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Supplementary figures 

 
Figure S1. Algorithms of non-negative tensor/matrix factorization (NTF, NMF). (a) Non-negative 
matrix factorization (NMF). (b) Non-negative Tucker decomposition (NTD). (c) Non-negative ca-
nonical polyadic decomposition (NCPD). In the case of two-dimensional datasets such as a matrix 
with time and frequency axes, the FID is separated into each component based on factors of time 
and frequency by matrix factorization. For analysis of the three-dimensional dataset of multiple 
samples and parameters, tensor methods such as NTD and NCPD can be used. 
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Figure S2. Algorithm of generative topographic mapping regression (GTMR). Using the GTMR, 
multi-dimensional and multi-component data can be mapped into the reduced dimensional space. 

 
Figure S3. Algorithm of generating data using Gaussian mixture models (GMM). (a) GMM esti-
mates the distribution of the dataset. (b) Draw random samples based on distribution estimated by 
GMM. 
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Figure S4. Short-time Fourier transform processed NMR (STFT-NMR) signals in 13C CP-MAS of the cellulose degradation 
process. These figures show STFT processed NMR data for each time of the cellulose degradation process. 
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Figure S5. Signal deconvolution of cellulose C4 region using non-negative Tucker decomposition (NTD) in 13C CP-MAS 
of cellulose degradation process. (a) These figures show cellulose C4 region STFT processed NMR data for each time of 
the cellulose degradation process. The figures (b-d) show spectral patterns (b), time change of separated components (5c), 
and composition of separated components (d) as results of separating the spectrum of cellulose C4 region into six compo-
nents. 
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Figure S6. Signal deconvolution using non-negative canonical polyadic decomposition (NCPD) in 13C CP-MAS of the 
cellulose degradation process. These figures show spectral patterns (a-d), time change of separated components (e), and 
composition of separated components (f) as results of separating the spectrum of cellulose using NCPD. 

 
  



Int. J. Mol. Sci. 2021, 22, 1086 7 of 11 
 

 

 
Figure S7. Signal deconvolution using MF to various NMR spectra in E. graclis samples. These figures show results of the 
signal deconvolution method using NMF for 1H (a), 13C (b), 15N (c) and 31P (d) spectra of microalgae such as E. gracilis in a 
multi-component system. 
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Figure S8. Application of interpolation methods for signal deconvolution of NMR data with insufficient data points. These 
figures show results of the resampling method using Fourier method (a) and other interpolation methods such as Akima, 
PCHIP (Piecewise Cubic Hermite Interpolating Polynomial), quadratic, cubic and linear (b-f). 
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Figure S9. Summary of NMR signals for prediction in the cellulose degradation process. This figure shows the cellulose 
degradation process such as CO2 (13C chemical shift is 130.75 ppm), acetate (1H chemical shift is 1.92 ppm), propionate (1H 
chemical shift is 2.16 and 1.04 ppm) was captured by solution NMR. 

 
Figure S10. Summary of NMR data for prediction in polylactic acid (PLA). This figure shows 13C CP-MAS spectra of 22 
plastics. 
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Figure S11. Summary of thermal analysis data for prediction in PLA. These figures show thermal analysis data of Tg (a), 
Tm (b), Td (c) in 22 plastics. 
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Figure S12. Prediction to thermal properties from NMR signals generated Gaussian mixture models (GMM) in poly-ε-
caprolactone. This figure shows a scheme and result of predicting the thermal properties such as the degradation temper-
ature (Td)from pseudo 13C CP-MAS spectra using GMM. 

 


