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Abstract: Zinc (Zn), the second-most necessary trace element, is abundant in the human body.
The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for
various functions and metabolism. The uptake of Zn during its transport through the body is
important for proper development of the three major accessory sex glands: the testis, epididymis,
and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis,
sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and
prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma
during ejaculation, and it plays a significant role in sperm release and motility. During the maternal,
labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in
the range of 8–12 mg/day in developing countries during the maternal period. Globally, the dietary
intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of
9.6–11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical
evidence. The events and functions of Zn related to successful fertilization have been summarized in
detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction,
from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro
fertilization (IVF) opens opportunities for future studies on reproductive biology.

Keywords: zinc; seminal plasma; male infertility; human reproduction; cellular metabolism

1. Introduction

Zinc (Zn) is an essential trace element that is required for many normal bodily func-
tions. Any malfunction or deficiency of zinc can cause abnormalities in the human body [1].
Zn deficiency is widespread in humans and common among various populations around
the world [2]. Zn deficiency during the growth phase of humans results in growth failure
due to hormonal imbalance and affects gonadal development and maturation [3]. The
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World Health Organization (WHO) has estimated that one-third of the world’s population
is deficient in Zn [4], and this deficiency results in various human diseases. Zn is essential
for both male and female reproductive potential as it is necessary for normal fertilization.
It has been shown that the Zn content in semen is 85 to 90 times higher than in blood, thus
protects the sperm cells from bacterial attack. Zn protects the sperm cells like a shield when
entering the female reproductive tract and protects them from chromosomal damage [5].
There is a significant amount of evidence showing that Zn plays major contribution in
initial spermatogenesis (from germ cells to sperm cells), sperm cell maturation in the epi-
didymis, sperm cell motility, and pre-fertilization events in the female reproductive tract.
It has its own functions during the pre-fertilization process, such as sperm capacitation,
binding of the sperm zona pellucida (ZP), the acrosome reaction process, penetration at
the site of the ZP, involvement in the sperm and oocyte binding process, egg or zygote
activation, and the final zona reaction [6]. In addition, Zn plays important roles at various
stages from post-fertilization until childbirth [7]. A low Zn concentration in the diet results
in low sperm quality, as well as idiopathic male infertility. A reduction in Zn of less than
5–7 ppm results in the impairment of reproductive function in both males and females [8].
Zn plays an anti-inflammatory activity and possibly plays a protagonist in oxidation, as
shown by various research findings [9]. The concentration of Zn in the testis increases
during the early spermatogenesis period, which is shown by its regulatory activities on
spermatogonial proliferation and its need in the maintenance of germ cells without any
damage during the meiosis period [10]. Zn carries out regulatory activity through the tran-
scription of thymidine kinase, an important enzyme for DNA synthesis [11]. Any alteration
in thymidine kinase due to Zn deficiency will lead to impaired spermatogenesis and the
arrest of germ cells. Zn plays an important action in testes development of an adult, allow-
ing proper reproductive function [12]. Zn deficiency in the testes is positively correlated
with hypogonadism, improper secondary sexual characteristics, and other reproductive
issues [13]. The prostate releases more Zn into the seminal plasma during ejaculation and
plays a significant action in sperm release and motility [14]. Decreased levels of Zn in
seminal vesicle and prostate secretions will affect the coagulation properties of semen.
Semen consistency is viscous in nature, and usually, hyperviscosity is related to seminal
vesicle secretion [15]. Zn plays a major part in the production, storage, and transport of
major sex hormones, especially testosterone [16]. Their transfer and fusion are mediated
by the Zn ions present in both prostasomes and intracellular Zn ions. Zn deficiency is
associated with an increased trend for cells and tissues to die on their own, a phenomenon
known as apoptosis [17]. This has been proven to be a major cause of Zn-deficiency-related
cell death. Zn supplementation restores the antioxidant capacity. Oral supplementation
with Zn has been shown to work effectively for issues such as premature ejaculation and
erectile dysfunction [18].

In this review, the critical roles of Zn at various stages, from testicular development
to spermatogenesis, the conversion of germ cells into sperm cells, activities in accessory
sex glands (including the prostate, epididymis, and seminal vesicles), sex hormones for
monitoring various processes, ejaculation, in the female reproductive tract, in the pre-
fertilization process (including capacitation), and from post-fertilization until childbirth
are discussed. The significance of using oral Zn supplementation for advanced assisted
reproduction technology is also covered.

2. Zinc (Zn) Trafficking in Sperm Transport

Zn has been very well elucidated in reproductive biology terms, but in terms of
dynamic study at various stages of sperm production, the role of Zn has scarcely been
studied and reviewed [19]. Zn trafficking through the membrane is endorsed by precise
families of transporters known as the ZnTs, which are involved in effluent release [20]. Zn
is involved in numerous sperm functions and is expected to exhibit maximal uptake during
sperm transport after movement through the epididymis (post-epididymal phase) [21].
Zn release and uptake during male reproductive processes, from spermatogenesis to
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spermiation, are monitored and have been shown to be performed by the ZnTs [22]. From
this critical point of view, the aforementioned study confirmed that there is a high Zn
content in the testicular and epididymal phases, and significant changes (less content)
occur in the ejaculation phase [23]. However, there is a lack of important evidence to
prove that the gain in hypermotility (found through flow cytometry) may be the primary
reason for the loss of Zn content during ejaculation. This study provided a scientific
hypothesis suggesting that Zn supplementation could be used as a therapy for male
infertility patients, but more research has to be performed in order to confirm the effects of
Zn supplementation [24].

3. Role of Zn in Normal Spermatogenesis

The altered expression of Zn transporters will affect the Zn content, thus pave a way
for poor spermatogenesis [25]. The need for Zn and its presence in germ cell survival
before maturity, as well as in substitution by protamine during spermatogenesis, has
been reported by Ellis in 2014 [26]. Zn plays a key parameter in spermatogenesis and
in the early stage of sperm cell development because of its presence in the nucleus and
chromatin and its accumulation in spermatocytes [27]. The concentration of Zn in the testes
increases during the early spermatogenesis period, as evidenced by its regulatory activities
in spermatogonial proliferation and during the meiosis period for the maintenance of
germ cells without damage [28]. Zn reduction at this stage will result in unauthenticated
proliferation of spermatogonia and to germ cell death without the formation of effective
mature sperm cells [29]. This primes to a reduction in the number of mature sperm cells
available in the testis in a batch; hence, it may incline to a reduction in the number of
spermatozoa in the ejaculation fluid, which leads to the misdiagnosis of oligospermia [30].
Impaired spermatogenesis tends to impaired spermatozoa during ejaculation and a lower
sperm count. The WHO stated that the sperm count should be around 20 million sperm per
milliliter. A reduction in the count due to Zn deficiency during spermatogenesis [31] may
help in diagnosis of oligospermia. There is strong evidence to support the importance of
Zn during spermatogenesis and its implications on diagnosis [32]. A high Zn content in the
prostate provides evidence of its critical act in epididymal transit, whereby Zn stabilizes the
sperm cells during or before ejaculation [33]. The role of Zn in spermatogenesis is shown
in Figure 1.

Zinc finger proteins (ZFPs) play a significant action in spermatogenesis [34]. Zn is a
major component of ZFPs, a large class of transcription factors [35]. These transcription
factors are essential and exhibit different functions during growth and development,
including DNA binding, cell apoptosis, and activation of transcription and translational
processes [36]. Many researchers have discussed the critical activity of ZFPs during the
proliferation and differentiation of germ cells, as well as during spermatogenesis. ZFP185
plays a significant role in spermatogenesis through its overexpression in Leydig cells and
leads to testosterone production [37].

Zinc transport proteins (ZIPs), which aid in Zn uptake into the cytoplasm and act
at the intracellular zinc level, play a major part in spermatogenesis [38]. The reduced
expression of ZIPs during the transport and uptake of Zn into the intracellular lumen may
lead to impaired spermatogenesis at different stages [39]. A positive correlation exists
between the Zn circulating level and the Zn intake level during spermatogenesis [40].
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spermatogenesis at the molecular level. The figure depicts how Zn initiates the transcription of kinase, Zn finger proteins as
transcription factors, and the Zn uptake process during spermatogenesis.
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4. Action of Zn in the Testes Phase

The interaction of Zn with cadmium in the adult testes has been explored by many
researchers [41]. Zn deficiency in the testes is positively correlated with hypogonadism and
improper development of secondary sexual characteristics [42,43]. Zn and Cd interactions
are due to similarities in ion pairs, and they form a competitive interaction [44]. Decreased
Zn uptake by spermatogonia results in competitive substitution by cadmium, which results
in a decreased Zn content and, in turn, the functions of sperm development in the testes are
disturbed [45]. The reduced level of Zn in the testes leads to severe damage and reduced
testes weight [40]. The germ cell capacity may be significantly reduced because of the
abridged testes size due to Zn deficiency [46]. This will automatically lead to impaired
spermatogenesis and will inhibit spermatid differentiation [47]. Zn deficiency in the testes
also changes the structure of the Leydig cells and causes problems in proliferation and
differentiation. Reduced levels of Zn in the testes and complications in the Leydig cells
lead to reduced sex steroid levels, the impairment of spermatogenesis, and thus poor
fertilization [48]. Reduced Zn in the testes also leads to oxidative damage to lipids, altered
transcription and translation, and impaired DNA and proteins in testicular cells; hence, the
quality of fertilization is poor [49]. In a rat model, cadmium-mediated toxicity and damage
to the testes has been related to Zn competitive binding [50].

5. Significance of Zn in the Prostate

Zn is present throughout the human body. However, in the prostate, Zn is an essential
substance, and it is present at high concentrations compared with other soft tissues [51,52].
The prostate releases more Zn into the seminal plasma during ejaculation, where it plays
an important act in sperm release and motility [53]. The human prostate contains 150 µg/g
of Zn in its tissues, which is three times higher than that in any other soft tissue. Similarly,
prostatic fluid is also rich in Zn, with approximately 500 µg Zn/mL [54]. The major
function of Zn in the prostate is to provide antimicrobial activity, which reduces sperm cell
attack during ejaculation. The upper reproductive tract of females comprises a number of
active microbes; once the sperm enters, it can be damaged by microbes [55]. Zn exhibits
antimicrobial properties, allowing it to defend and protect the sperm cells from damage [56].

Zn plays a major part in the Krebs cycle and is utilized to ensure maximal production
of citrate in prostatic fluid [57]. This is essential for the normal functioning of spermatozoa.
Zn homeostasis is highly regulated in the prostate. Changes in Zn requirements may occur
during sexual development. ZNT1 is needed for cellular proliferation, as evidenced by its
reduced expression following the attainment of sexual maturity [58] and the accumulation
of Zn in the prostate during this time [19].

6. The Mechanism of Action of Zn in Capacitation

Sperm capacitation is an important process in proper fertilization [59]. Zn spark is
treated as a novel biomarker of the mammalian quality of embryos and other aspects
of developmental potential. In terms of flux, little research has been done on Zn ions
and their implications [60]. The proton extrusion mechanism plays a key parameter
in capacitation. Numerous studies have shown its importance in voltage-gated proton
channels [61]. This channel regulation is more important for the entry of Ca2+ ions through
another channel called CatSper. This mechanism has been linked to the activation of
protein tyrosine phosphorylation during capacitation [62]. Maintenance of the pH and
proteasomal activities occur in the presence of Zn flux or spark [63].

7. Mechanism of Zn in Human Seminal Vesicles

In the later stages of ejaculation, human seminal vesicle secretion plays a significant
role [64]. In proper fertilization, the five acts of seminal vesicles are: helping in semen
coagulation, maintaining semen stability, enhancing sperm motility, inhibition of sperm
motility, and different antioxidant functions [65]. Semen is viscous in nature. After ejac-
ulation it comes into contact with the seminal vesicles and coagulates immediately [66].
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Semenogelin proteins are a large part of the coagulum, and coagulation is mediated or
activated by Zn ions [67]. For coagulation and inhibition of motility, these Zn ions are
important. In seminal vesicle and prostate secretion, decreased levels of Zn can influence
semen coagulation [68]. Semen consistency and seminal vesicle secretions are typically cor-
related with hyperviscosity [69]. Zn is a constituent of seminal vesicles, and hyper-viscosity
arises when a high degree of secretion occurs. Hyperviscosity of semen is often associated
with decreased motility, reduced normal morphology, and low volume of semen [70]. High
chromatin stability occurs when a Zn chelating agent is present in abundance, which is
attributed to high or hyperviscous semen samples [71]. Seminal vesicle hypofunction can
contribute to semen sample hyperviscosity, and Zn plays a major role in this respect [72].
The seminal vesicles secrete prolactin, and it has been shown that it is associated with
Zn. In sperm motility, prolactin plays a potential role and is considered to be a motility
enhancer. This is one of the essential mechanisms associated with proper sperm motility
following ejaculation [73].

8. Role of Zn in Major Sex Hormones

Zn plays a major role in the production, storage, and transport of major sex hormones,
especially testosterone which is believed to be an important regulatory hormone for sper-
matogenesis [74,75]. Dietary-level Zn monitoring is important to determine the production
of testosterone [76]. Therefore, during in vitro fertilization (IVF), Zn intake is monitored
by experts. A deficiency in dietary Zn leads to an increase in circulating luteinizing hor-
mone, but low levels of testosterone are found in the seminal plasma and serum [77].
This provides evidence of the important action of dietary Zn. Zn deficiency is positively
correlated with a decreased or damaged population of Leydig cells, as well as with changes
to proliferation and differentiation, Leydig cell apoptosis, and testes damage [78]. Zn
deficiency leads to inflamed testes and oxidative damage to the Leydig cells [79]. Impaired
spermatogenesis, a decreased testosterone concentration, damaged luteinizing hormone
(LH) receptors, damaged Leydig cells, and a change in the appearance of the Leydig cells
are common indicators of lower or deficient Zn levels [80].

9. Role of Zn in Prostasomes and Sperm-Binding Activity

Prostasomes are membranous extracellular vesicles found in the semen that are
secreted by the prostate gland. Prostasomes are rich in lipids and phospholipid pro-
teins [81,82]. Prostasomes and spermatozoa fusion process mediated by pH- and protein
helps in proper fertilization. The amino peptidase present in prostasomes has to be trans-
ferred to the spermatozoa for proper motility [83]. The transfer and fusion process are
mediated by Zn ions present in both prostasomes and intracellular Zn ions. Sperm has to ac-
quire membrane-bound proteins, which is achieved through Zn ion-mediated transfer [84].

10. Role of Zn in Anti-Cell Death and Anti-Apoptosis

Evidence for the mechanism of action of Zn in apoptosis has been found in the last
three decades of research [85]. Zn deficiency is associated with an increasing trend of cell
and tissue death, a process known as apoptosis [17]. Germ cells must undergo several
processes and reach the milestone of becoming sperm cells, the male gonads required for
proper fertilization [86]. Zn deficiency in Leydig cells is associated with increased apoptosis
and a change in the volume of the testes; this reduces the number of germ cells being
converted into sperm cells [87]. Caspase 3 and Bcl-2 are important genes and proteins
through which a Zn deficiency results in apoptosis [88]. The mechanism of Zn in providing
protection from apoptosis is associated with many mechanisms. Further research is needed
regarding the labile Zn that protects cells from damage, the mechanism through which
the delivery of Zn to critical targets occurs. [89]. The regulation of apoptosis by Zn via
Bcl 2 and caspase 3 plays a major part in cellular protection [90]. Many researchers have
revealed the anti-apoptotic properties of Zn, but the mechanism by which Zn protects
against apoptosis is not clearly understood, and it is different at different levels. DNA
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fragmentation may lead to a Ca2+- and Mg2+-dependent endonuclease action that results in
apoptosis of the Leydig cells [91]. Zn has the capacity to inhibit these ions and thus prevent
DNA fragmentation and apoptosis. Oxidative stress is another factor that affects the whole
process and leads to apoptosis with increased levels of reactive oxygen species (ROS) in
the serum and seminal plasma [92]. Zn acts as an antioxidant promoter and mediator
that engulfs ROS through various means [93]. An increase in ROS is mediated by Zn
deficiency and hence leads to oxidative stress-driven apoptosis [94]. Zn protects the sperm
cell membranes by providing a coating layer through the mediation of SH (Sulfhydryl)
group binding in proteins [95]. Sperm membrane fluidity increases and, hence, mediation
of the proper fertilizing potential of spermatozoa occurs. In cases of Zn deficiency, there
is an increased level of malondialdehyde in the serum and seminal plasma and reduced
levels of antioxidants such as SoD (superoxide dismutase) [96].

11. Zn and Its Significance in Estrogen

Zn is an essential trace element in female reproductive physiology. In a study con-
ducted using a rat model [97], Zn-deficient feed was administered to rats, resulting in
reduced or inhibited concentrations of follicle-stimulating hormone and LH (luteinizing
hormone) [98]. This result emphasizes the importance of Zn in female reproductive physiol-
ogy. Zn deficiency also increases the occurrence of abnormal ovarian functions and disturbs
the menstruation cycle, creating false hope of normal fertilization [99]. The mechanism or
the basis of Zn in both male and female reproduction are based on interactions between Zn
and hormone receptors [100]. In the absence of the Zn metalloenzyme, sex hormones in
both male and female reproduction systems cannot be activated [101]. Zn metalloenzymes
are bound to sex hormone receptors as a complex formation in the presence of RNA poly-
merase. Fetuin-A and B plays a major role in maintaining fertility status in female [102].
Gene knockout studies showed the importance of Fetuin-A in bone mineralization. Also,
the animal model study proves the role of Fetuin B in female fertility status [102]. The
absence or deficiency of this protein may cause female infertility due to zona pellucida
hardening. This is caused by the presence of metalloproteinase ovastacin in non-fertilized
oocytes [103]. Any malfunction or deficiency of Zn may lead to the prevention of binding of
DNA and the hormone–receptor complex. This prevents the normal functions of estrogen
from occurring [104]. Furthermore, the activators and regulatory potential of other genes
presented here collapse, leading to failures in estrogen production and monitoring [105].

12. Zn as a Regulator in the Female Reproductive Tract

Once the sperm enter the female reproductive tract, numerous immune responses
against sperm cell entry are activated [106]. The presence of Zn helps to reduce these
responses and sends a signal that this is for reproductive action and that the process should
not be disturbed [107]. This is because Zn acts as a cofactor for many proteins in the female
reproductive tract and activates them, allowing complete fertilization competency [108].
Zn ions play a key parameter in sperm capacitation in the female reproductive tract and act
as a regulating authority for other important events, ensuring effective fertilization [109].
Zn efflux is important for Ca2+ influx, and this process is mandatory for capacitation
to occur. Any malfunction or deficiency in the process of zinc ion efflux will reduce
capacitation [110].

Anti-polyspermy is the need for effective sperm–oocyte interactions for embryo de-
velopment. This prevents the entry of more than one sperm cell into the cytoplasm of
an oocyte at the time of fertilization [111]. The anti-polyspermy defense mechanism is
very complex, and a high level of understanding of the underlying mechanism is required.
Embryo polyploidy lethality is the cause of polyspermy during fertilization. Two major
mechanisms occur that act as a barrier to polyspermy action [112]. The first is membrane
depolarization, and the second is cortical exocytosis. Zn2+ ions released from the cortex
region of oocytes help to monitor these two mechanisms under which the polyspermy
process is prevented [113]. This release is named Zn sparks, and its importance in the
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female reproductive tract has been shown by many scientists [114]. Zn regulates the en-
try of sperm into the oocytes using its anti-polyspermy capacity during this period for
newly fertilized eggs. Zn could play a significance in the decapacitation of other sperm
cells present near the fertilized egg [115]. This process is termed the zinc shield for the
prevention of polyspermy-mediated pregnancy [116]. Other evidence shows that Zn2+ ions
can inhibit the process of fertilization when added to IVF media components. Zn in the
ZP mechanism is complicated, and the mechanism behind this process has not yet been
elucidated [117]. The roles of Zn in various stages of sperm–ova interactions are shown in
Figure 2.
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Figure 2. Different roles of Zn ions during sperm–ova interactions. Zona pellucida (ZP) hardening
occurs through membrane protein changes when the ZP protein acts using the Zn-binding protease.
The major functions of zinc in the prevention of polyspermy are depicted in the figure. 1—Zn
dependent metalloprotease on zona pellucida for sperm recognition; 2—how Zn efflux results
in polyspermy.

13. Zn Supplementation for Male Fertility

Seminal fluid Zn2+ ions play a key parameter in boosting male fertility [118]. Any
deficiency or lowering of the concentration of Zn2+ in the seminal plasma results in a low
sperm count, as well as a low sperm quality [119]. Many researchers have shown a positive
correlation between Zn ion concentration and sperm concentration, as well as the normal
morphology of sperm cells. Zn supplementation in rats and uremic men results in increased
sexual function and reduced sexual dysfunction [120]. Following supplementation of Zn
with folate, an increase in the sperm count was observed in oligospermic patients [121]. By
scavenging ROS in the semen and serum, Zn supplementation can restore the antioxidant
capacity of Zn [122]. The supply of blood to the penile veins at the time of erection is
monitored by a Zn-mediated process [123]. Oral supplementation of Zn was found to
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work effectively in cases of premature ejaculation and for patients with erectile dysfunction.
Dietary Zn intake in fertility enhancement has not been scientifically proven; however, in
dietary intake monitoring, the percentage of non-capacitated sperm cells was observed to
increase during ejaculation [124]. The mechanism responsible for this process has not been
elucidated in a scientific manner. Although many researchers have identified the effects
of oral Zn supplementation on both male and female reproductive functions and used Zn
therapy as a measure for increasing sexual function, there is also evidence to show that
Zn intake higher than 100 mg/day is associated with prostate cancer [125]. There is no
proof that Zn acts as a carcinogen [126], but researchers have claimed that there should be a
limit on Zn intake, as a sudden increase in Zn intake could lead to prostate cancer [54]. Zn
intake up to 100 mg/day is not associated with risk of prostate cancer, but supplementing
Zn more than 100 mg/day may lead to prostate cancer risk [54].

14. Roles of Zn in Maternal, Perinatal, and Postnatal Healthcare

Globally, decreasing the mortality rates of perinatal, neonatal, and early childhood
infants is the biggest challenge for researchers and clinicians [127]. Proper monitoring
of micro- and macronutrient intakes and supplementation for women can reduce the
mortality rate [128]. This process is performed more extensively in developing countries
than in developed countries. Zn plays a major action in maternal, infant, and neonatal
survival [129]. The importance of Zn during the maternal period and birth has not been
well elucidated [130]. The average dietary Zn intake lies in the range 8–12 mg Zn/day
in developing countries during the maternal period. Worldwide, the dietary Zn intake
varies for pregnant and lactating mothers, but the average intake lies between 9.6 and
11.2 mg Zn/day [131]. Zn intake also slightly increases by drinking water, but the intake
should be a minimum of 4 L/d [132]. An insignificant Zn deficiency during maternity is
associated with a lower birthweight, and a high Zn deficiency can lead to spontaneous
abortion and various abnormalities, especially congenital ones [133]. Mild Zn deficiency
in pregnant women can lead to many complications in stages 1 and 2 of labor, such as
premature rupture of the membranes, which sometimes necessitates the use of operative
measures in childbirth [134]. Oxytocin secretion can be monitored using Zn, and it acts
as a cofactor during this time [135]. These complications further result in neonatal sepsis,
neonatal asphyxia, and respiratory distress [136]. Zn deficiency in the mother can be
inherited by the infant. These infants may display symptoms such as alopecia, appetite
loss, diarrhea, impaired immune related functions, and dermatitis [137]. This type of Zn
deficiency disorder found in premature babies and infants occurs because of a lack of
zinc in breast milk. Pedigree analysis has shown the inheritance nature of zinc deficiency
from the mother (Zn-deficient breast milk) to babies. Also, it was found that maternal Zn
supplementation did not increase the Zn level in breast milk [137]. The important studies
on Zn and reproduction in recent years are summarized in Table 1.

Table 1. Important investigations into the roles of Zn in human reproduction and human male infertility and its implications
conducted in the last 13 years.

Author and Year Zn Role in Human Reproduction and
Infertility Study Conclusion

Qu et al., 2007 [138] Zn-α2-glycoprotein, termed ZAG, plays a
major action in sperm motility.

ZAG could be present in human semen, and it
could help with proper motility as well as

with the signaling pathway known as PKA
(Protein Kinase A).

Saleh, 2008 [139]
Semen contains higher concentrations of Zn
and copper than any other body fluid. This

helps to maintain sperm quality.

For proper diagnosis of male infertility, Zn
and Cu estimation is important.
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Table 1. Cont.

Author and Year Zn Role in Human Reproduction and
Infertility Study Conclusion

Colagar et al., 2009 [140]

The absence or moderate deficiency of Zn in
the seminal plasma leads to increased reactive
oxygen species (ROS) and increased oxidative

damage, which could result in low sperm
quality.

The seminal Zn concentration was found to be
significantly positively correlated with sperm
count and the normal morphology of sperm.

A low or absent Zn intake results in low
semen quality and leads to idiopathic male

infertility.

Dissanayake et al., 2010 [141]
Zn plays major parameter in determining

sperm count, normal sperm morphology, and
other parameters.

Both the Zn concentration and total amount of
Zn per volume of ejaculate were calculated in
this study. The total Zn content was termed
Zn (T), and it was positively correlated with
the sperm count and normal morphology.

Khan et al., 2011 [142]

Zn deficiency plays a key act in human male
infertility. Zn deficiency is associated with

hypogonadism and deficient development of
secondary sex characteristics.

Having adequate Zn in the seminal plasma
aids in proper sperm functioning. An

increased amount of Zn results in decreased
sperm motility, but a decreased amount of Zn
in the seminal plasma was associated with an

increased sperm count. It is very crucial to
monitor the Zn content in seminal plasma.

Hadwan et al., 2012 [143]

Human seminal Zn is classified into three
types of ligands: high, intermediate, and low
molecular weight ligands. An increase in the

oral supplementation of Zn results in
increased sperm motility for asthenospermic

patients.

This study concludes that the overall increase
in motility in asthenospermic patients

following Zn supplementation increases the
overall high and low molecular Zn ligand

levels.

Sundaram et al., 2013 [144] Zn acts as a cofactor for DNA binding
proteins and Zn fingers.

Zn could be the best biochemical marker for
major semen anomalies, as well as for the

proper diagnosis of human male infertility.

Foresta, 2014 [20]
Zn is involved in a number of sperm functions

after the post-epididymal phase reaches a
maximum.

During the entire lifetime of sperm, Zn
trafficking occurs.

Altaher and Abdrabo, 2015 [145] Zn and Cu play major actions in oligospermic
and asthenospermic patients.

Zn concentration was significantly lower in
cases of azoospermia and oligospermia.

Zhao et al., 2016 [146]

Systematic data analysis suggests that Zn
concentration is significantly lower than in

other fertile groups, which proves the
significance of Zn in semen parameters.

Zn supplementation increases the major
semen parameters like semen volume,

forwarded motility, and normal morphology.

Nenkova et al., 2017 [137] Zn plays a major action in protecting
spermatozoa against oxidative stress.

There is evidence that trace elements play an
antioxidative role at the time of ejaculation.

Fallah et al., 2018 [1]
Zn acts as an antibacterial agent in the female
genital tract and even helps in protection from

immunological shock.

Zn could be considered as a nutrient marker
for male reproductive potential.

Mirnamniha et al., 2019 [6] Zn plays a major function in the incitation of
capacitation.

The measurement of Zn in the seminal plasma
of idiopathic male infertility is essential.

Vickram et al., 2020 [84]

Zn plays a major function in mediating the
binding of prostasomes on spermatozoa to
transfer essential compounds, which paves

the way for fertilization.

Prostasomes are biomarkers for both male
infertility and prostate cancer diagnosis.

15. Conclusions

The dietary intake of Zn plays an essential role in the reproductive potential of both
males and females. The human body cannot store Zn, so dietary consumption is the only
way to maintain the body’s metabolism, especially for men and women of reproductive
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age. The WHO has reported on the global diseases or syndromes related to Zn deficiency.
Women need a higher dietary Zn intake than men at reproductive age and during the
maternity period. Zinc transporters are prevalent throughout the genital tract, so Zn is
taken up throughout the process of sperm development, from germ cells to mature sperm
cells. During spermatogenesis, a small amount of Zn is sufficient, but the need for Zn
increases when maturation is reached; that is, at the time of epididymal transit. After this
process, prostate Zn secretions will overcome spermatozoa and act as a defense at the time
of ejaculation. When the female reproductive tract is reached, both seminal Zn and female
Zn contents in the tract have a combined effect on ensuring a clean path to fertilization.
Seminal Zn acts as a cofactor for the semenogelin protein and helps with gel formation or
liquefaction. Zn helps in motility, especially forward-directional motility, with the help
of fusion of prostasomes into spermatozoa membranes and the transfer of all essential
components. Zn facilitates capacitation and ZP binding via multiple mechanisms. In the
upper reproductive tract secretions, Zn intermediates pre-fertilization process, but the
mechanism through which this occurs is not well understood yet. Zn plays a key role
in the penetration of sperm into oocytes to form a mature zygote, as well as in the post-
fertilization period. Zn supplementation during pregnancy and the perinatal and neonatal
periods has been well discussed. Overall, Zn supplementation leads to successful outcomes
in more than 50% of infertile cases. Zn supplementation is essential for males and females
undergoing infertility treatment. A positive correlation with pregnancy outcomes exists
for ART (assisted reproductive technology) methods that involve Zn supplementation as a
part of the treatment. Although the mechanism behind this has not been elucidated, many
ART centers prefer to use Zn supplementation. In this review, we have summarized the
major functions and mechanism of Zn and the need for this element from spermatogenesis
to postnatal care.
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