellular signal-regulated kinase/extracellular receptor kinase; c-Fos, proto-oncogene;
JNK, stress-activated protein kinase; c-Jun, protein encoded by the JUN gene; VCAM-1, vascular cell
adhesion protein-1; IL-8, interleukin-8; RANTES, regulated upon activation normal T cell expressed
and presumably secreted; IL-1 beta, interleukin-1 beta. This image was made with BioRender
(https://biorender.com/).
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2.1.4. Fibrin(Ogen) and D-Dimer Binding to Erythrocytes

Fibrinogen is of course a major component of the coagulation cascade as well as a significant
determinant contributing to plasma viscosity and ESR levels [83]. Fibrin(ogen) is also considered the
main plasma protein responsible for increased erythrocyte shear-dependent reversible aggregation,
contributing largely to vessel occlusion [39]. Fibrin(ogen) is thought to serve as a bridging molecule
between erythrocytes during aggregation [39]. The transient bridging of two erythrocytes, promoting
erythrocyte aggregation, can represent an important cardiovascular risk factor [103]. Although a search
on Pubmed did not show any publications yet on the presence of Rouleau formation in Covid-19
infection, it would be an interesting phenomenon to investigate.

Fibrinogen may also play an important role in erythrocyte deformability [104]. Fibrinogen might
interact with erythrocytes via integrin-like receptors; however, there are no consensus on the presence
of such receptor [83]. Carvalho and co-workers in 2011, [82] suggested that a αIIbβ3-like receptor
might be present on erythrocytes; also, [47] argued that there might be such an integrin-like receptor.
However, [83] could not find any evidence of such an integrin-like receptor and rather suggested
that CD47 is a fibrinogen ligand on erythrocytes, and CD47 expression was found to be decreased
on the surface of erythrocytes in obese individuals [84]. The authors suggested that changes in
CD47 expression on the erythrocyte surface may be an adaptive response to hyperfibrinogenemia
associated with obesity [84]. iD-dimer might also possibly bind to such an integrin-like receptor
or CD47 on erythrocytes. It was also hypothesized that erythrocyte membrane damage during
COVID-19 due to binding of inflammatory molecules may result in critical biophysical events, like
bubble nucleation or foaming [105]. In addition to directly binding to erythrocytes, fibrin(ogen)
influences erythrocyte functionality by increasing circulating inflammatory biomarkers by binding
to ECs. The presence of inflammatory biomarkers in circulation are associated with reactive oxygen
species (ROS) production, which cause erythrocyte eryptosis and pathological deformability [106,107].
The increased viscosity of blood due to hyperfibrinogenaemia may also increase shear flow rates [71].
This, along with inflammation, leads to a phosphatidyl serine (PS) flip on the erythrocyte membrane.
The exposure of PS on erythrocytes is known to be present during pathological coagulation and
can in turn be involved in the production of thrombin [39]. Under pathological conditions, such
as chronic inflammation, the PS flip contributes to increased erythrocyte aggregation [39,106]. PS
also mediates the adhesion of erythrocytes to vessel walls, promoting occlusion of small vessels [39].
During COVID-19 infection, pathological levels of thrombin, fibrin(ogen), D-dimer and increased
circulating inflammatory molecules may interact with erythrocytes, resulting in fragile erythrocyte
membranes, with pathological elasticity. These erythrocytes may in turn be trapped in embolisms and
clots formed in COVID-19 patients. Normal (to slightly increased) levels of D-dimer are noted early in
the progression of the disease; however, as the disease progresses, D-dimer levels increase rapidly
(clinical observation).

2.2. The Importance of Von Willebrand Factor (VWF) as a Circulating Biomarker

Von Willebrand factor (VWF) is a multimeric glycoprotein present in plasma and the subendothelial
matrix [108]. It is stored in the form of ultra-large (UL) VWF multimers in Weibel-Palade bodies
and platelet α-granules for secretion upon stimulation. In response to high shear stress and
other inflammatory mediators [109] resting ECs are activated and release large amounts of long
VWF multimers into circulation. These VWF multimers are cleaved, and can be activated by the
metalloprotease ADAMTS-13 [110]. Therefore, after ADAMTS-13 activation, VWF will now have an
exposed binding site for GPIbα (which is part of the GPIb-IX-V receptor complex) [110]. ADAMTS-13
is produced in the liver, and its main function is to cleave VWF anchored on the endothelial surface
and in circulation [111]. Subsequently, platelets bind to these activated UL-VWF string via GpIbα
interaction with the exposed A1 domain (in the GPIb-IX-V complex), initiating the thrombogenic
process which is summarized in Figure 7 and details of the pathway and receptors are discussed in the
next section.
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The production of VWF is exclusive to endothelial cells and megakaryocytes [112]. VWF is
involved in platelet aggregation and thrombus formation and due to its important role in inflammation,
VWF is identified as an acute phase reactant [113]. In addition, VWF is identified as a crucial player
in the propagation of atherosclerosis by promoting plaque formation and inflammation [114]. This
is important because atherosclerotic lesions cause obstruction, which further promotes thrombus
formation (and embolization), resulting in reduced cerebral blood flow (cerebral ischemia) [115].
In addition, VWF tethers circulating platelets to the endothelium as part of the processes of coagulation,
inflammation, and also tumor progression [115]. VWF also acts as a carrier—and stabilizer—of
the procoagulant factor VIII (FVIII) in circulation [116] which is achieved by the formation of a
non-covalently bound VWF-FVIII complex that protects FVIII from being degraded by activated
protein C [117]. A most important consideration for COVID-19 pathology, is that, under normal
conditions, VWF is both a bleeding (when low) and thrombotic marker (when raised) [109]. However,
the stage of the disease is of significant importance for treatment (see also our discussion in the
Conclusion section).
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Figure 7. The signalling pathway of von Willebrand factor (VWF) in platelets via the GPIb-IX-V
complex (with GPIbα) leading to integrin αIIbβ3 activation and the important role of the FcRγ-chain
and FcγRIIa immunoreceptor tyrosine-based activation motif (ITAM) pathway: Adapted from [112,
118]. Abbreviations: ADP, adenosine triphosphate; Btk, Bruton tyrosine kinase; CalDAG-GEFI,
Ca2+-dependent guanine nucleotide exchange factor; DAG, diacylglycerol; IP3, inositol triphosphate;
LAT, linker of activated T-cells; MAPK, mitogen-activated protein kinase; NO, nitric oxide; NOS, nitric
oxide synthase; PI3K, phosphoinositide 3; PLC-γ2, phospholipase C-γ2, PKC, protein kinase C; PKG,
protein kinase G; Rac 1, Ras-related C3 botulinum toxin substrate 1; Rap1, Ras-related protein 1; RIAM,
Rap1-GTP-interacting adaptor molecule; SFK, Src family kinases; SLP-76, SH2 domain-containing
leukocyte phosphorylation of 76 kDa; SYK, spleen tyrosine kinase; sGC, soluble guanine cyclase; TXA2,
thromboxane A2; VWF, von Willebrand factor. Figure created using Biorender (https://biorender.com/).

2.2.1. Von Willebrand Factor (VWF) Receptors and Pathways on Platelets

VWF binds to two distinct platelet receptors which are localized on the platelet membrane; they are
GPIbα in the GPIb-IX-V complex [112,118] and integrin αIIbβ3 (GPIIb-IIIa complex) [112]. In previous
sections, we discussed αIIbβ3 in detail. The GPIb-IX-V complex comprises of 2 chains of GPIbα
(135kDa), 2 GPIbβ (26 kDa), 2 GPIX (20 kDa) and 1 GPV (82kDa) at a ratio of 2:2:2:1. All 4 proteins
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belong to the leucine-rich repeat (LRR) superfamily [119]. Binding of VWF to GPIbα causes activation
of tyrosine protein kinases LYN and FYN, which are members of the Src family kinase (known as
non-receptor tyrosine kinases). Activation of these kinases leads to tyrosine phosphorylation of the
immunoreceptor tyrosine-based activation motif (ITAM) on the FcRγ or FcγRIIa receptors with which
GPIb physically associates [119].

Engagement of GPIb-IX-V activates intracellular signalling events that lead to full platelet
activation and aggregation through the αIIbβ3 integrin [119]. The binding of VWF to GPIb-IX-V leads
to the upregulation of αIIbβ3 integrin affinity [120]. VWF can then bind to αIIbβ3, thus enhancing
platelet adhesion and platelet aggregation and contributing to thrombus formation by binding to
fibrinogen [120], which is mediated via different pathways. Intracellular signalling that induces
changes in the extracellular ligand-binding domain of integrins from a low-affinity state to the activated
or high-affinity resulting inside-out signalling [121]. Figure 7 shows some of the signalling pathways
of VWF.

2.2.2. Von Willebrand Factor Receptors and Pathways on Endothelial Cells

Although the pivotal physiological role of VWF is to activate platelets, binding to ECs has been
demonstrated. αvβ3 is the major integrin expressed on ECs [122]. Although αvβ3 binds multiple
ligands such as vitronectin, fibrinogen and fibronectin, αvβ3 is the best-characterized EC receptor for
VWF [122]. The most extensively studied function of αvβ3 in vascular biology relates to endothelial
cell (and smooth muscle cell) adhesion, migration proliferation, differentiation and survival [116]. The
complex responses which rely on these functions of αvβ3 include angiogenesis, vasculogenesis and
vascular cell survival [122,123]. It has been suggested that this αvβ3 integrin may be central in the
inflammatory endothelial responses [123]. However, very little is known about the signalling events
that follow VWF binding to αvβ3 on EC [124].

2.2.3. Von Willebrand Factor (VWF) Signalling in Erythrocytes

VWF can bind to erythrocytes under conditions such as reduced shear rates [125]. The erythrocyte
surface receptor(s) subdomains in VWF that mediate this adhesion are unknown [126]. Upon an
inflammatory insult and increased production of reactive oxygen species (ROS), ECs are prompted
to release VWF from the Weibel–Palade bodies, resulting in elevated VWF levels observed in an
inflammatory state [127]. Following secretion from Weibel–Palade bodies, a portion of VWF enters into
circulation while another portion remains bound to the endothelial surface [128]. During inflammation
(and oxidative stress), erythrocytes can also undergo eryptosis [106]. Eryptosis is characterized
by three distinct physiological processes which are cell shrinkage, membrane blebbing and cell
membrane scrambling [106,129]. Subsequent to membrane scrambling, phosphatidylserine (PS)
translocates from the inner leaflet of the cell membrane and is exposed on the erythrocyte surface [130].
Nicolay et al. [131] showed that the exposure of PS and Annexin V, which avidly binds to PS, mediates
binding of eryptotic red blood cells (RBCs) to VWF. The A1 domain of VWF is mainly responsible
for mediating this VWF–erythrocyte adhesion [131]. Thus, VWF promotes erythrocyte–erythrocyte
linking [131]. Moreover, intraluminal VWF mediates platelet-independent erythrocyte adhesion to
ECs, thus mediating microvascular occlusion and impaired dynamic blood flow [125].

2.3. The Importance of P-Selectin as a Circulating Biomarker

P-selectin, also known as CD62P, play an important role in modulating interactions between
blood cells and endothelial cells [132]. P-selectin is constitutively present in α-granules of platelets and
Weibel–Palade bodies in endothelial cells [132–134]. P-selectin also found in human plasma—here
P-selectin—is alternatively spliced and lacks the transmembrane domain [134]. This is referred to as
soluble P-selectin (sP-selectin) [132]. As membrane receptor, P-selectin acts as an adhesion receptor to
support leukocyte rolling and emigration at sites of inflammation [134]. Figure 8 shows a simplified
overview of P-selectin interactions with platelets and neutrophils.
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Abbreviations: GPCR: G protein-coupled receptor; Mac-1 or (αMβ2), macrophage antigen-1; P-sel,
P-selectin; PSGL-1, P-selectin glycoprotein ligand-1; PTX, pertussis toxin. Figure created using
BioRender (https://biorender.com/).

Since P-selectin is stored in and expressed by endothelial cells and platelets, there has been
substantial debate on whether raised plasma levels of P-selectin indicate endothelial dysfunction,
platelet activation or both [132]. Elevated levels of sP-selectin may also reflect platelet activation,
since P-selectin is proteolytically shed from the plasma membrane in vivo shortly after activation [40].
Plasma levels of sP-selectin have also been considered a useful biomarker in cardiovascular diseases
since sP-selectin is constantly elevated in such patients [136]. Increased sP-selectin can therefore also
reflect endothelial cell activation and damage [137]. Pathological levels of sP-selectin consistently
promote leukocytes to adhere to endothelial via the activation of the leukocyte integrin Mac-1 [138].
Circulating sP-selectin is also thought to trigger signalling in leukocytes that has a direct contribution to
inflammation and thrombosis. However, sP-selectin likely circulates as a monomer, and in vitro studies
propose that sP-selectin must dimerize to induce signalling in leukocytes [136]. When sP-selectin is
dimerized, it can trigger activation of the leukocytes in vitro, manifest as leukocyte adhesion to ICAM-1
and to fibrinogen, and release citrullinated histones and neutrophil extracellular traps (NETs) [139].

2.3.1. P-Selectin Signalling in Platelets

P-selectin glycoprotein ligand-1 (PSGL-1) is the primary receptor for P-selectin [138] and is
a 120kDA transmembrane protein that is mostly expressed as a homodimer rich in O- as well as
N-glycans [132,140]. P-selectin from endothelial cells also binds to the GPIbα [141], which is part of the
platelet receptor complex GPIb-V-IX that promotes platelet aggregation. P-selectin plays an important
role in neutrophil–platelet, platelet–platelet and monocyte–platelet interactions [141]. P-selectin on
activated platelets in suspension can also bind to PSGL-1 on neutrophils or monocytes, contributing to
the formation of mixed cell aggregates [142]. When platelets are exposed to agents such as adenosine
or epinephrine, the platelet can become activated and there is an increase of P-selectin expression on
the platelet surface [132]. Thus, P-selectin is the most important signal molecule during pathological
coagulation as well as infection.
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2.3.2. P-Selectin Signalling in Endothelial Cells

Early inflammatory mediators like histamine, thrombin, hypoxia or phorbol esters can stimulate
EC in vitro, causing endothelial damage or endotheliopathy. These agonists mobilize P-selectin to the
apical membranes of EC where P-selectin initiates the rolling adhesion of flowing neutrophils [143].
Although not the focus of this review, the interactions of the rolling of neutrophils, P-selectin and the
endothelial cells are shown in a simplified diagram, Figure 9. P-selectin in Weibel–Palade bodies are
mobilized in a process of degranulation [132]. P-selectin has at least two waves of aggregation at the
cell surface: one at 10 min and the other at 12 h after endotoxic or oxidative stress [144]. In addition,
neutrophils rolling on P-selectin secrete the cytokine oncostatin M. The released oncostatin M can
also trigger signals through glycoprotein 130 (gp 130)-containing receptors on ECs that result in a
further clustered P-selectin and markedly enhanced adhesive function [143]. P-selectin also interacts
with platelet sulfatides, thereby stabilizing initial platelet aggregates formed by GPIIb/IIIa–fibrinogen
bridges [145]. Oxidatively modified fibrinogen can also cause platelet aggregation and potentiates
ADP-induced platelet aggregation and production of active oxygen forms in zymosan-stimulated
leukocytes [146]. The oxidized form of fibrinogen impairs microrheological properties of the blood,
significantly reduces erythrocyte deformability, increases blood viscosity and reduces suspension
stability of the blood [146].
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Figure 9. Simplified leukocyte extravasation cascade and rolling of neutrophils over the endothelium:
adjusted from [102,147–150]. For more detail, under each step, the known adhesion receptor interactions
are given with the leukocyte receptor being named first. Unknown ligands are indicated with question
marks. Abbreviations: GPCR- G-protein coupled receptor, LFA-1, lymphocyte function-associated
antigen 1; PSGL-1, P-selectin glycoprotein ligand-1; I-CAM-1, intercellular adhesion molecule 1. Figure
created using BioRender (https://biorender.com/).
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2.3.3. P-Selectin Interaction with Erythrocytes

Erythrocytes are not considered to participate in the receptor-mediated processes seen in
endothelial cells and platelets, since normal red blood cells (RBCs) are not known to bear selectin
ligands or to bind to P-selectin [151]. However, studies focused on sickle cell disease have indicated that
the adhesion of sickle erythrocytes to the vascular endothelium may be potentiated by the upregulation
of adhesion molecules on activated endothelial cells [151]. Normal and, to a greater extent, sickle
erythrocytes adhere to endothelial P-selectin. The adherence of sickle erythrocytes is problematic
since this adhesion may contribute to vaso-occlusion [151]. The binding of sickle cells is much higher
than normal cells, since in sickle cell disease there are multiple adhesion systems involved [151].
Abnormal adhesion of erythrocytes to the endothelial layer is linked to the pathophysiology of various
vascular disorders [152]. Abnormal adhesion is a result of several biochemical changes in erythrocyte
membranes and may include exposure of PS on erythrocytes outer membranes and plasma protein
levels [152]. Adhesion between EC, erythrocytes and fibrin(ogen) plays an important role in the
hyperactivation of the coagulation system during inflammation.

When P-selectin is upregulated in circulation, endotheliopathy as well as platelet hyperactivation
may be prevalent. In addition, P-selectin plays a fundamental role in adhesion of erythrocytes to
damaged endothelia as well as to adjacent erythrocytes and to hyperactivated platelets. Recently, it
was reported that endotheliopathy is present in patients with COVID-19 and that the presence of
endothiopathy is likely to be associated with critical illness and death [153]. The authors came to
this conclusion after studying endothelial cell damage, levels of platelet activation, VWF antigen,
soluble thrombomodulin, soluble P-selectin and soluble CD40 ligands, various coagulation factors,
endogenous anticoagulants and fibrinolytic enzymes [153].

3. Conclusions

It is very well known that pathological levels (both decreased and increased levels) of fibrin(ogen),
D-dimer, VWF and P-selectin play crucial roles in abnormal coagulation and endothelial dysfunction.
These molecules may also be significantly dysregulated in patients with COVID-19, as reviewed
in the introduction. Specifically, dysregulation during COVID-19 has been noted in P-selectin [8],
fibrinogen and D-dimers [4,5,9–15], and VWF [16,17]. Depending on the direction, dysregulation of
fibrin(ogen) D-dimer, VWF and P-selectin may result in either hypercoagulation or excessive bleeding
and thrombocytopenia. During typical bleeding and abnormal clotting diseases, low fibrinogen
levels are indicative of a higher propensity for bleeding while high levels are known to be associated
with hypercoagulation [154]. We summarized these phenomena in Figure 2A. Bleeding as well as
thrombotic events often occur in subjects with multiple weak risk factors which interact to produce the
symptoms [109]. Both bleeding, thrombocytopenia and thrombotic pathologies have been reported in
COVID-19 patients and are significant accompaniments to acute respiratory distress syndrome and
lung complications [3–6,12,155,156]. Therefore, fibrin(ogen) levels, D-dimer, VWF and P-selectin could
all be valuable biomarkers that might provide clinicians with the correct clinical diagnosis and might
assist in deciding the method of treatment.

Our understanding of this process is explained in Figure 2B, and clinical observation suggests
the following: during early-stage COVID-19, in patients presenting with normal to slightly increased
D-dimer levels, increased levels of fibrinogen, VWF and P-selectin and slightly activated platelets, if
untreated, the clinical picture changes to a rapid increase in D-dimer; still higher levels of fibrinogen,
VWF and P-selectin; and hyperactivation of platelets. This is in line with hyperclotting or thrombosis.
In the critically ill patients, D-dimer and P-selectin levels are high while fibrinogen and VWF levels are
decreased as these molecules are depleted from either circulation or the damaged endothelial cells and
hyperactivated platelets that now show thrombocytopenia. During these late stages of the progression
of the disease, the cytokine storm is also prevalent.

D-dimer assays to determine the levels of D-dimer in circulation are also very helpful, as is an
indirect marker of fibrinolysis and fibrin turnover [157]. However, in COVID-19 patients, D-dimer
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levels are normal or slightly increased during the early stages of the disease (clinical observation).
Increased levels of circulating P-selectin are associated with a higher risk of a thrombotic event [158].
However, P-selectin expression on platelets may also be used to diagnose mild bleeding disorders and
increased bleeding might be associated with very suppressed P-selectin expression [159]. A dilemma
is that P-selectin expression varies considerably between individuals.

If the VWF level is increased, it predicts a thrombotic phenotype, and when these levels are low
in plasma, the phenotype is indicative of bleeding [109]. Thrombotic risk may be more prevalent
when VWF is activated and increased and may be able to bind to the various receptor complexes
(Figure 7). Heparin inhibits VWF-GP1b binding, and the reason for this is because heparin overlaps
the binding site within the VWF A1 domain [109]. Heparin has also been found in some circumstances
to be a helpful treatment for COVID-19 [160,161]. Heparin interferes with VWF platelet activation,
and possibly assists in the prevention of thrombotic events. When the bleeding phenotype is more
prevalent, it may be due to abnormalities in subendothelial collagen, which may alter its interaction
with platelets and VWF [162]. However, if VWF is depleted, it results in bleeding. During the late stages
of COVID-19, VWF levels are indicative of depletion (clinical observation by co-author Laubscher)
and this is due to large-scale endothelial damage. Endotheliopathy is also prevalent in patients with
COVID-19 [153] and is significantly linked to coagulopathies and clinical observations.

Personalised medicine has never been so important as during this epidemic. This is mainly
because the patient cohort is so extremely diverse and because many may have preexisting thrombotic
disease and cardiovascular comorbidities [155]. Point-of-care devices and diagnostics like the
thromboelastograph (TEG) (that gives an indication of fibrinogen levels) or point-of-care ultrasound
(POCUS) [163] allows for frequent testing of the coagulation/bleeding profiles as well as blood clot
fibrinolysis of patients at the bedside [163]. TEG is particularly useful to also assess fibrinolysis, in
COVID-19 patients [156]. The TEG can also predict thromboembolic events in critically ill patients
with COVID-19 [156].

Most importantly, we need clinicians to have access to adequate point-of-care devices and
encourage them to use parameters of haemostasis [10], including fibrinogen D-dimer and VWF
levels, to allow them to determine if their patients are in need of either therapeutic antithrombotic
prophylaxis/treatment or fibrinolytic therapy to prevent whichever coagulopathy is present, be it
hypercoagulation, fibrinolysis shutdown or bleeding. Most significant is that patients need to be treated
early in the disease progression when high levels of VWF, P-selectin and fibrinogen are present with
still low levels of D-dimer. Progression to VWF and fibrinogen depletion with high D-dimer levels and
even higher P-selectin levels, followed by the cytokine storm, will be indicative of a poor prognosis.
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VWF Von Willebrand Factor
EC Endothelial cells
COVID-19 Coronavirus disease 2019
ICAM-1 “Intracellular” adhesion molecule 1
sP-selectin Soluble P-selectin
GPCR G-protein coupled receptor
GPVI Glycoprotein VI
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PIP2 Phosphatidylinositol 4,5-bisphosphate
SFK Scr family kinases
Syk Spleen tyrosine kinase
PLC Phospholipase C
LAT Linker for activation of T-cells
DAG Diacylglycerol
IP3 Inositol triphosphate
PKC Protein kinase C
Ca2+ Calcium ions
Cal-DAG-GEFI Diacylglycerol regulated guanine nucleotide exchange factor I
GDP Guanine diphosphate
GTP Guanine triphosphate
RASA3 Ras GTPase-activating protein 3
RIAM Rap1-GTP interacting adapter molecule
MAPK Mitogen-activated protein kinase
TXA2 Thromboxane A2
GAP GTPase-activating protein
PI3K Phosphatidylinositide 3-kinase
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84. Wiewiora, M.; Piecuch, J.; Sędek, Ł.; Mazur, B.; Sosada, K. The effects of obesity on CD47 expression in
erythrocytes. Cytom. Part B Clin. Cytom. 2015, 92, 485–491. [CrossRef] [PubMed]

85. Slater, A.; Perrella, G.; Onselaer, M.-B.; Martin, E.M.; Gauer, J.S.; Xu, R.-G.; Heemskerk, J.W.; Ariëns, R.A.S.;
Watson, S.P. Does fibrin(ogen) bind to monomeric or dimeric GPVI, or not at all? Platelets 2018, 30, 281–289.
[CrossRef] [PubMed]

86. Li, Z.; Delaney, M.K.; O’Brien, K.A.; Du, X. Signaling During Platelet Adhesion and Activation. Arter. Thromb.
Vasc. Biol. 2010, 30, 2341–2349. [CrossRef]

87. Estevez, B.; Shen, B.; Du, X. Targeting integrin and integrin signaling in treating thrombosis. Arter. Thromb.
Vasc. Biol. 2014, 35, 24–29. [CrossRef] [PubMed]

88. Gao, W.; Shi, P.; Chen, X.; Zhang, L.; Liu, J.; Fan, X.; Luo, X. Clathrin-mediated integrin alphaIIbbeta3
trafficking controls platelet spreading. Platelets 2018, 29, 610–621. [CrossRef]

89. Campbell, I.D.; Humphries, M.J. Integrin Structure, Activation, and Interactions. Cold Spring Harb. Perspect.
Biol. 2011, 3, a004994. [CrossRef]

90. Srichai, M.B.; Zent, R. Integrin structure and function. In Cell-Extracellular Matrix Interactions in Cancer;
Springer: New York, NY, USA, 2010; pp. 19–41.

91. Yu, Y.; Zhu, J.; Mi, L.-Z.; Walz, T.; Sun, H.; Chen, J.; Springer, T.A. Structural specializations of α4β7, an
integrin that mediates rolling adhesion. J. Cell Biol. 2012, 196, 131–146. [CrossRef]

92. Boylan, B.; Gao, C.; Rathore, V.; Gill, J.C.; Newman, D.K.; Newman, P.J. Identification of FcgammaRIIa as the
ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood 2008,
112, 2780–2786. [CrossRef]

93. Liu, G.; Xie, W.; He, A.D.; Da, X.W.; Liang, M.L.; Yao, G.Q.; Xiang, J.-Z.; Gao, C.-J.; Ming, Z.-Y. Antiplatelet
activity of chrysin via inhibiting platelet alphaIIbbeta3-mediated signaling pathway. Mol. Nutr. Food. Res.
2016, 60, 1984–1993. [CrossRef]

94. Loyau, S.; Dumont, B.; Ollivier, V.; Boulaftali, Y.; Feldman, L.; Ajzenberg, N.; Perrus, M.J. Platelet Glycoprotein
VI Dimerization, an Active Process Inducing Receptor Competence, Is an Indicator of Platelet Reactivity.
Arter. Thromb. Vasc. Biol. 2012, 32, 778–785. [CrossRef] [PubMed]

95. Dütting, S.; Bender, M.; Nieswandt, B. Platelet GPVI: A target for antithrombotic therapy?! Trends Pharmacol.
Sci. 2012, 33, 583–590. [CrossRef] [PubMed]

96. Mammadova-Bach, E.; Ollivier, V.; Loyau, S.; Schaff, M.; Dumont, B.; Favier, R.; Freyburger, G.;
Latger-Cannard, V.; Nieswandt, B.; Gachet, C.; et al. Platelet glycoprotein VI binds to polymerized
fibrin and promotes thrombin generation. Blood 2015, 126, 683–691. [CrossRef] [PubMed]

97. Jooss, N.J.; De Simone, I.; Provenzale, I.; Fernández, D.I.; Brouns, S.L.; Farndale, R.W.; Henskens, Y.M.;
Kuijpers, M.J.; Cate, H.T.; Van Der Meijden, P.E.; et al. Role of Platelet Glycoprotein VI and Tyrosine Kinase
Syk in Thrombus Formation on Collagen-Like Surfaces. Int. J. Mol. Sci. 2019, 20, 2788. [CrossRef] [PubMed]

98. Varga-Szabo, D.; Pleines, I.; Nieswandt, B. Cell Adhesion Mechanisms in Platelets. Arter. Thromb. Vasc. Biol.
2008, 28, 403–412. [CrossRef] [PubMed]

99. Manne, B.K.; Denorme, F.; A Middleton, E.; Portier, I.; Rowley, J.W.; Stubben, C.J.; Petrey, A.C.; Tolley, N.D.;
Guo, L.; Cody, M.J.; et al. Platelet Gene Expression and Function in COVID-19 Patients. Blood 2020. [CrossRef]

100. Tyagi, N.; Roberts, A.M.; Dean, W.L.; Tyagi, S.C.; Lominadze, D. Fibrinogen induces endothelial cell
permeability. Mol. Cell. Biochem. 2007, 307, 13–22. [CrossRef]

101. Liu, Y.; Shaw, S.K.; Ma, S.; Yang, L.; Luscinskas, F.W.; Parkos, C.A. Regulation of leukocyte transmigration:
Cell surface interactions and signaling events. J. Immunol. 2004, 172, 7–13. [CrossRef]

102. Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev.
Immunol. 2013, 13, 159–175. [CrossRef]

http://dx.doi.org/10.1083/jcb.200801146
http://dx.doi.org/10.1371/journal.pone.0018167
http://dx.doi.org/10.1016/j.bbamem.2011.10.028
http://www.ncbi.nlm.nih.gov/pubmed/22079249
http://dx.doi.org/10.1002/cyto.b.21232
http://www.ncbi.nlm.nih.gov/pubmed/25914268
http://dx.doi.org/10.1080/09537104.2018.1508649
http://www.ncbi.nlm.nih.gov/pubmed/30110193
http://dx.doi.org/10.1161/ATVBAHA.110.207522
http://dx.doi.org/10.1161/ATVBAHA.114.303411
http://www.ncbi.nlm.nih.gov/pubmed/25256236
http://dx.doi.org/10.1080/09537104.2017.1353682
http://dx.doi.org/10.1101/cshperspect.a004994
http://dx.doi.org/10.1083/jcb.201110023
http://dx.doi.org/10.1182/blood-2008-02-142125
http://dx.doi.org/10.1002/mnfr.201500801
http://dx.doi.org/10.1161/ATVBAHA.111.241067
http://www.ncbi.nlm.nih.gov/pubmed/22155453
http://dx.doi.org/10.1016/j.tips.2012.07.004
http://www.ncbi.nlm.nih.gov/pubmed/22901552
http://dx.doi.org/10.1182/blood-2015-02-629717
http://www.ncbi.nlm.nih.gov/pubmed/25977585
http://dx.doi.org/10.3390/ijms20112788
http://www.ncbi.nlm.nih.gov/pubmed/31181592
http://dx.doi.org/10.1161/ATVBAHA.107.150474
http://www.ncbi.nlm.nih.gov/pubmed/18174460
http://dx.doi.org/10.1182/blood.2020007214
http://dx.doi.org/10.1007/s11010-007-9579-2
http://dx.doi.org/10.4049/jimmunol.172.1.7
http://dx.doi.org/10.1038/nri3399


Int. J. Mol. Sci. 2020, 21, 5168 23 of 25

103. Guedes, A.F.; Moreira, C.; Nogueira, J.B.; Santos, N.C.; Carvalho, F. Fibrinogen-erythrocyte binding and
hemorheology measurements in the assessment of essential arterial hypertension patients. Nanoscale 2019,
11, 2757–2766. [CrossRef]

104. Saldanha, C. Fibrinogen interaction with the red blood cell membrane. Clin. Hemorheol. Microcirc. 2013, 53,
39–44. [CrossRef] [PubMed]

105. Denis, P.A. COVID-19-related Complications and Decompression Illness Share Main Features. Could the
SARS-CoV2-related complications rely on blood foaming? Med. Hypotheses 2020, 144, 109918. [CrossRef]
[PubMed]

106. Pretorius, E. Erythrocyte deformability and eryptosis during inflammation, and impaired blood rheology.
Clin. Hemorheol. Microcirc. 2018, 69, 545–550. [CrossRef]

107. Pretorius, E.; Bester, J.; Vermeulen, N.; Lipinski, B. Oxidation inhibits iron-induced blood coagulation.
Curr. Drug. Targets 2013, 14, 13–19. [CrossRef]

108. Lenting, P.J.; Christophe, O.; Denis, C.V. Von Willebrand factor biosynthesis, secretion, and clearance:
Connecting the far ends. Blood 2015, 125, 2019–2028. [CrossRef] [PubMed]

109. Lazzari, M.A.; Sanchez-Luceros, A.; Woods, A.; Alberto, M.F.; Meschengieser, S.S. Lazzari Von Willebrand
factor (VWF) as a risk factor for bleeding and thrombosis. Hematology 2012, 17, s150–s152. [CrossRef]

110. Chen, J.; Ling, M.; Fu, X.; López, J.A.; Chung, D. Simultaneous Exposure of Sites in von Willebrand Factor
for Glycoprotein Ib Binding and ADAMTS13 Cleavage. Arter. Thromb. Vasc. Biol. 2012, 32, 2625–2630.
[CrossRef] [PubMed]

111. Zheng, X.L. ADAMTS13 and von Willebrand factor in thrombotic thrombocytopenic purpura. Annu. Rev.
Med. 2015, 66, 211–225. [CrossRef]

112. Bryckaert, M.; Rosa, J.P.; Denis, C.V.; Lenting, P.J. Of von Willebrand factor and platelets. Cell Mol. Life Sci.
2015, 72, 307–326. [CrossRef]

113. Gragnano, F.; Sperlongano, S.; Golia, E.; Natale, F.; Bianchi, R.; Crisci, M.; Fimiani, F.; Pariggiano, I.;
Vincenzo, D.; Carbone, A.; et al. The Role of von Willebrand Factor in Vascular Inflammation: From
Pathogenesis to Targeted Therapy. Mediat. Inflamm. 2017, 1–13. [CrossRef]

114. Buchtele, N.; Schwameis, M.; Gilbert, J.C.; Schoergenhofer, C.; Jilma, B. Targeting von Willebrand Factor in
Ischaemic Stroke: Focus on Clinical Evidence. Thromb. Haemost. 2018, 118, 959–978. [CrossRef]

115. Kalagara, T.; Moutsis, T.; Yang, Y.; Pappelbaum, K.I.; Farken, A.; Cladder-Micus, L.; Vidal-Y-Sy, S.; John, A.;
Bauer, A.T.; Moerschbacher, B.M.; et al. The endothelial glycocalyx anchors von Willebrand factor fibers to
the vascular endothelium. Blood Adv. 2018, 2, 2347–2357. [CrossRef]

116. Huang, J.; Roth, R.; Heuser, J.E.; Sadler, J.E. Integrin alpha(v)beta(3) on human endothelial cells binds von
Willebrand factor strings under fluid shear stress. Blood 2009, 113, 1589–1597. [CrossRef] [PubMed]

117. Peyvandi, F.; Garagiola, I.; Baronciani, L. Role of von Willebrand factor in the haemostasis. Blood Transfus.
2011, 9, s3–s8. [PubMed]

118. Estevez, B.; Du, X. New Concepts and Mechanisms of Platelet Activation Signaling. Physiology 2017, 32,
162–177. [CrossRef] [PubMed]

119. Ozaki, Y.; Inoue, O.; Suzuki-Inoue, K. Platelet receptors activated via mulitmerization: Glycoprotein VI,
GPIb-IX-V, and CLEC-2. J. Thromb. Haemost. 2013, 11, 330–339. [CrossRef] [PubMed]

120. Gibbins, J.M. Platelet adhesion signalling and the regulation of thrombus formation. J. Cell Sci. 2004, 117,
3415–3425. [CrossRef] [PubMed]

121. Yap, C.L.; Anderson, K.E.; Hughan, S.C.; Dopheide, S.M.; Salem, H.H.; Jackson, S.P. Essential role for
phosphoinositide 3-kinase in shear-dependent signaling between platelet glycoprotein Ib/V/IX and integrin
alpha(IIb)beta(3). Blood 2002, 99, 151–158. [CrossRef] [PubMed]

122. Starke, R.D.; Ferraro, F.; Paschalaki, K.; Dryden, N.H.; McKinnon, T.A.J.; Sutton, R.E.; Payne, E.M.;
Haskard, D.O.; Hughes, A.; Cutler, D.F.; et al. Endothelial von Willebrand factor regulates angiogenesis.
Blood 2011, 117, 1071–1080. [CrossRef]

123. Bhattacharya, S.; Ying, X.; Fu, C.; Patel, R.; Kuebler, W.; Greenberg, S.; Bhattacharya, J. Alpha(v)beta(3)
integrin induces tyrosine phosphorylation-dependent Ca(2+) influx in pulmonary endothelial cells. Circ.
Res. 2000, 86, 456–462. [CrossRef]

124. Randi, A.; Smith, K.E.; Castaman, G. Von Willebrand factor regulation of blood vessel formation. Blood 2018,
132, 132–140. [CrossRef] [PubMed]

http://dx.doi.org/10.1039/C8NR04398A
http://dx.doi.org/10.3233/CH-2012-1574
http://www.ncbi.nlm.nih.gov/pubmed/22960295
http://dx.doi.org/10.1016/j.mehy.2020.109918
http://www.ncbi.nlm.nih.gov/pubmed/32512491
http://dx.doi.org/10.3233/CH-189205
http://dx.doi.org/10.2174/138945013804806541
http://dx.doi.org/10.1182/blood-2014-06-528406
http://www.ncbi.nlm.nih.gov/pubmed/25712991
http://dx.doi.org/10.1179/102453312X13336169156618
http://dx.doi.org/10.1161/ATVBAHA.112.254144
http://www.ncbi.nlm.nih.gov/pubmed/22922961
http://dx.doi.org/10.1146/annurev-med-061813-013241
http://dx.doi.org/10.1007/s00018-014-1743-8
http://dx.doi.org/10.1155/2017/5620314
http://dx.doi.org/10.1055/s-0038-1648251
http://dx.doi.org/10.1182/bloodadvances.2017013995
http://dx.doi.org/10.1182/blood-2008-05-158584
http://www.ncbi.nlm.nih.gov/pubmed/18927433
http://www.ncbi.nlm.nih.gov/pubmed/21839029
http://dx.doi.org/10.1152/physiol.00020.2016
http://www.ncbi.nlm.nih.gov/pubmed/28228483
http://dx.doi.org/10.1111/jth.12235
http://www.ncbi.nlm.nih.gov/pubmed/23809136
http://dx.doi.org/10.1242/jcs.01325
http://www.ncbi.nlm.nih.gov/pubmed/15252124
http://dx.doi.org/10.1182/blood.V99.1.151
http://www.ncbi.nlm.nih.gov/pubmed/11756165
http://dx.doi.org/10.1182/blood-2010-01-264507
http://dx.doi.org/10.1161/01.RES.86.4.456
http://dx.doi.org/10.1182/blood-2018-01-769018
http://www.ncbi.nlm.nih.gov/pubmed/29866817


Int. J. Mol. Sci. 2020, 21, 5168 24 of 25

125. Smeets, M.W.; Mourik, M.J.; Niessen, H.W.; Hordijk, P.L. Stasis Promotes Erythrocyte Adhesion to von
Willebrand Factor. Arter. Thromb. Vasc. Biol. 2017, 37, 1618–1627. [CrossRef] [PubMed]

126. Diamond, S.L. When Flow Goes Slow, von Willebrand Factor Can Bind Red Blood Cells. Arter. Thromb. Vasc.
Biol. 2017, 37, 1595. [CrossRef]

127. Oggianu, L.; Lancellotti, S.; Pitocco, D.; Zaccardi, F.; Rizzo, P.; Martini, F.; Ghirlanda, G.; De Cristofaro, R. The
Oxidative Modification of Von Willebrand Factor Is Associated with Thrombotic Angiopathies in Diabetes
Mellitus. PLoS ONE 2013, 8, e55396. [CrossRef]

128. Chen, J.; Chung, D. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018, 132, 141–147. [CrossRef]
129. Lang, F.; Lang, K.S.; Lang, P.A.; Huber, S.M.; Wieder, T. Mechanisms and Significance of Eryptosis. Antioxid.

Redox Signal. 2006, 8, 1183–1192. [CrossRef]
130. Lang, E.; Lang, F. Triggers, Inhibitors, Mechanisms, and Significance of Eryptosis: The Suicidal Erythrocyte

Death. BioMed Res. Int. 2015, 2015, 1–16. [CrossRef] [PubMed]
131. Nicolay, J.P.; Thorn, V.; Daniel, C.; Amann, K.; Siraskar, B.; Lang, F.; Hillgruber, C.; Goerge, T.; Hoffmann, S.;

Gorzelanny, C.; et al. Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor
strings and promotes microangiopathy. Sci. Rep. 2018, 8, 10945. [CrossRef] [PubMed]

132. Blann, A.D.; Nadar, S.K.; Lip, G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur. Hear. J.
2003, 24, 2166–2179. [CrossRef]

133. Lorant, D.E.; Topham, M.K.; Whatley, R.E.; McEver, R.P.; McIntyre, T.M.; Prescott, S.M.; Zimmerman, G.A.
Inflammatory roles of P-selectin. J. Clin. Investig. 1993, 92, 559–570. [CrossRef]

134. Cambien, B.; Wagner, D.D. A new role in hemostasis for the adhesion receptor P-selectin. Trends Mol. Med.
2004, 10, 179–186. [CrossRef] [PubMed]

135. Ghasemzadeh, M.; Hosseini, E. Platelet-leukocyte crosstalk: Linking proinflammatory responses to
procoagulant state. Thromb. Res. 2013, 131, 191–197. [CrossRef] [PubMed]

136. Panicker, S.R.; Mehta-D’Souza, P.; Zhang, N.; Klopocki, A.G.; Shao, B.; McEver, R.P. Circulating soluble
P-selectin must dimerize to promote inflammation and coagulation in mice. Blood 2017, 130, 181–191.
[CrossRef] [PubMed]
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