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Abstract: Sepsis is a severe condition characterized by systemic inflammation. One of the most
involved organs in sepsis is the heart. On the other hand, heart failure and dysfunction are some
of the most leading causes of death in septic patients. miRNAs are short single-strand non-coding
ribonucleic acids involved in the regulation of gene expression on a post-transcriptional phase,
which means they are a part of the epigenetic process. Recently, researchers have found that miRNA
expression in tissues and blood differs depending on different conditions. Because of this property,
their use as serum sepsis biomarkers has also been explored. A narrative review is carried out to
gather and summarize what is known about miRNAs’ influence on cardiac dysfunction during sepsis.
When reviewing the literature, we found at least 77 miRNAs involved in cardiac inflammation and
dysfunction during sepsis. In the future, miRNAs may be used as early sepsis-induced cardiac
dysfunction biomarkers or as new drug targets. This could help clinicians to early detect, prevent,
and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and therapeutic
strategies worth deepening the complex network between non-coding RNA and biological pathways.
Additional studies are needed to further investigate their role in sepsis-induced myocardium injury.

Keywords: sepsis; cardiac dysfunction; microRNA; messenger RNA; long noncoding RNA

1. Introduction

Sepsis is a severe systemic inflammatory response (SIRS) associated with an infectious
process [1]. It can progress to multiple organ dysfunction, which can lead, in turn, to
septic shock [2,3]. Sepsis is a common condition characterized by a high mortality rate [4],
especially in patients with comorbidities [5]. Cardiac involvement is one of the main causes
of death in sepsis [6–8]. Moreover, hospitalization and the treatment of sepsis represent an
important expenditure for healthcare systems in developed countries [9]. Therefore, sepsis
could be considered as a healthcare concern, and a lot of efforts must be spent in developing
adequate therapies. Even though a lot of studies have been carried out, the pathogenesis
and the pathophysiology of organ involvement in sepsis is still not completely clear. To
understand the underlying causes of the cardiovascular dysfunction which occurs in sepsis,
the interaction between various immunosuppressive and pro-inflammatory pathways has
been thoroughly studied [10]. In this tangled combination of factors, the role of microRNA
(miRNA or miR) has recently been considered.

MiRNAs are short single-strand non-coding ribonucleic acids involved in the regu-
lation of gene expression on a post-transcriptional phase, which means they are a part
of the epigenetic process [11,12]. Particularly, miRNAs target the 3′untranslated region
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(UTR) of specific messenger RNA (mRNAs), and therefore, they prevent mRNA trans-
lation [13]. Besides, through the interaction with the AU-rich elements (AREs), under
certain circumstances miRNAs can also up-regulate protein translation [14]. MiRNAs are
involved in the pathophysiology of various diseases [15]. Since miRNAs play a role in
the regulation of numerous post-transcriptional pathways involved in the inflammatory
response, their influence on the sepsis process has been investigated [16–19]. MiRNAs
are produced in cells but they can also be found as a stable molecule in plasma and other
bodily fluids (extracellular miRNAs) [20]. Because of this property, miRNAs could be
used as serum sepsis biomarkers [21–30]. It could be interesting to evaluate if specific
miRNAs are involved in the myocardial inflammation underlying heart failure in patients
with sepsis. Furthermore, understanding all the pathophysiologic mechanisms involved in
cardiac damage could provide the chance to develop new therapies.

Therefore, a review of the currently available data about miRNAs involved in cardiac
damage in septic systemic inflammatory response has been carried out.

2. Materials and Methods

The present systematic review was carried out according to the Preferred Reporting
Items for Systematic Review (PRISMA) standards [31]. A systematic literature search
and a critical appraisal of the collected studies was conducted. An electronic search of
PubMed, Science Direct Scopus, Google Scholar, and Excerpta Medica Database (EMBASE)
from the inception of these databases to August 2020 was performed. The search terms
were “microRNA + sepsis induced cardiac dysfunction”, “microRNA + sepsis-induced
cardiac dysfunction”, “miRNA + sepsis induced cardiac dysfunction”, “miRNA + sepsis-
induced cardiac dysfunction”. The bibliographies of all located papers were examined
and cross-referenced for further relevant literature. The methodological appraisal of each
study was conducted according to the PRISMA standards, including the evaluation of
bias. Data collection entailed study selection and data extraction. Three researchers (R.L.R.,
P.F., M.D.P.) independently examined the papers with title or abstracts that appeared
to be relevant and selected the ones that analyzed the miRNA used to identify cardiac
dysfunction in sepsis-related death. Disagreements concerning eligibility between the
researchers were resolved by a consensus process. No unpublished, pre-print, or grey
literature was searched. Only papers in English were included in the search. Data extraction
was performed by two investigators (A.M., A.C.M.) and verified by two other investigators
(V.F., E.T.). This study was exempt from institutional review board approval as it did not
involve human subjects.

3. Results

An appraisal based on titles and abstracts as well as a hand search of reference lists
were carried out. The reference lists of all located articles were reviewed to detect still
unidentified literature. This search identified 152 articles, which were then screened based
on their abstract. The resulting 152 references were screened to exclude duplicates, which
left 109 articles for further consideration. In addition, papers not written in English were
excluded, and the following inclusion criteria were used: (1) original research articles,
(2) reviews and mini-reviews, and (3) case report/series. These publications were carefully
evaluated, taking into account the main aims of the review. This evaluation left 35 original
research articles.

Figure 1 illustrates our search strategy. Table 1 shows the scientific papers included in
the review.
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Figure 1. Methodology search strategy: we identified 152 articles, the screening based on their abstract left 109 studies and
after a careful evaluation based on the aims of this review 35 research articles were included.

miRNA Expression in Sepsis-Related Cardiac Dysfunction

MiRNAs sequences are entirely known and well preserved through species. Immuno-
suppression, pro-inflammation with these are also important pathways in understanding
the role of miRNAs in septic myocardial injury. At the moment, there are few studies
investigated lncRNAs-miRNAs interaction in sepsis and cardiac damage. The potential
role of miRNAs as new diagnostic tools and therapeutic strategies worth deepening the
complex network between non-coding RNA and biological pathways.

Wang et al. evaluated the miRNA expression profiles in myocardial tissue in the
cecal ligation and puncture (CLP) mouse model [32]. They reported that miR-223 was
downregulated after severe CLP surgery, with an increase of inflammatory response
and myocardial depression. Some clinical studies supported these findings, showing a
reduction of serum miR-223 in patients who died of sepsis [33,34]. It is noteworthy that a
decrease in seric level of miR-223 was also linked with cardiac mortality in chronic kidney
disease patients [35]. It seemed that miR-223-5p inhibits the translation of sempahorin3A.
A multi-omics study also demonstrated that MiR-223 has a profound role on the NF-κB
system and it is involved in inflammation regulation (i.e., monocyte differentiation) [36].

Xue et al. showed that miR-27a expression is elevated in lipopolysaccharide (LPS)
exposed mice’s myocardium [37]. They also conducted in vitro experiments to understand
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its mechanism of action: it seemed that miR-27a regulates the nuclear factor (erythroid-
derived)-like 2 (Nrf2) expression. Nrf2 is a transcription factor that regulates the expression
of antioxidant enzymes [38]. In 2015, Gao et al. demonstrated that an elevation of miR-146a
expression attenuates myocardial dysfunction in polymicrobial sepsis by inhibiting NF-kB
activation [39]. In 2018, An et al. confirmed through an in vitro experiment the attenuation
of inflammation induced by miR-146a [40]. They also found a correlation between miR-146a
elevation and an enhanced ErbB4 expression. More recently, Xie et al. corroborated these
findings, suggesting miR-146a could influence the TLR-4/NFκB signaling pathway [41].
Wang et al. proved that also miR-146b plays a protective role against sepsis-induced
myocardial damage [42]. They suggested it works via inhibition of Notch1, which is
involved in the development of heart and in the inflammatory response.

In another work, Ma et al. demonstrated a similar protective effect obtain by increasing
the expression of miR-125b [43]. Chen et al. showed that miR-125b decreases in the CLP
mouse model [44]. Moreover, when a miR-125b mimic was transfected, the cardiac function
improved. Furthermore, they investigated the role of the long noncoding RNA (lncRNA)
MALAT1. They concluded that there is a correlation between MALAT1, miR-125b, and the
p38 MAPK/NFκB pathway, and therefore MALAT1 enhances the myocardial inflammation.
MALAT1 was also the subject of the work of Wei and Liu [45]. They found that miR-150-5p
is inhibited by MALAT1 and therefore they have opposite roles in the sepsis-induced
myocardial inflammation. While the overexpression of miR-150-5p is protective, the
overexpression of MALAT1 worsens cardiac inflammation. They suggested MALAT1 is a
miR-150-5p inhibitor. It also seemed that miR-150-5p regulates the NF-kB pathway. A more
recent study confirmed the protective effect of miR150-5p on myocardiocytes in sepsis [46].

In two different studies, Wang et al. investigated the changes in miR-21-3p and miR-
155 expression in the cardiac tissue of mice exposed to LPS [47,48]. Both miR-21-3p and
miR-155 were up-regulated in the myocardial tissue after the intraperitoneal injection of
LPS. Indeed, the administration of their relative antagomiRNA (antagomiR) before the
LPS exposure led to a diminishing of the cardiac dysfunction, and vice versa the previous
administration of the agomiRNA (agomiR) worsened the cardiac dysfunction. To evaluate
the clinical relevance of their findings, they also measured miR-21-3p in the blood of septic
patients with cardiac involvement, revealing that it was greater than in septic patients
without cardiac dysfunction. Diao and Sun conducted a similar work [49]. They evaluated
the expression of miR-124a in LPS-induced sepsis mice’s myocardium and its variation
following the administration of its antagomiR and agomiR. MiR-124a was down-regulated
in septic mice while its inhibition and stimulation showed respectively a worsening and
improvement of the cardiac function.

Very interesting work was carried out by Zheng et al. [50]. As first, they measured
the level of miR-135a in the serum of patients with sepsis-induced cardiac depression,
finding a correlation between the level of miR-135a and the severity of the myocardial
dysfunction. Then, they performed CLP surgery in miR-135a-transfected mice. Myocardial
inflammation in transfected mice was higher than in non-transfected, while the cardiac
function was decreased. They also suggested that the miR-135a pro-inflammatory effect
could be mediated by the activation of the p38 MAPK/NF-κB pathway.

The injection of miR-155 mimic after CLP surgery in mice was found to be protective
against cardiac dysfunction by Zhou et al., as well as the previous transfection of miR-
155 diminished the inflammatory cell infiltration into the myocardium [51]. The authors
also suggested that miR-155 inhibits the expression of β-arrestin 2 (Arrb2), which is a
protein involved in immune system regulation. Other authors demonstrated the up-
regulation of miR-214 during sepsis in mice [52]. In their study, myocardial inflammation,
apoptosis, and dysfunction were decreased when the miR-214 expression was enhanced
via its precursor, and, vice versa, they were worsened by its inhibitor. In a different
study, it was demonstrated that miR-214-3p inhibits autophagy via the PTEN/AKT/mTOR
pathway [53].
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A study of the miR-874 expression was conducted by Fang et al. [54]. They found
that miR-874 was up-regulated in sepsis patients’ serum, in LPS-induced sepsis mice, and
septic mice’s myocardiocytes. They found a negative correlation between miR-874 and
lncRNA H19 and aquaporin 1 (AQP1), suggesting that H19 inhibits miR-874 expression,
which in turn inhibits AQP1 expression. In previous studies, AQP1 was demonstrated to
be involved in other pathophysiologic mechanisms, such as tumor development, inflam-
matory cytokines release (via NF-Kb signaling pathway), and polycystic kidney disease
(via Wnt signaling pathway) [55–57].

MiR-93-3p was down-regulated in LPS-treated cells in Tang et al.’s work [58]. It
seemed to be involved in the regulation of toll-like receptor 4 (TRL4) translation. The
overexpression of miR-93-3p repressed apoptosis and cytokine expression, suggesting a
protective role against septic-induced cardiac damage. Another miRNA’s function was
studied by Yao et al. [59]. They found that miR-25, which is decreased during sepsis, if
overexpressed had got a protective effect against apoptosis in LPS-induced cell damage.
They suggested miR-25 influences the TLR4/NF-kB pathway and directly targets the
phosphatase and tensin homolog (PTEN).

Wu et al. found that also miR-494-3p targeted PTEN [60]. miR-494-3p is down-
regulated in septic patients’ blood and its decrease correlates with the cardiac dysfunction.
MiR-494-3p up-regulation protects rat cardiomyocyte against apoptosis. MiR-23b was
found to be elevated in CLP mice’s myocardium by Zhang et al. [61]. Its inhibition not
only reduced myocardial dysfunction but also attenuated cardiac remodeling. The authors
stated that the miR-23b′s target gene is the 5′TG3′-interacting factor 1 (TGIF1), which in
turn inhibits the transforming growth factor β1 (TGF- β1), known to be involved in fibro-
genesis [62,63]. It must be added, however, that Cao et al. reported opposite results [64].
In their study, miR-23b seemed to attenuate sepsis-induced cardiac dysfunction. They
up-regulated miR-23b in cardiomyocytes, both in vivo and in vitro, and then measured
the cardiac function and the inflammatory cytokine secretion. They were respectively
increased and decreased. There was also a reduction in adhesion molecules expression,
NF-κB pathway activation, and caspase-3 activity. Unfortunately, Cao et al. did not explore
the reasons behind this difference. Maybe it is reasonable to hypothesize different pathways
for the two strands of the same pri-miRNA.

MiR-495 was found to be down-regulated in blood samples of septic patients by Guo
et al. [65]. Furthermore, it was more decreased in patients who developed septic shock. The
authors also created a rat sepsis-model through CLP modelling. Septic rats’ myocardium
and serum disclosed a decrease in MiR-495. The cardiac function was impaired as well. The
injection of agomiR-495 reduced inflammation and reversed the myocardial dysfunction.
Zhu et al. [66] investigated the role of miR-98 in sepsis-cardiac dysfunction. MiR-98 was
down-regulated in the myocardium of CLP-mice. Mice who received the injection of the
agomiR-98 showed an increase in cardiac function, less myocardial damage and apoptosis
(via Cleaved caspase-3 and Bax protein’s inhibition), and a different pattern of cytokines.
Specifically, tumor necrosis factor α (TNF- α) and interleukine-6 (IL-6) were increased,
while IL-10 was decreased. Another study showed that miR-208a-5p is elevated in the
myocardium during sepsis and its inhibition could reduce the myocardial damage induced
by inflammation, probably by influencing the NF-kB/HIF-1α signaling pathway [67].

Sun et al. recognized a positive correlation between miR-328 serum level and sepsis in
human patients [68]. Moreover, miR-328 showed to be correlated with cardiac dysfunction
in the CLP rat model, while the injection of its antagomiR seemed to reduce inflammation
and ameliorate the impairment. In 2019, Zhang et al. identified 78 miRNAs expression of
which changed during the septic state in rat heart [69]. They then constructed a complex
network to represent the relationship between miRNAs and circular RNAs (circRNAs), a
different kind of non-coding RNA involved in biological pathway control via miRNAs’
inhibition [70].

MiR-29a expression in sepsis appeared to be enhanced in a study recently conducted
by Zhu et al. [71]. They evaluated the role of a lncRNA, CRNDE, in sepsis-induced
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myocardial damage. CRNDE diminished apoptosis, inflammation, and oxidative stress in
cardiomyocytes treated with LPS via miR-29a inhibition. Contrasting results were provided
by Song et al. [72]. In their study, miR-29a seemed to be down-regulated by LPS and it
had a positive role in preventing and attenuating cardiac damage. The lncRNA CYTOR
was studied by Chen et al. [73]. CYTOR regulates the expression of miR-24, which inhibits
the translation of X-chromosome-linked inhibitor of apoptosis (XIAP). As a result of this
pathway, down-regulation of CYTOR or up-regulation of miR-24 appeared to worsen
sepsis-induced myocardial injury via activation of apoptosis. Sun et al. demonstrated
the role played by lncRNA KCNQ1OT1 in the regulation of miR-192-5p in myocardium
damage by sepsis [74]. KCNQ1OT1 downregulated miR.192-5p, which in turn inhibits the
translation of XIAP, improving myocardiocyte viability and contrasting apoptosis.

Nuclear enriched abundant transcript 1 (NEAT1) is another lncRNA found to be
involved in sepsis-induced myocardial damage in a recent study [75]. NEAT1 exerts a
negative control on miR-144-3p. NEAT1 was found to be elevated in myocardial cells
when LPS was administered, while obviously miR-144-3p was decreased. MiR-144-3p
seemed to be involved in apoptosis and inflammation in myocardial cells via the NF-kB
pathway. Xing et al. investigated the role of lncRNA myocardial infarction associated
transcript (MIAT) in sepsis-induced myocardial injury [76]. MIAT appeared to be a down-
regulator of miR-330-5p. From their study, seemed that miR-330-5p attenuates myocardial
oxidative stress and inflammatory response, thanks to its target protein, tumor necrosis
factor receptor-associated factor 6 (TRAF6), which is involved in NF-kB signaling. miR-
330-5p is down-regulated in septic myocardiocytes.

In another work the interaction between the lncRNA component of mitochondrial
RNA processing (RMRP) and miR-1-5p was evaluated [77]. Herein, the protective role of
RMRP against myocardial sepsis-induced injury and mitochondrial damage was reported.
RMRP inhibits miR-1-5p, which in turn targets the heat shock protein HSPA4 (previously
known as hsp70).

Table 1. Review of the literature on miRNA and cardiac dysfunction in sepsis. MiR indicates microRNA.

Author and
Reference

Year of
Publication Sepsis Model Brief Description of miRNAs in Sepsis-Induced Cardiac Injury

Wang et al. [32] 2014 In vivo miR-223 (both 3p and 5p) down regulated, its absence enhances
myocardial inflammation

Xue et al. [37] 2015 In vivo + in vitro miR-27a up regulated, its overexpression enhances
myocardial inflammation

Gao et al. [39] 2015 In vivo + in vitro miR146a up regulated, its overexpression attenuates
myocardial disfunction

Ma et al. [43] 2016 In vivo + in vitro miR-125b down regulated, its overexpression attenuates
myocardial disfunction

Wang et al. [47] 2016 In vivo + in vitro miR-21-3p up regulated, its down regulation attenuates myocardial
inflammation, while its overexpression worsens it.

Wang et al. [48] 2016 In vivo miR-155 up regulated, its inhibition attenuates myocardial
apoptosis, its overexpression worsens it.

Diao et al. [49] 2017 In vivo + in vitro miR-124a down regulated, its overexpression attenuates
myocardial damage, its down regulation worsens it.

Zheng et al. [50] 2017 In vivo + in vitro MiR-135a up regulated, its overexpression worsens
myocardial inflammation

Zhou et al. [51] 2017 In vivo MiR-155 overexpression attenuates myocardial damage

An et al. [40] 2018 In vitro miR-146a up regulated, its overexpression attenuates
myocardial inflammation

Chen et al. [44] 2018 In vivo + in vitro MiR-125b down regulated, its overexpression attenuates
myocardial damage
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Table 1. Cont.

Author and
Reference

Year of
Publication Sepsis Model Brief Description of miRNAs in Sepsis-Induced Cardiac Injury

Ge et al. [52] 2018 In vivo MiR-214 up regulated, its overexpression attenuates myocardial
apoptosis and damage

Fang et al. [54] 2018 In vivo + in vitro MiR-874 up regulated, its inhibition attenuates
myocardial dysfunction

Wang et al. [42] 2018 In vivo + in vitro MiR-146b up regulated, its overexpression attenuates
myocardial inflammation

Zhang et al. [61] 2018 In vivo + in vitro MiR-23b up regulated, its inhibition attenuates myocardial
dysfunction and fibrosis;

Tang et al. [58] 2018 In vitro MiR-93-3p down regulated, its overexpression attenuates
inflammation and apoptosis

Yao et al. [59] 2018 In vivo + in vitro MiR-25 down regulated, its overexpression attenuates apoptosis

Wu et al. [60] 2018 In vivo + in vitro
MiR-494-3p down regulated and correlated with myocardial

damage, its overexpression attenuates myocardial injury
and apoptosis

Cao et al. [64] 2019 In vivo + in vitro MiR-23b up regulated, its overexpression attenuates myocardial
inflammation and apoptosis

Guo et al. [65] 2019 In vivo MiR-495 down regulated, its overexpression attenuates
myocardial dysfunction

Xie et al. [41] 2019 In vivo MiR-146a up regulated, its overexpression attenuates myocardial
inflammation and apoptosis

Zhu et al. [66] 2019 In vivo MiR-98 down regulated, its overexpression attenuates myocardial
damage, apoptosis, and inflammation

Zhang et al. [69] 2019 In vivo 78 miRNAs differently expressed in myocardium during sepsis

Wei et Liu [45] 2019 In vitro MiR-150-5p down regulated, its overexpression
attenuates inflammation

Chen et al. [73] 2020 In vivo + in vitro MiR-24 up regulated, its inhibition attenuates myocardial apoptosis

Sun et al. [74] 2020 In vivo + in vitro MiR-192-5p up regulated, its inhibition attenuates
myocardial apoptosis

Ouyang et al. [67] 2020 In vivo MiR-208a-5p up regulated, its inhibition attenuates
myocardial damage

Sun et al. [68] 2020 In vivo MiR-328 up regulated, its inhibition attenuates
myocardial inflammation

Zhu et al. [46] 2020 In vivo + in vitro MiR-150-5p down regulated, its overexpression attenuates
myocardial apoptosis

Zhu et al. [71] 2020 In vivo + in vitro MiR29a up regulated, its inhibition attenuates myocardial damage

Wei et al. [75] 2020 In vitro MiR-144-3p down regulated, its overexpression attenuates
myocardial damage

Xing et al. [76] 2020 In vivo + in vitro MiR-330-5p down regulated, its overexpression attenuates
inflammation and oxidative stress

Han et al. [77] 2020 In vivo + in vitro MiR-1-5p enhances myocardial damage

Song et al. [72] 2020 In vivo + in vitro MiR-29a attenuates myocardial damage

Sang et al. [53] 2020 In vivo MiR-214-3p up regulated, its overexpression attenuates myocardial
damage and autophagy
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4. Discussion

In the last few years, interest in how miRNAs influence various signaling pathways has
increased [13,78–80]. In particular, their role in the pathophysiology of diseases has been
the subject of many studies [15,81–84]. MiRNAs are known to influence the inflammation
process [82,85,86]. Since sepsis is considered as a systemic and runaway inflammatory
response to infectious diseases, the existence of numerous miRNAs involved in sepsis
pathophysiology should not surprise [16–19,87,88]. Concerning the role of miRNAs in
sepsis-induced cardiac dysfunction, a lot still has to be disclosed.

MiRNAs’ sequences are entirely known and well preserved through species. Further-
more, their synthesis is relatively easy [89]. These characteristics make miRNAs the perfect
subject to study in order to find new diagnostic techniques and therapeutic strategies
(Figure 2).

Figure 2. Mechanism of action of the activation of the major players of cardiac dysfunction induced by sepsis with up and
down regulation of miRNAs involved in the mechanism of infection.

When reviewing the literature, we found at least 77 miRNAs involved in cardiac
inflammation and dysfunction during sepsis, but we are sure we have just scratched the
surface (Table 2).

Table 2. MiRNAs involved in sepsis-induced cardiac dysfunction.

MiRNA Expression in Sepsis (Myocardium and/or Serum) Target Genes Reference

MiR-1-5p its inhibition is protective HSPA4 Han et al. 2020 [77]

MiR-7a-5p ↑ - Zhang et al. 2019 [69]

MiR-20b-3p ↓ - Zhang et al. 2019 [69]

MiR-21-3p ↑
Its up-regulation worsens inflammation SORBS2

Wang et al. 2016 [47]

MiR-21-5p Zhang et al. 2019 [69]
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Table 2. Cont.

MiRNA Expression in Sepsis (Myocardium and/or Serum) Target Genes Reference

MiR-23b

↑
its inhibition is protective

TGIF1
PTEN
TRAF6

IκκB

Zhang et al. 2018 [61]

its up-regulation is protective Cao et al. 2019 [64]

MiR-24 ↑
its inhibition is protective XIAP Chen et al. 2020 [73]

MiR-24-1-5p ↑ - Zhang et al. 2019 [69]

MiR-24-2-5p ↑ - Zhang et al. 2019 [69]

MiR-24-3p ↑ - Zhang et al. 2019 [69]

MiR-25 ↓
its up-regulation is protective PTEN Yao et al. 2018 [59]

MiR-27a ↑ Nrf2 Xue et al. 2015 [37]

MiR-27a-5p - Zhang et al. 2019 [69]

MiR-29a

↑
its inhibition is protective SIRT1 Zhu et al. 2020 [71]

↓
its up-regulation is protective Song et al. 2020 [72]

MiR-30c-5p ↓ - Zhang et al. 2019 [69]

MiR-30d-3p ↓ - Zhang et al. 2019 [69]

MiR-92a-1-5p ↑ - Zhang et al. 2019 [69]

MiR-93-5p ↓ - Zhang et al. 2019 [69]

MiR-93-3p ↓
its up-regulation is protective TLR4 Tang et al. 2018 [58]

MiR-98 ↓
its up-regulation is protective HMGA2 Zhu et al. 2019 [66]

MiR-99a-5p ↑ - Zhang et al. 2019 [69]

MiR-122-5p ↑ - Zhang et al. 2019 [69]

MiR-124a ↓
its up-regulation is protective STX2 Diao et al. 2017 [49]

MiR-125b
↓

its up-regulation is protective TRAF6
Ma et al. 2016 [43]

Chen et al. 2018 [44]

MiR-126a-3p ↑ - Zhang et al. 2019 [69]

MiR-128-3p ↑ - Zhang et al. 2019 [69]

MiR-132-5p/3p ↑ - Zhang et al. 2019 [69]

MiR-133a-3p/5p ↓ - Zhang et al. 2019 [69]

MiR-135a ↑
Its up-regulation worsens inflammation - Zheng et al. 2017 [50]

MiR-143-3p ↑ - Zhang et al. 2019 [69]

MiR-144-3p ↓
its up-regulation is protective - Wei et al. 2020 [75]

MiR-145-5p ↓ - Zhang et al. 2019 [69]

MiR-146a
↑

its up-regulation is protective
IRAK1
TRAF6
ErbB4

Gao et al. 2015 [39]

An et al. 2018 [40]

Xie et al. 2019 [41]
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Table 2. Cont.

MiRNA Expression in Sepsis (Myocardium and/or Serum) Target Genes Reference

MiR-146b ↑
its up-regulation is protective

Notch1 Wang et al. 2018 [42]

MiR-146b-5p/-3p Zhang et al. 2019 [69]

MiR150-5p ↓
its up-regulation is protective Akt2

Wei et Liu 2019 [45]

Zhu et al. 2020 [46]

MiR-150-3p ↓ Zhang et al. 2019 [69]

MiR-155
↑

its up-regulation is protective
Pea15a
Arrb2

Wang et al. 2016 [48]

Zhou et al. 2017 [51]

MiR-155-3p ↑ - Zhang et al. 2019 [69]

MiR-181b-1-3p ↑ - Zhang et al. 2019 [69]

MiR-181b-5p ↓ - Zhang et al. 2019 [69]

MiR-192-5p ↑
its inhibition is protective XIAP Sun et al. 2020 [74]

MiR-195-3p ↑ - Zhang et al. 2019 [69]

MiR-200a-5p ↑ - Zhang et al. 2019 [69]

MiR-201-5p ↓ - Zhang et al. 2019 [69]

MiR-208a-5p ↑
its inhibition is protective SOCS2 Ouyang et al. 2020 [67]

MiR-210-3p ↓ - Zhang et al. 2019 [69]

MiR-214 ↑
its up-regulation is protective

PTEN Ge et al. 2018 [52]

MiR-214-3p Sang et al. 2020 [53]

MiR-218a-5p ↑ - Zhang et al. 2019 [69]

MiR-219a-1-3p ↑ - Zhang et al. 2019 [69]

MiR-223-5p ↓ Sema3A Wang et al. 2014 [32]

MiR-233-3p ↑ - Zhang et al. 2019 [69]

MiR-233-5p ↑ - Zhang et al. 2019 [69]

MiR-322-5p ↓ - Zhang et al. 2019 [69]

MiR-328 ↑
its inhibition is protective - Sun et al. 2020 [68]

MiR-330-5p
↑ - Zhang et al. 2019 [69]

↓
its up-regulation is protective TRAF6 Xing et al. 2020 [74]

MiR-339-3p ↑ - Zhang et al. 2019 [69]

MiR-340-3p ↑ - Zhang et al. 2019 [69]

MiR-362-5p ↓ - Zhang et al. 2019 [69]

MiR-369-5p ↑ - Zhang et al. 2019 [69]

MiR-378a-5p ↓ - Zhang et al. 2019 [69]

MiR-379-5p ↑ - Zhang et al. 2019 [69]

MiR-380-3p ↑ - Zhang et al. 2019 [69]

MiR-409a-3p ↑ - Zhang et al. 2019 [69]

MiR-425-3p ↓ - Zhang et al. 2019 [69]

MiR-434-5p ↑ - Zhang et al. 2019 [69]

MiR-466b-5p ↑ - Zhang et al. 2019 [69]

MiR-490-5p ↑ - Zhang et al. 2019 [69]
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Table 2. Cont.

MiRNA Expression in Sepsis (Myocardium and/or Serum) Target Genes Reference

MiR-494-3p ↓
its up-regulation is protective PTEN Wu et al. 2018 [60]

MiR-495 ↓
its up-regulation is protective - Guo et al. 2019 [65]

MiR-503-5p ↓ - Zhang et al. 2019 [69]

MiR-674-3p ↑ - Zhang et al. 2019 [69]

MiR-708-3p ↑ - Zhang et al. 2019 [69]
MiR-708-5p ↓ -

MiR-874 ↑
its inhibition is protective AQP1 Fang et al. 2018 [54]

MiR-3557-3p ↓ - Zhang et al. 2019 [69]

MiR indicates microRNA; HSPA4, the heat shock protein previously known as hsp70;
SORBS2, sorbin and SH3 domain containing 2; TGIF1, 5′TG3′-interacting factor 1; PTEN,
phosphatase and tensin homolog; TRAF6, tumor necrosis factor receptor-associated factor 6;
IκκB, inhibitor of nuclear factor kappa-B kinase subunit beta; XIAP, X-chromosome-linked
inhibitor of apoptosis; Nrf2, nuclear factor (erythroid-derived 2)-like 2; SIRT1, sirtuin
1; TRL4, toll-like receptor 4; HMGA2, high mobility group at-hook 2; STX2, syntaxin-2;
IRAK1, interleukin-1 receptor-associated kinase 1; ErbB4, erb-B2 receptor tyrosine kinase
4; Akt2, serine/threonine kinase 2; Pea15a, phosphoprotein enriched in astrocytes; Arrb2,
β-arrestin 2; SOCS2, suppressor of cytokine signaling 2; Sema3A, semaphorin3A; AQP1,
aquaporin 1.

The NF-kB family comprises numerous transcription factors that regulate various
biological pathways. In particular, it is involved in the immune system response and
in the pathogenesis of some malignancies [90,91]. NF-kB proteins are also implicated
in sepsis and SIRS [92,93]. Therefore, it is not surprising that miRNAs implicated in
sepsis myocardial damage regulate, directly or indirectly, some NF-kB-mediated pathways
involved in cardiac dysfunction during sepsis [39,45,59,75,76]. Some studies suggest that
inflammation and infections could have a role in atherosclerotic plaque development and
coronary heart disease (CHD) [94,95]. Furthermore, a recent review summed up the main
miRNAs involved in atherosclerosis [96]. It is interesting to notice that a lot of miRNAs are
both involved in sepsis-induced cardiac dysfunction and atherosclerosis. In particular, miR-
223, which regulates the NF-κB signaling pathway, seems to influence plaque formation
and thrombosis inhibiting tissue factor expression [36,96]. These evidences could suggest a
correlation between CHD, sepsis, and myocardial damage.

It could be interesting to also focus on miR-23b. One study demonstrated it is involved
in myocardial fibrotic changes via targeting TGIF1 [61]. This could be a mechanism of
late sepsis cardiac remodeling. Another protein, which was mentioned a few times in the
present review, is PTEN. It is a phosphatase that regulates various cellular signaling path-
ways and has tumor suppression properties. Some of the aforementioned studies demon-
strated that PTEN is targeted by miRNAs in sepsis-induced cardiac damage [53,59,60]. A
further complication in understanding the role of miRNAs in septic myocardial injury is rep-
resented by lncRNAs, as evidenced by some research studies mentioned above [45,73,74].
Since they have the property of inhibiting miRNAs, they seem to play a crucial role in the
tangled forest of those interconnected signaling pathways. At the moment, there are few
studies investigated lncRNAs-miRNAs interaction in sepsis and cardiac damage.

5. Conclusions

In conclusion, even though recent studies have provided new insight in sepsis-induced
cardiac dysfunction miRNAs involvement, the complete network of influences is still only
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partially understood. Sepsis is a challenge and a great expenditure for healthcare systems
and sepsis-induced cardiac dysfunction is one of the major causes of death among septic
patients. In the future, miRNAs may be used as early sepsis-induced cardiac dysfunction
biomarkers or as new drug targets. This could help clinicians to early detect, prevent,
and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and
therapeutic strategies worth deepening the complex network between non-coding RNA
and biological pathways. Further clinical investigations are required to establish miRNAs’
role in diagnostic and therapeutic approaches in myocardial injury during sepsis.
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