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Abstract: Neurodegenerative diseases are multifactorial, initiated by a series of the causative complex
which develops into a certain clinical picture. The pathogenesis and disease course vary from patient to
patient. Thus, it should be likewise to the treatment. Peripheral biomarkers are to play a central role for
tailoring a personalized therapeutic plan for patients who suffered from neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis, among others. Nevertheless,
the use of biomarkers in clinical practice is still underappreciated and data presented in biomarker
research for clinical use is still uncompelling, compared to the abundant data available for drug
research and development. So is the case with kynurenines (KYNs) and the kynurenine pathway (KP)
enzymes, which have been associated with a wide range of diseases including cancer, autoimmune
diseases, inflammatory diseases, neurologic diseases, and psychiatric disorders. This review article
discusses current knowledge of KP alterations observed in the central nervous system as well as
the periphery, its involvement in pathogenesis and disease progression, and emerging evidence of
roles of microbiota in the gut-brain axis, searching for practical peripheral biomarkers which ensure
personalized treatment plans for neurodegenerative diseases.

Keywords: neurodegenerative disease; Alzheimer’s disease; Parkinson’s disease; amyotrophic
lateral sclerosis; Huntington’s disease; multiple sclerosis; tryptophan; kynurenines; biomarkers;
personalized medicine

1. Introduction

More and more physicians are considering the use of evidence-based personalized medicine,
a medical model that sorts patients into different groups according to genomics, data analytics,
and population health to tailor individual therapy with the best therapeutic response as well as the
highest safety margin to ensure the most appropriate care. Biomarkers play an essential role for the
selection of high-risk population, determination of disease subtypes, prediction of disease progression,
choice of treatment, and identification of disease targets. Furthermore, biomarkers play a crucial role in
drug development. Since the launch of biomarker research in the early 2000s, an increasing number of
studies have been presented in scientific community [1]. However, a disproportionally low number of
biomarkers are employed for clinical practice, compared to that of biomarkers documented in scientific
literature. It is mostly due to low numbers of participants for biomarker research, resulting low
statistical power, and a lack of the validation and standardization for methods used [2]. Thus, discovery
and development of reliable peripheral biomarkers are essential for the sake of personalized medicine.
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The tryptophan (TRP)-kynurenine (KYN) metabolic pathway is the main catabolic route of TRP
metabolism through which over 95% of TRP degrades into several bioactive metabolites including
proinflammatory, anti-inflammatory, oxidative, antioxidative, neurotoxic, neuroprotective, and/or
immunologic compounds [3]. Furthermore, the KP enzymes directly influence inflammation and the
immune system [4]. Altered activities of the kynurenine pathway (KP) enzymes and altered levels of
the KP metabolites have been associated with cancer, autoimmune diseases, inflammation, neurologic
diseases, and psychiatric disorders [3,5–8]. However, roles of the KP enzymes and metabolites in
pathogenesis and progression of various diseases are a relatively less charted area of medical research.
This review article discusses current findings and understanding of the alteration of the KP components
in the central nervous system (CNS) and periphery, their possible contribution to pathogenesis and
disease progression, and interventional strategies in main neurodegenerative diseases, searching for a
risk, diagnostic, prognostic, predictive, and/or therapeutic biomarker that potentially ensures building
a personalized therapy.

2. The Kynurenine Pathway and Kynurenines

The metabolism of the essential amino acid l-TRP takes place in two main pathways:
the methoxyindole and the KP (Figure ??). The methoxyindole pathway is responsible for the synthesis
of serotonin and melatonin. Only 1 to 5% of TRP is utilized for the methoxyindole pathway; thus,
serotonin (5-HT) and melatonin synthesis depends on the availability of TRP which serves as a
rate-limiting factor [9]. Approximately 95~99% of TRP is metabolized through the KP, which is
responsible for the synthesis of bioactive molecules and nicotinamide adenine dinucleotide (NAD+).
The efficient synthesis of NAD+ is crucial to maintain cell viability. NAD+ is an essential cofactor of
the electron transport in the oxidative production of adenosine triphosphate (ATP) and hydride ion
transfer in many enzyme reactions [10]. Disturbance of mitochondrial NAD+ impairs the respiratory
chain and ATP synthesis resulting in energy depletion and cell death. NAD+ plays an important role
in the brain’s glycogen storage, which is essential for CNS function [11] (Figure ??).

The cascade of KP produces several bioactive metabolites. The neurotoxic metabolites are
3-hydroxykynurenine (3-HK), 3-hydroxyanthranillic acid (3-HAA), and quinolinic acid (QUIN), while
the neuroprotective ones are picolinic acid (PIC) and kynurenic acid (KYNA). 3-HK and 3-HAA generate
reactive oxygen species (ROS) which raise the level of oxidative stress and lipid peroxidation [3].
QUIN is a weak, competitive agonist of the N-methyl-d-aspartate (NMDA) receptors containing
the NR2A and NR2B subunits, being a neurotoxin, a gliotoxin, a proinflammatory mediator, and a
pro-oxidant molecule [11]. QUIN stimulates synaptosomal glutamate release, inhibits glutamate
uptake in the astrocytes, and participates in the generation of ROS which contributes to the depletion
of endogenous antioxidants and the lipid peroxidation [12]. PIC is a neuroprotective metabolite that
chelate a wide range of metals such as Cu, Fe, Ni, Zn, and Pb [13]. PIC exhibited immunomodulatory
properties in vitro and showed antiviral, antifungal, antimicrobial, and antitumor activities in vivo and
in vitro as well [13–17]. KYNA has antioxidant and anticonvulsant properties, scavenging ROS and
suppressing inflammation. The reduced levels of KYNA may promote tissue damage and inflammatory
cell proliferation in neurodegenerative diseases [18,19].

KYNA is a competitive antagonist of the ionotropic excitatory glutamate receptors including
NMDA receptor, alpha (α)-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor,
and the kainate receptor [11]. KYNA binds to the strychnine insensitive glycine binding site of the
NMDA receptors in lower concentration and to the glutamate-binding site of the NMDA receptors in
higher concentration, respectively [12]. KYNA binds in a competitive or non-competitive manner to
the strychnine insensitive glycine binding site, while it binds competitively to the glutamate-binding
site resulting in the inhibition of overexcitation of the glutamatergic signal transduction [20].
NMDA receptors play a major role in synaptic transmission and neural plasticity of learning,
memory, and other aspects of cognition [21–24]. At the AMPA receptor KYNA exhibits dual actions:
KYNA stimulates the AMPA receptors in nanomolar to micromolar concentration, but competitively
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inhibits AMPA receptors in millimolar concentration [25,26]. KYNA inhibits the kainate receptors in
higher concentrations in a range of 0.1–1 mM [27].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 24 
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Figure 1. Tryptophan metabolism and the kynurenine pathway. The kynurenine pathway (KP) is the
main degradation route of tryptophan (TRP) metabolism producing the end-product nicotinamide
adenine dinucleotide (NAD). The indoleamine-2,3-dioxygenase-1 and 2 (IDO-1 and IDO-2), and the
tryptophan 2,3-dioxygenase (TDO) (1) are the first rate-liming enzymes that convert the l-TRP to
N-formyl-l-kynurenine. N-formyl-l-kynurenine is converted by formamidase (2) to l-kynurenine
(l-KYN) (gray box). l-KYN is metabolized into various bioactive compounds: the neuroprotective
metabolites are kynurenic acid and picolinic acid (green boxes), while the neurotoxic ones are
3-hydroxy-l-kynurenine (3-HK) and quinolinic acid (red boxes). The main enzymes of the KP are
following: 1: tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase 1 and 2 (IDO-1 and
IDO-2), 2: formamidase, 3: kynurenine aminotransferases (KATs), 4: kynurenine-3-monooxygenase
(KMO), 5: kynureninase, 6: non-specific hydroxylation, 7: 2-amino-3-carboxy-muconate-semialdehyde
decarboxylase, 8: 3-hydroxyanthranilate oxidase, 9: quinolinic acid phosphoribosyltransferase.
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KYNA’s role in the α-7 nicotinic acetylcholine receptor (α7nAchR) remains controversial [21].
It was observed that KYNA inhibited the α7nAchR activity and increased non-α7nAchR expression in
physiological and pathological conditions [28]. On the contrary, it was reported that KYNA did not
modulate the α7nAchR activities in the hippocampus of the adult mouse brain [29]. KYNA activates
the orphan G-protein receptor 35 (GPR35) expressed in glia and neurons of the hippocampus, which
inhibits adenylate cyclase and depresses excitability and synaptic transmission in the hippocampus [30].
In addition, KYNA decreased body weight without negative influence on densitometry and mandibular
bone [31].

Aryl hydrocarbon receptors (AHRs) are transcriptional factors that integrate environmental, toxic,
dietary, and metabolic signals to regulate gene expression of enzymes such as cytochrome P450 [32].
AHRs were originally believed sensors of xenobiotic chemicals such as aryl hydrocarbon; however,
AHRs are also activated by endogenous metabolites of the KP including KYN, KYNA, xanthurenic
acid (XA), and cinnabarinic acid (CA), playing an important role in immunotolerance, autoimmunity,
and tumorigenesis through the IDO/TDO-KYN-AHR feedback cycle [21]. In addition, AHRs control
neuronal or glial migrations, neuronal development, differentiation, and synaptic function [21,33].

3. Kynurenines in the Brain, the Periphery, and the Gut-Brain Axis

3.1. Kynurenines in the Brain and the Periphery

In the brain l-TRP is transported through the highly selective semipermeable endothelial
membrane blood-brain barrier (BBB) by the large neutral amino acid transporter [34]. TRP is converted
into N-formyl-l-kynurenine by the rate-limiting enzyme indolamine-2,3-dioxygenase IDO.
The N-formyl-l-kynurenine is converted to l-KYN by the formamidase. Approximately 40% of
l-KYN is produced in the brain, while 60% of l-KYN is generated in the periphery, which can become
available to the brain by being transported with the neutral amino acid carrier to cross the BBB [35].

l-KYN is metabolized through three different routes. The first route leads to the synthesis of
KYNA by kynurenine aminotransferases (KATs). The second route leads to the synthesis of anthranilic
acid (AA) by kynureninase and then 3-hydroxyanthranilic acid (3-HAA) by nonspecific hydroxylation.
The third route leads to the synthesis of 3-hydroxykynurenine (3-HK) by kynurenine 3-monooxygenase
(KMO), 3-hydroxyanthranilic acid (3-HAA), QUIN, and eventually NAD+. KATs also convert 3-HK
to XA. PIC is produced from 3-HAA. The metabolites of the KP pathway are generally known as
kynurenines. The first route takes place in astrocytes or skeletal muscle in the periphery, while the
second and third routes are characteristic of microglial cells [3]. TRP, KYN, 3-HK are permeable,
but KYNA and QUIN are impermeable to the BBB. Delivery of the BBB impermeable drugs with
neuroprotective and antioxidant properties to CNS across the BBB is under extensive research [36,37].

In the periphery, several isoforms of the KP enzymes are expressed in different parts of the body.
The indole ring of l-TRP is oxidized to N-formyl-KYN by tryptophan-2,3-dioxygenase (TDO), IDO-1,
and IDO-2. TDO is expressed in the liver; IDO-1 throughout the body; and IDO-2 in the kidney, liver,
and antigen-presenting cells. The major organ where the synthesis of KYNs takes place in the periphery
is the liver. TDO is activated by the substrate TRP and stress hormone glucocorticoids, and ROS and
inhibited by the KP metabolites 3-HK and NAD+, forming negative feedback loops [38].

IDOs are activated by lipopolysaccharides, pro-inflammatory cytokines including α-, beta,
and gamma interferon (INF) and α tumor necrosis factor, and ROS and inhibited by antioxidant
enzyme superoxide dismutase [39]. In addition, IDOs trigger immunosuppressive effects in T cells and
myeloid-derived suppressor cells [40]. Thus, the KP metabolites play a key role in the communication
between the nervous system, the immune system, inflammation, and redox homeostasis. Accordingly,
it is not surprising that the disturbance of the KP is associated with neurologic diseases, autoimmune
diseases, inflammatory diseases, and psychiatric disorders. A meta-analysis reported that an increased
risk of depression was associated with inflammation in chronic illness through the KP [41]. A role of
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leptin in inflammation was discussed regarding various multifactorial diseases including neurologic
diseases [42].

3.2. Gut-Brain Axis

Preclinical and clinical studies evidenced that the gastrointestinal microbiota influence the
gastrointestinal (GI) physiology as well as the functions of the CNS by modulating different signaling
pathways through the microbiota-gut-brain axis. The gastrointestinal microbiota is attributable to
visceral pain, anxiety, depression, cognitive disturbance, and social behavior [43].

The healthy human microbiota shares a core microbiota composition and common trends from
infancy to adulthood and old age. In the infant GI tract the main phyla are Bifidobacterium, Lactobacillus,
Enterobacteriaceae and Staphylococcus. In adulthood the four dominant phyla are Bacteroidetes,
Firmicutes, Verrucomicrobia, and Actinobacteria [44]. In the elderly the greater proportion of
Bacteroides spp. with a distinct abundance patterns of Clostridium groups are the characteristic feature.
The TRP metabolization is one of the most influenced and thus most important signaling pathways
by the microbiota. l-TRP is one of essential amino acids, but it is readily biosynthesized by most
plants and bacteria [45]. TRP transforms into several bioactive metabolites through the methoxyindole
pathway and the KP, both of which influence the function of the GI nervous system and CNS with
their changes of supply and availability.

But the microbiota not only influences the TRP source, but also synthetizes or degrades other
neuroactive compounds too. For example, bacteria can biosynthesize QUIN, while unique prokaryotic
enzymes can degrade KYNA [46,47]. KYNA is a NMDA receptor antagonist, being neuroprotective.
On the contrary, QUIN is a NMDA receptor agonist, being neurotoxic [48]. The balance of QUIN and
KYNA production and their function in the brain is known to be crucial, but the exact roles of these
two metabolites in the GI tract are to be studied. KYNA has anti-inflammatory property into the GI
tract, and both metabolites are involved in immunoregulation [49]. Therefore, there exists a complex
system between the microbiota and the host. The diet and nutritional status of the host changes the
microbiota composition which, furthermore, influences the metabolic pathways of the host, and vice
versa. The modulation of the KP metabolism in the GI microbiota can be a new approach for the
treatment of neurologic and psychiatric diseases. Furthermore, neurotoxic molecules may gain access
to the CNS when the integrity of the BBB disrupts such as in inflammation. The influence of the gut
microbiota on the brain function and behavior has become of emerging interest [11] (Figure 2).
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Figure 2. The central nervous system and periphery sequestrated by the blood-brain-barrier and the
microbiota-gut-brain axis. The impermeable peripheral metabolites are sequestrated from the central
nervous system (CNS) by the blood-brain barrier (BBB). The gastrointestinal microbiota changes the
composites of the peripheral metabolites. Tryptophan (TRP), kynurenine (KYN), 3-hydroxykynurenine
(3-HK) are permeable, but kynurenic acid (KYNA) and quinolinic acid (QUIN) are impermeable
to the BBB. When the integrity of the BBB is compromised such as in inflammation, the microbiota
influences the brain function and thus behavior through the microbiota-gut-brain axis. TDO: tryptophan
2,3-dioxygenas; IDO: indoleamine 2,3-dioxygenase.

4. Neurodegenerative Diseases

4.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common chronic neurodegenerative disease with an
insidious onset of progressive cognitive deteriorations, particularly memory impairment. Motor or
sensory dysfunctions are not prominent in the early stage. Motor and autonomic dysfunctions are
associated with the comorbidities such as Parkinson’s disease (PD) with dementia, dementia with Lewy
bodies, or vascular dementia [3]. Anxiety is common, besides apathy, depression, aggression, or sleep
disorder [50]. Cortical atrophy of the frontal, temporal, and parietal lobes, enlargement of the temporal
horn of the lateral ventricle, and atrophy of the entorhinal cortex, amygdala, and hippocampus are
pathognomonic findings in patients with AD [51]. Abnormal deposit of insoluble proteinaceous
material amyloid beta (Aβ) in the neuron and glial cells is mainly located in the atrophic lesions of AD
patients [52]. Tau protein aggregates are associated with Aβ deposits, but it is considered secondary to
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amyloidosis [53]. Disturbance of calcium homeostasis was observed, and calcium-related proteins
were proposed to be diagnostic and therapeutic biomarkers in AD [54].

The serum levels of TRP, KYNA, 3-HK, QUIN, and PIC were measured. The levels of 3-HK were
significantly increased in the serum of patients with AD compared to those with major depression or
with cognitive impairments. 3-HK is permeable to the BBB in contrast to a downstream metabolite
QUIN and may be associated with higher levels of QUIN in the brain of AD patients [55]. An urgent
need for biomarkers for the detection of the early stage AD was declared to expedite the early
intervention by disease-modifying agents [55].

3-HK and other KP intermediates are possible candidates of early stage biomarkers [55]. The roles
of the KP in the pathogenesis of AD were described [56–60]. QUIN was found localized with
hyperphosphorylated tau in the cortical neurons of the brain of AD patients and to induce the
phosphorylation of tau in human brains [57]. AD patients who have higher QUIN levels performed
worse on the CAMCOG (the cognitive and self-contained part of the Cambridge Examination for
Mental Disorders of the Elderly) test, suggesting the levels QUIN are associated with the cognitive
impairment level [61] (Table 1, Table A1). QUIN is a strong oxidant, and the presence of oxidative
stress was reported in AD, involving mitochondria dysfunction, microRNA, and microRNA-gene
interaction [62,63].

Increased IDO-1 activity was associated with reduced cognitive performance, while IDO-1 inhibitor
coptisine decreased the activation of microglia and astrocytes, prevented neuron loss, reduced Aβ
plaque formation, and ameliorated impaired cognition in A b PP/PS1 mice [64,65]. KMO inhibitor JM6
prevented spatial memory deficits, anxiety related behavior, and synaptic loss in APP-Tg mice [66].
Furthermore, IDO is associated with the senile plaques [58]. Finally, the increased levels of KYNA
were specific to cerebrospinal fluid (CSF) in AD, compared to that of frontotemporal dementia (FTD)
and ALS [67] (Table 2, Table A1).

Table 1. Changes of metabolites of the kynurenine pathway in neurologic diseases. ↑: increase, ↓:
decrease, *: tendency, not statistically significant.

Metabolites Alzheimer’s Disease Parkinson’s Disease Amyotrophic
Lateral Sclerosis Huntington’s Disease Multiple Sclerosis

CNS Peripheral CNS Peripheral CNS Peripheral CNS Peripheral CNS Peripheral

TRP - ↓ [61]
↓ [68] - - ↑ [69]

↑ [69] ↑ [69] - ↓ [70]
↓ [71] ↓ [72] ↓ [72]

↓ [73]

QUIN
↑ [56]
↑ [59]
↑ [60]

↓ [61]
↑ [68] ↑ [74] ↑ [75] ↑ [69] ↑ [69] ↑ [76] - ↑ [77] ↑ [78]

3-HK -
↑ [55]
↑* [68]
↑ [79]

↑ [80]
↑ [81] ↑ [74] - - ↑ [76]

↑ [82] ↓ [83] ↑ [77] ↑ [78]

KYNA

↑ [60]
↑ [67]
↓ [84]
↑ [85]

↓ [68]
↓ [79]

↓ [74]
↓ [80]

↓ [75]
↓ [86] ↑ [87] -

↓ [88]
↓ [89]
↓ [90]

- ↓ [91]
↑ [92]

↑ [78]
↑ [93]

AA - ↑ [66]
↑* [68] - - - - - - - -

KYN - ↑* [68]
↑ [79] - ↑ [94] ↑ [85] ↑ [85] - ↑ [67] - -

XA - ↓ [61] - - - - - - - -

3-HAA - ↓ [61] - ↓ [74] - - - ↓ [83] - -

PIC - - - - - ↓ [69] - - - ↑ [78]
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Table 2. Changes of metabolites of the kynurenine pathway in neurologic diseases. ↑: increase,
↓: decrease.

Enzyme
Activity Alzheimer’s Disease Parkinson’s Disease Amyotrophic

Lateral Sclerosis Huntington’s Disease Multiple Sclerosis

CNS Peripheral CNS Peripheral CNS Peripheral CNS Peripheral CNS Peripheral

IDO ↑ [56]
↑ [59]

↑ [64]
↑ [68]

↑ [80]
↑ [95]

↓ [56]
↑ [86] ↑ [69] - -

↑ [70]
↑ [71]
↑ [83]

- ↑ [91]

TDO ↑ [59] - - - - - - - - -

KAT I ↑ [85] - ↓ [96]
↓ [97] ↓ [97] - - ↓ [88]

↓ [90] ↓ [83] - ↑ [93]

KAT II ↑ [98] - ↓ [97]
↑ [97] - - - ↓ [88]

↓ [90] ↓ [83] - ↑ [93]

KMO - - - - - - - - ↑ [92] -

3-HAO - - - - - - ↑ [99] - - -

4.2. Parkinson’s Disease

PD is a progressive neurodegenerative disorder that predominantly affects motor functions
including muscle rigidity, tremors, and changes in speech and gait. Main motor dysfunctions
are bradykinesia, resting tremors, and rigidity which are largely due to the dopaminergic
nigrostriatal denervation in the early stages of PD. However, psychobehavioral symptoms including
psychosis, hallucinations, depression, and anxiety are not rare, which are present before the motor
complaints [98,100]. Neurodegeneration and gliosis of the pars compacta of the substantia nigra (SNpc)
and the presence of Lewy bodies (LBs) in pigment nuclei are pathognomonic of PD [101]. LBs contain
the abnormal aggregates of misfolded alpha-synuclein (α-syn). Accumulation of aggregated α-syn in
oligodendrocytes forms glial cytoplasmic inclusions. The mechanisms that govern α-syn fibrillization
and LB formation in the brain remain poorly understood [102].

Alterations of TRP metabolism, glutamate excitotoxicity, and the gut-brain-axis have been shown
associated with the pathogenesis of PD [44,103]. The identification of a risk marker is of particular
interest because most of the dopaminergic neuros in the SNpc is not functioning at the time of the
diagnosis [104]. KYNA levels and KYNA/KYN ratios were found significantly lower, while the levels
of QUIN and ratios of QUIN/KYNA were observed significantly higher in the plasma of PD patients
compared to healthy controls [75,105]. Those patients who were in advanced stage, Hoehn-Yahr stage
more than 2, showed lower levels of KYNA and ratios of KYNA/KYN, while higher levels of QUIN
and ratios of QUIN/KYNA compared to PD patients in early stage, Hoehn-Yahr stage ≤2 and healthy
controls [105]. Moreover, receiver operating characteristic curve analysis suggested a QUIN/KYNA
ratio as a potential biomarker for PD with good sensitivity and specificity. Stratified analysis showed
that changes of the KYN pathway metabolites were more characteristic in PD patients in advanced
stage [105]. Altered KYN metabolism and KYNA levels were reported in the brain samples of PD
patients. The levels of KYNA were lower in the frontal cortex, putamen, and SNpc, while the levels of
3-HK were higher in the putamen, frontal cortex, SNpc, and CSF of PD patients [75,81]. The elevated
3-HK levels in CSF evidenced a possible excitotoxic disease mechanism in PD and 3-HK as a potential
predictive biomarker [75] (Table 1, Table A2).

Single nucleotide polymorphisms (SNP) of IDO-1 rs7820268 and rs9657182 were found associated
with the late onset of PD [106]. The activities of KAT II and levels of KYNA were increased in the red
blood cells; however, the activities of KAT I and KAT II were lower and the levels of KYNA tended
to be lower in the plasma of PD patients [92] (Table 2, Table A2). A systematic review reported the
increased levels of neurotoxic KYNs and the decreased levels of neuroprotective KYNs in general,
suggesting a significant shift toward the production of QUIN in the KP in PD [3]. Alteration of the KP
is a distinguished characteristic in PD and may contribute to the pathogenesis of PD. Highly active
retrotranposition competent LINE-1s was linked to the risk and progression of PD. making it a possible
risk and therapeutic biomarkers [107]. Thus, the identification of PD-specific biomarkers in the blood,
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CSF, stool, or urine sample may make it possible to reveal the pathogenesis, make an early stage
diagnosis, observe the disease progression, and monitor therapeutic effects.

4.3. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a group of progressive neurodegenerative disease which
mainly affects neurons controlling voluntary muscles. ALS often presents fasciculation, myasthenia,
or dysarthria initially. It involves the muscles responsible to move, speak, eat, and breathe in
later stage [108]. ALS patients present a wide range of mild symptoms including autonomic, GI,
cardiovascular, and neuropsychiatric manifestations including depression and anxiety [109–111].
The most common genetic mutations are the GGGGCC expansion in C9ORF72, present in approximately
30–47% of familial ALS cases and the SOD 1 mutations [112,113]. This hexanucleotide expansion is
most often accompanied with the presence of cytoplasmic inclusions containing transactive response
DNA-binding protein of 43 kDa (TDP-43) [114]. TDP-43 proteinopathy is characteristic to ALS [112].
TDP-43 is found in the lower motor neurons in the spinal cord and brainstem and the upper motor
neurons in the motor cortex. In the late stage of ALS and ALS patients with dementia, TDP-43
can be found in the hippocampus, amygdala, and cortex [52]. New mutations were found in the
genes of chromosome 9 open reading frame 72 (C9orf72), SOD 1, and senataxin in Hungarian ALS
patients [115,116]. SNP of the vitamin D receptor gene rs7975232 (ApaI) was found associated
with ALS [117]. Besides genetic predisposition, the pathogenesis of ALS is associated with ROS,
mitochondrial dysfunction, intracellular calcium aggregation, and protein aggregation, glutamate
excitotoxicity, and autoimmune inflammatory process [117–120].

The levels of KYNA was observed higher in the brain of patients with bulbar onset of ALS,
compared to healthy control or patients with limb onset [87]. Moreover, the levels of KYNA were
higher in CSF of patients with severe clinical status, compared to healthy controls [87]. Meanwhile
lower levels of KYNA were detected in the serum of patients with severe clinical status, compared to
healthy controls and patients with mild clinical status [87] (Table 1, Table A3). Therefore, the serum
level of KYNA possibly indicates the severity of the disease and can be a potential prognostic biomarker.
The neuronal and microglial expression of IDO were elevated and the levels of QUIN were higher in
the motor cortex and spinal cord of ALS patients [87] (Table 2). The levels of TRP, KYN, and QUIN
were elevated in CSF of ALS patients [87]. The levels of TRP, KYN, and QUIN were elevated, and the
level of PIC was decreased in the serum of ALS patients [87]. Furthermore, the ratios of 3-HK/XA
were decreased in the serum of ALS patients compared to patients with FTD [69] (Table 1, Table A3).
The median survivaltime ranges from 20 to 48 months, but only 10–20% of ALS patients survive longer
than ten years with worse prognosis in older age and bulbar onset. There is no option for the treatment
of ALS. Thus, a search for predictive and therapeutic biomarkers are of particular interest.

4.4. Huntington’s Disease

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disease with progressive
and irreversible motor dysfunctions, leading to coordination problem, gait difficulties, cognitive
dysfunction, and behavioral changes. Mild autonomic symptoms including orthostatic hypotension,
excessive perspiration, and tachycardia are present in mild HD, while vegetative symptoms are
prominent in the advanced stages [118]. Pathological findings in HD are degeneration and neural loss
of the striatum, especially the caudate nuclei which innervate the cerebral cortex, pallidum, thalamus,
brainstem, and cerebellum. The pathological changes correlate with disability. In the cerebellum,
thalamus, and brain stem, abundant ballooned neurons were observed. Abnormal huntingtin proteins
are associated with ballooning cell death which ruptures the membrane to swell like a balloon [118].

The activation of the neurotoxic branch of the KP is verified in the CNS. The levels of 3-HK and
QUIN were elevated and the activity of 3-HAO was increased in the striatum where the loss of the nerve
cell is the most prominent [76,98]. The levels of KYNA and the activity of KAT were decreased in the
brain [88]. Toxoplasma gondii infection elevated the IDO activity in the brain and resulted significantly
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earlier death of the transgenic mouse model of HD compared to the HD mice without infection and
the wild type, suggesting that the IDO activation accelerated the disease progression [119]. Lower TRP,
higher KYN levels, and higher KYN/TRP ratios were observed in the serum of HD patients, suggesting
the presence of higher IDO activity [70]. The levels of KYNA, the activity of KAT, and the levels of
3-HK and 3-HAA were all decreased in plasma [87]. The inflammatory status was well correlated with
the levels of AA and the levels of TRP were negatively correlated with the severity of symptoms and
the number of CAG repeats [71]. AA levels may be a good biomarker to indicate the inflammatory
status in HD (Table 1, Table A4).

4.5. Multiple Sclerosis

Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease. Common
symptoms of MS range widely from motor dysfunction, autonomic symptoms to psychobehavioral
manifestations including gait difficulties, paresthesia, vision problems, vertigo, incontinence, sexual
problems, pain, cognitive dysfunctions, emotional changes, and depression [120]. Numerous glial scars,
called plaques which develop in the white matter and spinal cord are pathognomonic to MS [121].

Disturbance of the KP and altered levels of KYN metabolites in MS patients were reported
previously [77,91,122,123]. The levels of TRP were significantly lower in the serum and CSF samples
of MS patients, suggesting the activation of the KP metabolism [72].The lower TRP level may be
used as a potential biomarker in the screening of MS [71,73]. Proinflammatory cytokines including
IFNs and TNF-α activated IDO-1 expression, resulting in the activation of the KP [124]. However,
IDO-1 inhibition upon the disease induction significantly exacerbated the disease severity in the
experimental autoimmune encephalitis (EAE) model of MS in mouse [125]. It was probably caused
by the increased pool of available TRP which facilitated T cell proliferation. The activation and
expression of IDO may become a useful biomarker to monitor the clinical course of relapsing-remitting
multiple sclerosis (RRMS) and a predictive biomarker for the development of flares of MS. Moreover,
therapeutic modulation of IDO activity may be beneficial in MS [91]. An imbalance of neurotoxic
and neuroprotective KYN metabolites was considered involved in the pathogenesis of MS [7,77,92].
The activities of KAT I and KAT II enzymes were significantly higher in the red blood cells of MS
patients compared to healthy control and the higher KAT activities were correlated with increased
KYNA levels in the plasma of MS patients, suggesting the possible induction of neuroprotection
against excitoneurotoxicity [94,95]. Furthermore, the levels of KYNA were increased in the CSF of
MS patients during acute phase, while the KYNA levels were decreased in the inactive chronic phase
of MS [77,78]. Monitoring the redox status including proteins, lipids, and nucleic acids together
with the KP components was proposed to build a personalized treatment plan for MS patients [126]
(Table 1, Table A5).

The activity and expression of KMO and the level of 3-HK were increased and KMO inhibitor
Ro61- 8048 decreased the QUIN concentration in the spinal cord of EAE model of MS in rats [92].
A Ro61- 8048 prodrug KM6 significantly increased KYNA levels in mouse models of HD and AD [66].
The activity of KMO may be responsible for deviating from the KYNA branch towards the production
of downstream neurotoxic metabolites. The activation of IDO-1 inhibits T cell activation, which
appears beneficial to MS, but it can lead to the increased production of neurotoxic KYNs, eventually
contributing to the progression of MS [66,127]. The KP metabolites were proposed to be potential
prognostic and predictive biomarkers for MS. The levels KYNA and PIC were increased in RRMS,
but not in secondary progressive multiple sclerosis (SPMS) or primary progressive (PPMS) and the
levels of 3-HK and QUIN were increased in both SPMS and PPMS [116]. The QUIN/KYNA ratios were
moderately correlated with the severity of MS [122] (Table 1, Table A5). Alteration of TRP metabolism
is more relevant to the pathogenesis of MS than inflammation and a profile of the serum KP metabolites
may be a suitable predictive biomarker for MS. Especially, the QUIN/KYNA ratio may become a
useful predictive biomarker for neurodegeneration [122]. In general, the levels of KP metabolites
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can be suitable biomarkers for diagnosis of MS subtypes, monitoring the severity, and/or identifying
therapeutic targets.

5. Other Relevant Diseases

Potential use of KYNs as biomarkers are under extensive research not only for neurologic diseases,
but also psychiatric disorders. KYN and KYNA were found to be predictive biomarkers for the
treatment of escitalopram in depression. KYNA is both a diagnostic and a predictive biomarker
for depression as well [128]. 3-HK and KYNA were proposed to be prognostic biomarkers of
depression and disability in poststroke patients [129]. Other KP metabolites such as XA and CA were
rarely documented. An extremely low concentration of CA was reported to have anti-psychotic
activities in mice and the levels of CA was reduced in the prefrontal cortex in patients with
schizophrenia [130]. The glutamatergic nervous system was proposed to be a therapeutic biomarker for
mood disorders including depression [131]. Furthermore, a simultaneous intervention in the NMDA
receptor and α7nAchR was suggested by novel combination for the treatment of schizophrenia [132].
Longitudinal plasma samples were studied in search of a certain plasma protein profiles as a predictive
biomarker for the treatment of depression [133]. Therapeutic biomarkers are under rigorous search for
depression, anxiety, and dementia through endogenous neuropeptides, agonists, and their synthetic
analogues [134–137]. Omega-3 polyunsaturated fatty acids which bind G protein-coupled receptor
GPR120 in the GPR120 signaling pathway was proposed to be a therapeutic biomarker for the treatment
of schizophrenia [138]. The treatment of metabolic dysfunction by nutraceuticals in ageing and
neurodegenerative diseases was proposed [139]. Biomarkers are not only limited to molecules, but can
also be any measurable indicators for risk, diagnosis, prognosis, disease course, and therapeutic targets.
Depression was reported a risk factor for AD and dementia, and dyslipidemia treatment reduced this
risk in patients with diabetes mellitus. Thus, depression is a risk biomarker and preventable in patients
with dyslipidemia [140]. The presence of depression after acute stroke and transient ischemic attack
increased mortality and disability within 12 months, suggesting depression as a prognostic biomarker
in cerebral ischemia [141]. Depression and anxiety can be treatable by psychedelic psilocybin in
patients with terminal illness [142]. Interestingly, depression is a single psychobehavioral component
of dementia, which can be ameliorated by animal-assisted and pet-robot interventions in dementia
patients [143]. Depression is indeed a therapeutic biomarker.

6. Conclusions and Future Perspective

The lack of appropriate biomarkers to make a diagnosis and follow-up therapy is seriously
hampering the application of personalized medicine to neurodegenerative diseases. Consensus
on the methodologies and validations are missing in many cases. Consequently, thousands of
possible biomarkers were documented in the literature, but only hundreds are in clinical use. It is
important to study more populations and repeat the analysis in different cohorts. After verification,
a potential biomarker must be tested in the other population worldwide including Caucasians, Asians,
and Africans. Furthermore, non-invasive samples such as sweat, tear, urine, and stool are to be
explored for biomarker research, in addition to the peripheral sampling.

Profiling metabolomic data may contribute to revealing the state of metabolism. The roles
of the microbiota in the gastrointestinal-brain axis are to be explored to profile the colony of the
microbiota in neurodegenerative diseases. Magnetic resonance imaging with imaging biomarkers
may be able to assess the status of the BBB integrity to estimate the influence of the gastrointestinal
microbiota on the CNS in the microbiota-gut-brain axis. Therefore, the KP profiles, metabolomic
profiles, the gastrointestinal microbiota colony profiles, the BBB integrity index may all serve to
integrate into a battery of powerful biomarkers to expedite building a personalized treatment plan for
neurologic diseases beyond neurodegenerative diseases discussed in this article, such as strokes and
migraine as well as psychiatric disorders such as depression, anxiety, and schizophrenia.
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Abbreviations

α alpha
α7nAchR α-7 Nicotinic acetylcholine receptor
α-syn alpha-Synuclein
AD Alzheimer’s disease
AHRs Aryl hydrocarbon receptors
ALS Amyotrophic lateral sclerosis
AMPA α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ATP Adenosine triphosphate
BBB Blood-brain barrier
CA Cinnabarinic acid
CNS Central nervous system
CSF Cerebrospinal fluid
DA Dopamine
DOPAC 3,4-Dihydroxyphenylacetic acid
EAE Experimental autoimmune encephalitis
FTD Frontotemporal dementia
GI Gastrointestinal
GPR35 G-protein receptor 35
HD Huntington’s disease
IDO-1 Indolamine 2,3-dioxygenase 1
IFNs Interferons
KATs Kynurenine aminotransferases
KMO Kynurenine 3-monooxygenase
KP Kynurenine pathway
KYN Kynurenine
KYNA Kynurenic acid
LBs Lewy bodies
l-KYN N-formyl-l-kynurenine
MPP(+) 1-Methyl-4-phenylpyridinium
MPTP 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MS Multiple sclerosis
NAD+ Nicotinamide adenine dinucleotide
NMDA N-methyl-d-aspartate
PD Parkinson’s disease
PIC Picolinic acid
PPMS Primary progressive MS
QUIN Quinolinic acid
ROS Reactive oxygen species
RRMS Relapsing-remitting MS
SNP Single nucleotide polymorphism
SNpc Pars compacta of the substance nigra
TDO Tryptophan 2,3-dioxygenase
TDP-43 TAR DNA-binding protein 43
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TRP Tryptophan
XA Xanthurenic acid

Appendix A

Table A1. Differences of kynurenine pathways in the CNS and the periphery in Alzheimer’s disease.

Alzheimer’s Disease

In the CNS Ref. In the Periphery Ref.

-Decreased KYNA in the CSF [84] -Increased KYN/TRP ratio (IDO activity) associated
with reduced cognitive performance [95]

-Increased KYNA in the putamen and caudate nucleus
-Increased KAT I activities in both nuclei
-Minor increased KAT II in the caudate nucleus
-Marked increased KYNA in the caudate nucleus
and putamen

[84] -Decreased serum and red blood cell KYNA levels [86]

-A β 1–42 induces production of QUIN by human
macrophages and microglia [143]

-Lower TRP and KYNA concentrations in plasma
-Non-significant increase of KYN, 3-HK and AA levels,
and a marked increase of QUIN
-IncreaseKYN/TRp ratio which suggests increased
IDO activity
-Positive correlations between cognitive function tests
and plasma KYNA levels, and inversely correlations
between these tests and QUIN levels

[68]

-Enhanced IDO and QUIN immunoreactivity in the
hippocampus in association with senile plaques [56]

-Increased serum levels of 3-HK
-No increases in other downstream KP metabolites
-3-HK can be used as a biomarker (Schwarz et al., 2013)

[55]

- QUIN is co-localized with hyperphosphorylated tau
within cortical neurons in AD brain
-QUIN induces tau phosphorylation in human neurons

[57]
-Upregulation of serotonin pathway while
downregulation of kynurenine pathway in AD
transgenic mice urine

[144]

-Confirmed association of IDO-1 with senile plaques
for the first time
-IDO-1 specifically localized inconjunction with
neurofibrillary tangles

[58]

-Decreased TRP, XA, 3-HAA and QUIN in plasma
-KYN, AA, QUIN, and markers of immune activation
increased with age, while XA decreased with age
-Inflammation-related markers were associated with
age, but not AD.
-Elderly AD patients with high QUIN performed
worse on the CamCog test

[61]

-Expression and cell distribution of TDO and QUIN,
and their co-localization with neurofibrillary tangles
and senile β amyloid deposition were also determined
in hippocampal sections.
-Higher TDO and IDO-1 immunoreactivity observed in
the hippocampus
-TDO co-localizes with QUIN, neurofibrillary
tangles-tau and amyloid deposits in the hippocampus
-TDO is highly expressed in the brains of AD mice and
in AD patients, suggesting that TDO-mediated
activation of the KP could be involved in
neurofibrillary tangles formation and associated with
senile plaque

[59]

-Elevated KYN, AA and 3-HK in serum in neocortical
amyloid-β load (NAL+) versus NAL− females in
preclinical AD
-Observed positive correlation between NAL and the
serum KP metabolite concentrations

[79]

-Higher KYNA and QUIN concentrations in CSF
-This observation together with other TRP pathway
intermediates were correlated with either CSF
Amyloid β 1–42, or tau and phosphorylated Tau-181.

[60]

-Positive correlation between Neurofilament light
chain (NFL) and IDO activity
-Positive correlations between NFL and KYN, KYNA,
3-HK, AA and QUIN
-Observed significant associations between plasma A β

40 and the KYN/TRP ratio, KYNA, KYNA, AA
and QUIN
-Significant associations between plasma A β 42 and
the KYN/TRP ratio, kynurenic acid, anthranilic acid
and quinolinic acid
-On stratifying participants based on their NAL status,
NFL correlated with KP metabolites irrespective of
NAL status
-But associations between plasma A β and KP
metabolites were only pronounced in individuals with
high NAL while associations in individuals with low
NAL were nearly absent.

[145]
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Table A1. Cont.

Alzheimer’s Disease

In the CNS Ref. In the Periphery Ref.

-Increased 3-HK/KYN ratio correlated with t-tau and
p-tau in CSF [98]

-Plasma concentrations of KYN, 3-HK, AA, PIC,
and neopterin significantly correlated with their
respective CSF levels
-Plasma KYN and PIC inversely correlated with CSF
p-tau and t-tau

[98]

-Higher KYNA concentration in CSF compared with
healthy subjects or with frontotemporal dementia
(FTD), amyotrophic lateral sclerosis (ALS),
and progressive supranuclear palsy (PSP)
-No significant differences in KYNA levels in CSF
between any other neurodegenerative groups (FTD,
ALS, PSP) and controls.
-Increased KYNA concentration in CSF specific to AD.

[67]

-Plasma KYN positive associations with plasma NF-L
levels, both, before and after adjusting for potential
confounding variables (age, sex, APOE ε4, BMI)
-Plasma KYN correlated significantly with plasma
NF-L in Aβ+ participants and a trend level
significance were observed in Aβ- participants.

[146]

Table A2. Differences of kynurenine pathways in the CNS and the periphery in Parkinson’s disease.

Parkinson’s Disease

In the CNS Ref. In the Periphery Ref.

-Increased TRP/KYN and KYNA/TRP ratios in the
frontal cortex, putamen and pars compacta of the
SN (SNpc)
-Higher 3-HK levels in the putamen and SNpc
-Decreased KYNA level in the frontal cortex, putamen
and SNpc

[76] -Increased KYN/TRP ratio and neopterin levels in
the serum [146]

-MPP(+) and 3-NPA dose-dependently impaired the
synthesis of KYNA in rat cortical slices
-MPP(+) inhibited the activity of KAT II
-3-NPA impaired the activity KAT I and KAT II

[147]

-Reduced activities of KAT-I and KAT-II parallel to
lower KYNA levels tendency in plasma, but increased
KYNA level and KAT II activity in the peripheral red
blood cells

[93]

-Increased KYN/TRP ratio and neopterin levels in
the CSF [95] -Altered KP were verified in urinary samples of

PD patients [131]

-Decreased KAT I expression in MPTP treated mice [95]

-In plasma lower KYNA levels and KYNA/KYN ratio
in PD patients compared to HD patients and controls
-Higher QUIN level and QUIN/KYNA ratio in PD
patients compared to HD patients and controls
-PD patients at advanced stage (Hoehn-Yahr stage > 2)
showed lower KYNA and KYNA/KYN ratio while
higher QUIN and QUIN/KYNA ratio compared to PD
patients at early stage (Hoehn-Yahr stage ≤ 2)
and controls.
-This metabolomic analyses demonstrate a number of
plasma biomarker candidates for PD, suggesting a
shift toward neurotoxic QUIN synthesis and away
from neuroprotective KYNA production in KP.

[75]

-3-HK concentration was increased by one-third,
and mean oxidized glutathione was decreased by 40%
in CSF
-The findings offer further support for a possible
excitotoxic disease mechanism in PD as well as a
biomarker for monitoring a therapeutic intervention
against 3-HK formation.

[81]

-PD subjects had >100% higher 3-HK and 14% lower
3-HAA in plasma
-3-HK in plasma was associated with both symptom
severity and disease duration.

[74]

-23% lower KYNA in the CSF
Higher QUIN levels in the CSF associated with more
severe symptoms,
-Lower levels of the KYNA linked to olfactory deficits.
-An elevated QUIN/PIC ratio in the CSF correlated
with higher R2*values in the substantia nigra
-Plasma C-reactive protein and serum amyloid alpha
were associated with signs of increased KP activity in
the CSF

[74]

-Urine KYN level higher in the PD group
-Urine KYN were significantly associated with PD
severity and mild cognitive impairment.
-Urine KYN may be a new biomarker for
early-stage PD

[94]
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Table A3. Differences of kynurenine pathways in the CNS and the periphery in amyotrophic
lateral sclerosis.

Amyotrophic Lateral Sclerosis

In the CNS. Ref. In the Periphery Ref.

-Higher CSF KYNA concentration in patients with
bulbar onset compared to controls, and compared to
patients with limb onset
-higher CSF KYNA in patients with severe clinical
status compared to controls.

[86]
-Lower serum KYNA in patients with severe clinical
status compared to controls and patients with mild
clinical status

[70]

-Significantly increased levels of CSF TRP, KYN
and QUIN
-Significant increase in activated microglia
expressing HLA-DR
-Increased neuronal and microglial expression of IDO
and QUIN in ALS motor cortex and spinal cord

[69] -Increased levels of serum TRP, KYN and QUIN
-Decreased levels of serum PIC [69]

-Reduced DOPAC concentrations in FTD and ALS
in CSF
-Increased in DA levels and decrease in DOPAC/DA
ratios in FTD relative to CONTR

[148]

-Increased serum DA levels and decreased DOPAC
concentrations and DOPAC/DA ratios in in FTD
and ALS
-Decreased HK/XA ratios in serum of ALS subjects
compared to FTD
-KP does not hold promise as a research/therapeutic
target in FTD and ALS

[104]

Table A4. Differences of kynurenine pathways in the CNS and the periphery in Huntington’s disease.

Huntington’s disease

In the CNS Ref. In the periphery Ref.

-Increased 3-HAO activity in the striatum, which is
known to exhibit the most prominent nerve-cell loss
in HD

[98] -Lower TRP, higher KYN, neopterin levels and higher
KYN/TRP ratios (increased IDO activity) in the serum [64]

-Decreased KYNA concentrations in the putamen
and CSF
-Increased KYN/KYNA ratio in the putamen
(decreased KAT activity)

[88]

-Greater KYN/TRP ratio (increased IDO activity) in
plasma
-Lower KYNA/KYN ratio (decreased KAT activity)
in plasma
-Decreased 3-HK and 3-HAA in plasma

[83]

-Reduced KYNA concentrations in the cortex [89]

-Lower levels of TRP and a higher KYN/TRP ratios
(enhanced IDO activation) in the most severely
affected group
-Marked correlations between AA and
inflammatory status
-TRP negatively correlated with symptom severity and
number of CAG repeats
-TRP metabolism along the KP is related to the degree
of genetic abnormality, to clinical disease severity and
to aspects of immunopathogenesis in HD

[71]

-Increased 3-HK concentration in the brain [81] - -

-Decreased KAT activity in the neostriatum
-Decreased KYNA level in neostriatum [89] - -

-Increased 3-HK and QUIN in the neocortex and in the
neostriatum, but not in the cerebellum of the low grade
HD brain
-In contrast, the unchanged or decreased tendency was
seen in 3-HK and QUIN levels in grade 2 and
advanced grade (grades 3–4) HD brain
-QUIN/KYNA and 3-HK/KYNA ratios indicated
enhanced metabolism along the QUIN branch of the
pathway in the neostriatum and the neocortex, but not
in the cerebellum in the early stages of the disease
-Results support a possible involvement of 3-HK and
QUIN in the early phases of HD

[76] - -

pathophysiology and indicate novel therapeutic
strategies against the disease.

-T. gondii infection resulted in elevation of cortical IDO
activity in HD mice.
HD-infected mice died significantly earlier than
wild-type infected and HD control mice.

[108]
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Table A5. Differences of kynurenine pathways in the CNS and the periphery in multiple sclerosis.

Multiple Sclerosis

In the CNS Ref. In the Periphery Ref.

-Reduced TRP level in the CNS [70] -Reduced TRP level in the serum [70]

-Neopterin and l-TRP correlated negatively in CSF
of RRMS [54]

-Higher KAT I and II activities in the red blood cells
-Increased KYNA in plasma (compensatory
protective mechanism)

[88]

-Expression and activity of KMO significantly
increased in the spinal cord of rats with EAE
-Increased formation of 3-HK and accumulated QUIN
in the CNS of rats with EAE

[120]

-Increased IDO expression in serum
IDO gene expression and activity in blood could be a
useful marker to monitor the clinical course of RRMS
-Therapeutic interventions modulating IDO activity
may be beneficial in MS
-IDO could contribute to remission of relapse in MS.
-evaluation of IDO gene expression could be a useful
predictive biomarker indicating the development of
flares of disease

[149]

-IDO-1 inhibition exacerbated MS severity in EAE
-IDO may contribute to the regulation of T cell activity
associated with the different phases of this animal
model of MS

[119] -Lower glucose, 5-OH-TRP, and TRP in plasma (as a
potential biomarker) [116]

-Decreased KYNA in CSF during chronic remission [117]

-Increased level KYNA and PIC in RRMS but not in
SPMS or PPMS
-Increased 3-HK and QUIN levels in both SPMS
and PPMS
-Moderately strong correlation between QUIN/KNYA
ratio and MS severity
-The first study using targeted KP metabolomics as a
blood-based prognostic biomarker capable of
distinguishing MS subtype.
-TRP metabolism is more relevant to MS pathology
than general inflammation
-Serum KP profile is a suitably sensitive blood-based
predictor of disease progression in MS
-QUIN/KYNA levels, could be useful therapeutic
approaches in slowing neurodegeneration in MS

[116]

-Elevated KYNA levels in CSF during acute relapse [121] - -
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130. Ulivieri, M.; Wierońska, J.M.; Lionetto, L.; Martinello, K.; Cieslik, P.; Chocyk, A.; Curto, M.; Di Menna, L.;
Iacovelli, L.; Traficante, A.; et al. The Trace Kynurenine, Cinnabarinic Acid, Displays Potent Antipsychotic-
Like Activity in Mice and Its Levels Are Reduced in the Prefrontal Cortex of Individuals Affected by
Schizophrenia. Schizophr. Bull. 2020. [CrossRef] [PubMed]

131. Małgorzata, P.; Paweł, K.; Iwona, M.L.; Brzostek, T.; Andrzej, P. Glutamatergic dysregulation in mood
disorders: Opportunities for the discovery of novel drug targets. Expert Opin. Ther. Targets 2020, 3, 1–23.
[CrossRef] [PubMed]

132. Koola, M.M. Alpha7 nicotinic-N-methyl-d-aspartate hypothesis in the treatment of schizophrenia and beyond.
Hum. Psychopharmacol. 2020. [CrossRef] [PubMed]

133. Kim, E.Y.; Ahn, H.-S.; Lee, M.Y.; Yu, J.; Yeom, J.; Jeong, H.; Min, H.; Lee, H.J.; Kim, K.; Ahn, Y.M.
An Exploratory Pilot Study with Plasma Protein Signatures Associated with Response of Patients with
Depression to Antidepressant Treatment for 10 Weeks. Biomedicines 2020, 8, 455. [CrossRef] [PubMed]

134. Tanaka, M.; Telegdy, G. Neurotransmissions of antidepressant-like effects of neuromedin U-23 in mice.
Behav. Brain Res. 2014, 259, 196–199. [CrossRef]

135. Tanaka, M.; Kádár, K.; Tóth, G.; Telegdy, G. Antidepressant-like effects of urocortin 3 fragments.
Brain Res. Bull. 2011, 84, 414–418. [CrossRef]

136. Telegdy, G.; Tanaka, M.; Schally, A.V. Effects of the LHRH antagonist Cetrorelix on the brain function in mice.
Neuropeptides 2009, 43, 229–234. [CrossRef]

137. Tanaka, M.; Schally, A.V.; Telegdy, G. Neurotransmission of the antidepressant-like effects of the growth
hormone-releasing hormone antagonist MZ-4-71. Behav. Brain Res. 2012, 228, 388–391. [CrossRef]
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