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Abstract: Neurodegenerative disorders can induce modifications of several proteins; one of which
is ceruloplasmin (Cp), a ferroxidase enzyme found modified in the cerebrospinal fluid (CSF) of
neurodegenerative diseases patients. Cp modifications are caused by the oxidation induced by the
pathological environment and are usually associated with activity loss. Together with oxidation,
deamidation of Cp was found in the CSF from Alzheimer’s and Parkinson’s disease patients. Protein
deamidation is a process characterized by asparagine residues conversion in either aspartate or
isoaspartate, depending on protein sequence/structure and cellular environment. Cp deamidation
occurs at two Asparagine-Glycine-Arginine (NGR)-motifs which, once deamidated to isoAspartate-
Glycine-Arginine (isoDGR), bind integrins, a family of receptors mediating cell adhesion. Therefore,
on the one hand, Cp modifications lead to loss of enzymatic activity, while on the other hand, these
alterations confer gain of function to Cp. In fact, deamidated Cp binds to integrins and triggers
intracellular signaling on choroid plexus epithelial cells, changing cell functioning. Working in
concert with the oxidative environment, Cp deamidation could reach different target cells in the
brain, altering their physiology and causing detrimental effects, which might contribute to the
pathological mechanism.

Keywords: ceruloplasmin; choroid plexus; blood-cerebrospinal fluid barrier; NGR and isoDGR
motifs; deamidation; oxidation; neurodegeneration; cerebrospinal fluid

1. Introduction

The occurrence of aberrant post-translational modifications in brain proteins is a
feature reported in different neurodegenerative diseases, including Amyotrophic Lateral
Sclerosis (ALS), Alzheimer’s (AD) and Parkinson’s (PD) disease [1–4]. These modifications
generally involve proteins directly related to the pathology, such as superoxide dismutase,
TDP-43 protein, Aβ peptide, Tau protein and α-synuclein [1–4] but are not limited to them.

Post-translational modifications of ceruloplasmin (Cp), a ferroxidase enzyme present
inter alia in the brain, have been observed in the cerebrospinal fluid (CSF) of patients
suffering from neurodegeneration [5–8]. The Cp modifications are usually associated with
loss of enzymatic activity and are promoted by the pathological environment [5–8]. One of
the Cp modifications, found in the CSF from both AD and PD patients, is deamidation [9,10],
a spontaneous process connected to protein aging [11]. Protein deamidation occurs on two
amino acid residues, namely asparagine and glutamine, and generally results in loss of
protein function [11]. In the case of Cp, the deamidation involves asparagine residues at the
level of two asparagine-glycine-arginine (Asn-Gly-Arg, NGR) sites of the protein sequence
whose, upon deamidation, gain binding activity to integrins [9,10,12]. Integrins are a family
of receptors that mediated cell-extracellular matrix adhesion [13]. The binding of modified
Cp to integrins triggers in vitro intracellular signaling on epithelial cells, altering the cell
physiology with the induction of detrimental effects [9,12]. However, despite the presence
of NGR motifs deamidation in the Cp from neurodegenerative diseases patients’ CSF,
in vivo cellular targets and possible pathological effects are still unexplored topics.
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2. Protein Deamidation, Unwanted Phenomenon or Regulated Process?

Asparagine (Asn, N) deamidation is a spontaneous reaction in which the amide
functional group of Asn is removed, and the amino acid is converted to either an aspartate
(Asp, D) or an isoaspartate (isoAsp, isoD) residue [11]. Glutamine (Gln, Q) can also be
subjected to deamidation, but at lower rate compared to Asn [14]. It has been demonstrated
that deamidation is a post-translational modification that spontaneously occurs in vivo,
under physiological conditions [15]. The process is autocatalytic and nonenzymatic, and
it depends on the protein primary, secondary, and tertiary structure [16]. The rate of
deamidation is also determined by the cellular environment, for example by temperature,
ionic composition and strength, and pH changes [11].

Through deamidation, Asn forms a cyclic succinimide intermediate, which is then
hydrolyzed to either Asp or isoAsp; due to the asymmetry of the succinimide, isoAsp is
the primary product (Figure 1). The formation of isoAsp can also arise from dehydration
of Asp, but at slower rate than Asn residues [17]. Although in a smaller proportion, the
racemization of succinimide can even result in D-Asp and D-isoAsp [17,18]. Depending on
the combination of the conditions mentioned above (sequence, structure, temperature, etc.),
the spontaneous deamidation of specific residues can take different times to happen: for
some residues, it will occur very quickly, while for some others it will never occur [11,19].

Figure 1. Asparagine (Asn) deamidation (1) starts with the nucleophilic attack (green arrow) of the α-amino group, in the
peptide bond, to the amide group in the side chain. The cyclic succinimide intermediate is then rapidly hydrolyzed to a
mixture of Aspartate (Asp) and isoAspartate (isoAsp), with the prevalent production of the latest (about 70% vs. 30%) due
to the asymmetry of the succinimide [17]. The formation of isoAsp can also occur from Asp dehydration (2), with a similar
nucleophilic attack, but this reaction occurs at a slower rate.

Asn deamidation is irreversible, but the isoAsp formed by the reaction can be further
modified by the protein L-isoaspartyl methyltransferase (PIMT) enzyme, which converts
isoAsp into Asp. Therefore, PIMT is considered a sort of repair system that limits the
protein structural changes fostered by the presence of isoAsp, and indeed, due to this role,
PIMT is present ubiquitously in tissues and is widely expressed in Bacteria, Archaea, and
Eukarya [20].

Initially, the deamidation was thought to be purely a sort of protein damage associated
to aging [18,21]. However, since both Asn and Gln residues show such instability, but are
widely distributed in nature, it was proposed that deamidation can serve as a biological
timer for protein turnover [21]. In fact, Asn deamidation rate depends on the amino acid
sequence, so Asn deamidation could be genetically programmed.
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3. Deamidation of Asn Residue in NGR Motifs: From Loss- to Gain-of-Function

Since deamidation introduces a negative charge and, in the case of isoAsp formation,
changes the length of the peptide bond, this modification can induce protein loss of function.
Due to local charge and conformational alterations, the functional interaction with other
proteins or substrate molecules could be prevented [11,22]. For instance, in rat calmodulin
the deamidation reduces the activity below 20% of the native protein [23], whereas the
deamidation of the histidine-containing protein HPr impairs phosphohydrolysis and
phosphotransferase activity in Bacteria [24].

Nevertheless, in some cases, Asn deamidation can result in gain of function. For
example, it has been demonstrated that Asn deamidation in fibronectin is associated with
increased integrin-binding properties [25]. Integrins are cell-adhesion receptors which
recognize different extracellular matrix (ECM) proteins [13]. Integrins can bind multiple
ligands through different specific recognition sequences [13]. One of these is the Arginine-
Glycine-Aspartate (RGD) motif present in some ECM proteins like fibronectin, vitronectin,
bone sialoprotein, collagen, and thrombospondin [13]. However, it has been reported
that integrins can recognize another sequence within the same RGD-binding pocket: the
isoDGR motif resulting from Asn deamidation of the NGR motif [26]. Indeed, structural
studies showed that isoDGR binds αVβ3 integrin in reverse orientation compared to RGD,
thus maintaining the tertiary structure suitable for fitting within the binding pocket [27]. It
has been observed that the deamidation of Asn-263 at the NGR site of fibronectin leads to
αVβ3 integrin-binding activity [25,27]. Therefore, Asn deamidation and the subsequent
production of isoAsp can act as a molecular switch for integrin-binding [22].

NGR motifs are also present in other proteins. A search in the Swiss-Prot databases
found that about 5.02% of proteins contain the NGR-motif, but the frequency of NGR
in proteins classified with the keyword “adhesion” is 17.23%. In comparison, the more
investigated RGD motif is present in 6.35% of proteins [28]. We performed an up-date
of this research for NGR motifs in UniProtKB/Swiss-Prot database (release 2020_05 of 7
October 2020, 563,552 entries), using Prosite tool in the Expasy bioinformatics resource
portal (www.expasy.org). Excluding splice variants and restricting the analysis to the Homo
sapiens database, we found that 5.9% of proteins contain the NGR motif in their sequence
(1193 out of 20,385). Within the total NGR-containing proteins, most of them have one
NGR motif (92%), while only 8% of the proteins have two or more NGR motifs (Figure 2).

Figure 2. Distribution of Asparagine-Glycine-Arginine (NGR) motifs in human proteins. About 6%
of total proteins contain the NGR motif, and the vast majority of these (92%) has one NGR motif in
the sequence, while only 8% shows two or more NGR motifs.

For comparison, the integrin-binding RGD motif was found to be present in 7.7% of
all human proteins, and within these, the presence of two or more RGD motifs is restricted
to the 7.6%. NGR sites are therefore relatively infrequent in proteins and having two or
more NGR motifs is a rare circumstance (only 0.47% of total human proteins). Performing a

www.expasy.org
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Gene Ontology (GO) biological process enrichment analysis by using the STRING database
(www.string-db.org), we found that 14.5% of the proteins classified as to be involved in
cell adhesion, contain NGR motifs; indeed, up to 18.0% of the proteins localized in the
extracellular matrix hold one or more NGR site (GO Cellular Component) [29,30].

4. Ceruloplasmin Deamidation in Neurodegenerative Diseases

NGR motifs are not only present in adhesion proteins but also in proteins classified as
“receptor” and “enzyme” [28]. Ceruloplasmin (Cp) is one of the enzymes that contain NGR
motifs. Cp is a multicopper ferroxidase which is mainly synthesized by hepatocytes and
secreted into the blood [31]; within the central nervous system (CNS), Cp is expressed by
astrocytes as glycosylphosphatidylinositol (GPI)-anchored isoform [32], and is secreted in
CSF by the epithelial cells of choroid plexus facing the brain ventricles [31–35]. In particular,
Cp is within the restricted group of proteins containing two NGR motifs: the first (568NGR)
is exposed on the protein surface, while the second (962NGR) is hidden within the protein
tertiary structure [9]. Having two or more NGR motifs is rare in proteins, and in the case
of Cp their importance is underlined by the fact that the two NGR motifs are conserved
across different species [10]. It has been observed that Asn in the two NGR motifs carried
by Cp can undergo deamidation.

The first 568NGR motif deamidates when exposed to conditions that accelerate Asn
aging [9], as for the in vitro incubation at 37 ◦C in ammonium bicarbonate buffer at basic
pH [25]. The deamidation results in a local structural change that flip-out the 568NGR loop
toward the external milieu [9]. On the contrary, the second 962NGR motif, buried in the
depth of the protein structure, can deamidate only under particular conditions. Since the
Asn-962 is locked in a stable conformation between two β-strands, its deamidation occurs
only after Cp structural changes that “open” the region where the 962NGR site is located.
Such conditions may arise when Cp is exposed to an oxidative environment. Indeed it has
been reported that exposing Cp to accelerated aging in vitro under oxidative conditions
(e.g., in the presence of hydrogen peroxide) promotes the deamidation of Asn at position
962 [9]. Structural alterations induced by oxidation on Cp have been described resulting in
the release of coordinated copper atoms [36] and in changes of circular dichroism spectra [9].
Under these conditions, the structural changes and the release of copper atoms leads to
the loss of Cp ferroxidase function [8,10]. In addition, the deamidation of Cp induces the
conversion of NGR sites into isoDGR, promoting integrin-binding properties and, therefore,
a gain of function. Of note, the acquisition of integrin-binding properties happens also
when purified Cp is incubated in the CSF from Alzheimer’s disease (AD-CSF) patients or
Parkinson’s disease (PD-CSF) patients, but not when incubated in the CSF from control
peripheral neuropathy patient and healthy subjects [9,10]. Thus, in the CSF of AD and
PD patients are present compounds that foster Cp structural changes and deamidation,
suggesting that Cp alterations can also occur in vivo on the endogenous protein. In fact,
the Cp present in PD-CSF has been reported to be more oxidized and deamidated than the
Cp in the CSF of healthy subjects [8,10]. Nevertheless, in contrast to what was observed
in vitro, Asn deamidation in the Cp from PD-CSF was found predominantly at the level
of the hidden 962NGR site rather than at the level of the more exposed 568NGR [10]. This
may be explained by the fact that Asn deamidation is dependent on the combination of
various elements, among which ionic strength and composition, and pH [11]; therefore,
the kinetic of deamidation of a specific Asn residue can change in considerable amount
in different conditions. The increased amount of deamidation observed in Cp resident, or
incubated, in PD-CSF could be explained by the pro-oxidant environment generated by the
hydrogen peroxide, present at high concentration in PD-CSF, compared to healthy subjects
and control groups (50 µM vs. 20–25 µM, respectively) [10]. The hypothesis that hydrogen
peroxide concentration in the pathological CSF might be responsible for Cp oxidation and
deamidation is further supported by the evidence that incubation with catalase, a scavenger
enzyme for hydrogen peroxide, prevented Cp deamidation [10]. Since Cp concentration in
the CSF ranges from 0.8 to 2.2 µg/mL [37,38], based on quantitative analysis performed
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by mass spectrometry it has been estimated that deamidated Cp in patients might reach
concentration of about 200 ng/mL [10].

The oxidative changes of Cp have double effects: on one hand, the induction of struc-
tural change with the release copper atoms coordinated within the Cp catalytic pocket [39],
which results in loss of Cp ferroxidase activity [36]; on the other hand, it allows the NGR
motifs deamidation, leading to Cp integrin-binding gain-of-function.

5. Ceruloplasmin Deamidation and Switch to Integrins Binding Function

As mentioned before, oxidized and deamidated Cp acquires integrin-binding prop-
erties which in turn mediate cell adhesion and activate integrin-mediated intracellular
signaling pathways. Cp oxidized and deamidated (Cp-ox/de) in vitro binds different
integrins, among which αVβ6, whose expression is restricted to epithelial cells [40]. In-
deed, it has been reported that Cp-ox/de mediated HaCat epithelial cell line adhesion
and spreading onto a coated plate [9]. Moreover, Cp-ox/de induced a series of protein
phosphorylation events related to integrin-mediated signaling transduction, particularly
those regulating MAPK signaling pathway and cell cycle [9]. The Cp-ox/de interaction
with integrins caused cell proliferation arrest due to cell cycle blocking and apoptosis
triggering, affecting the epithelial cell functionality [12]. The same effects of cell-adhesion
promotion and proliferation inhibition were also observed with Cp modified ex vivo, by
the incubation in the CSF from PD or AD patients, suggesting that cellular targeting by
modified Cp might also occur in vivo [9,10,12]. These effects on HaCat epithelial cell func-
tionality were mediated by the direct binding to integrins through the deamidated NGR
motifs of Cp, as inferred by competitive binding with a peptide containing the isoDGR
motif and by Cp-ox/de pre-treatment with PIMT enzyme, which convert the isoDGR
integrin-binding motif to DGR, thus avoiding integrins engagement [9,10,12,20,41].

However, HaCat cells are keratinocytes, a type of epithelial cells not present in the CNS
and not in contact with the CSF. In vivo, within the CNS the brain ventricle wall is lined
by a layer of epithelial cells, namely the ependymal and the choroid plexus cells, possible
targets of deamidated Cp. While ciliated ependymal cells lining the brain parenchyma seem
to play a principal role in CSF flow through the brain ventricular system, choroid plexus
epithelial cells (CPEpiCs) are responsible for the production and the secretion of about 70%
of the CSF [42,43]. Indeed, CPEpiCs contribute to the formation of CSF in its fundamental
components by: (1) exchanging water, salts, metal ions, metabolites, and proteins from
the bloodstream to the ventricles, with the support of a variety of pumps, channels and
transporters; (2) secreting metabolites and proteins directly within the CSF [44,45]. Recently,
it has been demonstrated that CPEpiCs also release extracellular vesicles (microvesicles and
exosomes) into the CSF, and this has been proposed/hypothesized as a cell communication
mechanism between blood and CNS [46,47]. Moreover, the epithelial cells of the choroid
plexus are responsible for the generation and maintenance of the blood-cerebrospinal fluid
barrier (BCSFB) that, in analogy with the blood-brain barrier, separates the CSF from the
blood [43].

The possibility to target CPEpiCs is supported by evidence that, via integrin-binding, Cp-
ox/de promotes cell adhesion of primary human choroid plexus epithelial cells (HCPEpiCs),
which express αVβ3 and α5β1 integrins suitable for isoDGR binding, transducing an
intracellular signaling that, as for HaCat, inhibited cell proliferation [12]. This might have
consequences on the major physiological roles of these cells, namely secretion and barrier
properties, which contribute to determining the CSF composition. For example, the inhibi-
tion of CPEpiCs proliferation might limit the cell self-renewal necessary to maintain an
intact cell monolayer required for barrier properties. In turn, a barrier leakage can affect
both the turnover of CSF and its composition modifying the concentration of metabolites,
salts, metal ions and proteins. In addition, since CPEpiCs have high proteins secretion
capacity, as both proteins and microvesicles/exosomes [46,48], an aberrant intracellular
signaling might also modify the profile of the released proteins. In line with this hypothesis
is our observation that treatment with Cp-ox/de is able to induce alterations in the secre-
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tome profile of HCPEpiCs [49]. Within 470 proteins identified and quantified, 25 resulted
to be differentially expressed and most of them (23 out of 25) showed a reduction in the
expression levels compared to untreated cells, while two proteins were up-regulated. These
proteins comprise proteins involved in basal membrane and ECM organization, proteases,
protease inhibitors, proteins associated to integrins functionality, to cell proliferation, neu-
ronal function and neurodegeneration [49]. Therefore, integrins engagement by Cp-ox/de
seems to affect the cellular interaction with ECM and the homeostasis of brain extracellular
milieu. However, it must be considered that integrins are adhesion molecules present at
the basolateral membrane side of the epithelial cells, while the modified Cp is present
in the CSF which soaks the apical side of the choroid plexus. Alteration of the BCSFB
properties, which might allow the engagement of the CPEpiCs integrins by modified Cp,
has been reported in AD, PD and ALS. These alterations include modification in choroid
plexus thickness, mechanical properties and barrier leakage [50–54]. One responsible for
the induction of the impairment of BCSFB properties in the neurodegenerative disease
is the pro-oxidant environment of the pathological CSF, which is able to induce tight
junctions dysregulation and disassembly in epithelial cells [55]. In choroid plexus, as in
any other physiological barrier, tight junctions formation and integrity are fundamental
for the generation and the maintenance of the BCSFB [43]. The high hydrogen peroxide
concentration found in PD-CSF can exert is detrimental effect both by inducing CSF pro-
teins modifications and by dysregulating tight junctions organization [8,10,55]. The same
oxidative stress directly affects the Cp structure causing the release of the coordinated
copper atoms [36]. Since Cp, which contains six copper atoms, is the major transporter of
this metal ion within serum and CSF [31], the local free copper concentration reached upon
release from oxidized Cp might contribute to barrier damage. Indeed, copper induced
alteration of the barrier permeability has been observed in Caco-2 epithelial cell line [56].
In addition, copper modulates modifications and aggregations of proteins involved in
neurodegeneration (e.g., α-synuclein and amyloid-β), affecting the choroid plexus barrier
properties [57–61]. The release of copper atoms from Cp leads to loss of ferroxidase activity,
as they are fundamental for the electron-transport necessary for the catalytic activity [62],
and a decrease of Cp activity in the CSF from both AD and PD patients has been reported as
a consequence of the modification induced by the pro-oxidant environment [5,6]. The lack,
or decrease, of Cp-mediated ferroxidase activity promotes the intracellular accumulation of
reduced ferrous iron, which may react with hydrogen peroxide generating reactive oxygen
species through Fenton chemistry [63], which in turn may contribute to the barrier damage.
As exemplified by the rare genetic disease aceruloplasminemia [64–66], Cp ferroxidase ac-
tivity is important for the correct iron metabolism, and its absence contributes to oxidative
stress, as observed in the brain of both patients and animal models [67,68]. Besides, loss
of Cp ferroxidase activity induces iron accumulation in CPEpiCs [69], which could also
worsen barrier damage.

In this scenario, the brain oxidative stress, characterizing different neurodegenerative
diseases as AD, PD, and ALS [70–73], could act in different ways, converging on Cp
and the choroid plexus. Indeed, oxidative compounds present in the pathological CSF
could increase permeability at the level of the BCSFB; in the meanwhile, oxidative stress
modifies Cp, promoting its deamidation and gain of integrin-binding functions while
reducing its ferroxidase activity. With increased barrier permeability, the modified Cp can
cross the epithelial monolayer of the choroid plexus, reaching integrins on the opposite
site, where it could exert its detrimental effects on both cell proliferation and secretome
composition (Figure 3).
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Figure 3. Schematic representation of the possible mechanism of action of oxidized/deamidated ceruloplasmin (Cp-
ox/de) on choroid plexus epithelial cells. In healthy conditions, the blood-cerebrospinal fluid barrier (BCSFB) is intact
and ceruloplasmin (Cp) is retained in the cerebrospinal fluid (CSF), exerting ferroxidase activity. Under pathological
conditions, Cp is modified by the pro-oxidant environment that promotes Asparagine-Glycine-Arginine (NGR) motifs
deamidation and loss of copper ions, inhibiting Cp ferroxidase activity. The oxidative environment also induces the leakage
of the BCSFB, and allows Cp-ox/de to cross the choroid plexus epithelial monolayer. Once in the basal side, Cp-ox/de
binds integrins via isoAspartate-Glycine-Arginine (isoDGR) motif, transducing an intracellular signal that might affect
integrin-mediated interaction with the extracellular matrix (ECM), modify secretome components profile, and induce cell
proliferation inhibition.

6. Asparagine Deamidation and Isoaspartyl Formation in Brain Proteins

In the light of the proposed model of action, it is evident that Cp could not be the
unique protein in CNS that undergoes deamidation in pathological conditions acquiring
new detrimental functions. This is underlined by the PIMT knock-out mouse neurological
phenotype, characterized by widespread brain protein deamidation and fatal seizure [74].
As mentioned before, PIMT enzyme counteracts isoAsp formation [20], thus could regress
isoDGR formation, reverting its integrin-binding activity. However, none of the proteins
found to be the principal target of PIMT, in the mouse brain, contain NGR motifs in
their sequences [75]. Indeed, for the majority of these proteins, the detrimental role of
isoAsp formation seems to be due to loss of protein activity rather than gain of function,
as exemplified by the loss of enzymatic activity of creatine kinase B after isoaspartyl
formation [76]. It should be noted that Asn deamidation does not seem detrimental
per se, rather than isoAsp formation that might cause changes in charge and length
of the peptide bond, promoting loss of functions [11,22]. However, Asn deamidation
was found to increase the propensity to form aggregates of different proteins related to
neurodegenerative diseases, among which α-synuclein [77], superoxide dismutase [78],
Tau protein [79], amyloid-β [80], therefore providing gain of function.

Nevertheless, other proteins possessing NGR motif/s within the sequence could
deamidate to isoDGR due to brain pro-oxidant environment, acquiring integrin-binding
properties as seen for Cp. For example, performing the previously mentioned bioinfor-
matics analysis, we found that in proteins related to synapse organization (a biological
process exclusively confined to the nervous system), 15.3% display NGR motifs in their
sequence, whereas no one has RGD motifs. So, it is possible that some of these proteins
might contribute to pathological alterations with a mechanism similar to that observed for
Cp. In particular, considering that integrins recognized by isoDGR motif (such as αVβ3,
αVβ5, αVβ6,αVβ8 and α5β1) [9,22,25] are widely expressed in the nervous system by
both neuronal and glial cells [81], other cells out of CPEpiCs could also be targeted by the
NGR-containing deamidated proteins. In addition, variations in the susceptibility of the
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cells that could be targeted by deamidated proteins may occur as consequences of integrin
pattern expression changes fostered by oxidative stress [82].

Therefore, the role of isoAsp formation at the level of NGR motifs in extracellular
proteins not related to cell adhesion, and their gain of integrin-binding activity, could
be a new field of study which might be worth exploring; especially considering that the
neurodegenerative environment itself seems to promote these protein fate changes.

7. The Physiological Role of Cp NGR Motifs and Their Deamidation

A question that is still open is the physiological role of the NGR motifs embedded
within protein sequences. NGR-containing peptides, both synthetic and physiologically
generated (by proteins fragmentation as observed for fibronectin [22,25]), are able to bind
the membrane receptor CD13 [41,83]; however, no evidence of NGR-mediated interaction
of intact proteins with CD13, or any other receptor, have been so far reported. Thus, it looks
like that the molecular switch from NGR to isoDGR, induced by protein deamidation, can
be the physiological fate of this motif. Until now, this interchange seems to occur mostly un-
der pro-oxidant pathological conditions, like those present in the CSF of neurodegenerative
diseases but also in atherosclerotic plaques where deamidation of NGR motifs have been re-
ported to occur on the ECM proteins promoting integrin-mediated monocyte adhesion [84].
Remarkably, the deamidation of the 962NGR motif in Cp has also been observed in another
pro-oxidant environment, namely the serum of type 2 diabetes patients [85]. Whether the
consequences of NGR-to-isoDGR switch are prevalently detrimental or favorable is not
known at the moment. From the evolutionary point of view, it is hard to believe that the
NGR motif was maintained within a restricted number of proteins if it predominantly plays
a harmful role. The existence of the “repair” enzyme PIMT might suggest the presence of a
regulated event that controls integrin-binding activity and signal transduction, which in
turn affects cell adhesion and proliferation. Indeed, at least for Cp, the NGR deamidation
is also detectable in the CSF of healthy subjects, although in a smaller fraction than is
observed in PD patients [10]. Since deamidation is connected to protein aging, this might
represent the physiological event marking aged Cp protein targeted for removal and/or
degradation [11]. Alternatively, the rate of isoDGR formation in Cp might affect the bal-
ance between its physiological versus pathological role of transducing signal to epithelial
cells. In physiological conditions, the integrin-mediated cell proliferation inhibition and
apoptosis induction might contribute to epithelial cell renewal; while under pathological
conditions, the increased rate of isoDGR production in Cp could force this effect toward
more aberrant signaling in which apoptosis prevails. An example of this is anoikis, which
is a form of apoptosis induced by inappropriate cell-matrix interaction [86,87].

Finally, from both physiological and pathological points of view, it remains to be
defined whether the two NGR motifs carried by Cp sequence play similar, synergistic or
alternative roles.

8. Conclusions

The observation that such a relatively rare motif, which has the potential to bind
integrins once modified by the extracellular environment, is present at the level of a
secreted protein, like ceruloplasmin, is very intriguing. Whether this phenomenon is part
of a physiological pathway still remains unclear. We suggested that deamidation occurring
in brain proteins could not only have the effect of loss of function, but also could induce
gain of toxic functions, as observed for ceruloplasmin. Further studies are necessary to
clarify the impact of brain protein deamidation in neurodegenerative diseases.
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Abbreviations

AD Alzheimer’s disease
BCSFB blood-cerebrospinal fluid barrier
CNS central nervous system
Cp ceruloplasmin
Cp-ox/de oxidized/deamidated ceruloplasmin
CSF cerebrospinal fluid
CPEpiCs choroid plexus epithelial cells
ECM extracellular matrix
GO Gene Ontology
GPI glycosylphosphatidylinositol
HCPEpiCs human choroid plexus epithelial cells
isoDGR isoAspartate-Glycine-Arginine
NGR Asparagine-Glycine-Arginine
PD Parkinson’s disease
PIMT protein L-isoaspartyl methyltransferase
RGD Arginine-Glycine-Aspartate
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