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Abstract: Reactive oxygen species (ROS) metabolism is regulated by the oxygen-mediated enzyme re-
action and antioxidant mechanism within cells under physiological conditions. Xanthine oxidoreduc-
tase (XOR) exhibits two inter-convertible forms (xanthine oxidase (XO) and xanthine dehydrogenase
(XDH)), depending on the substrates. XO uses oxygen as a substrate and generates superoxide (O2

•−)
in the catalytic pathway of hypoxanthine. We previously showed that superoxide dismutase 1 (SOD1)
loss induced various aging-like pathologies via oxidative damage due to the accumulation of O2

•−

in mice. However, the pathological contribution of XO-derived O2
•− production to aging-like tissue

damage induced by SOD1 loss remains unclear. To investigate the pathological significance of O2
•−

derived from XOR in Sod1−/− mice, we generated Sod1-null and XO-type- or XDH-type-knock-in
(KI) double-mutant mice. Neither XO-type- nor XDH-type KI mutants altered aging-like phenotypes,
such as anemia, fatty liver, muscle atrophy, and bone loss, in Sod1−/− mice. Furthermore, allopuri-
nol, an XO inhibitor, or apocynin, a nicotinamide adenine dinucleotide phosphate oxidase (NOX)
inhibitor, failed to improve aging-like tissue degeneration and ROS accumulation in Sod1−/− mice.
These results showed that XOR-mediated O2

•− production is relatively uninvolved in the age-related
pathologies in Sod1−/− mice.
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1. Introduction

In mammalian cells, several mechanisms or pathways are associated with the pro-
duction of reactive oxygen species (ROS), including superoxide (O2

•−), within cells under
physiological and pathological conditions. These include mitochondrial respiration, xan-
thine oxidoreductase (XOR), and nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase (NOX) [1,2]. Redox balance is physiologically maintained by the production and
degradation of ROS by antioxidants, including vitamins C and E, and enzymes, such as
superoxide dismutase (SOD), catalase, and glutathione peroxidase, in the cellular system.

To better understand the intracellular redox regulation, gene modification studies have
been performed. Accumulating evidence has demonstrated that Sod1-deficient (Sod1−/−)
mice show complete SOD1 protein loss and increased intracellular O2

•− as well as various
aging-associated organ pathologies, such as hepatic carcinoma [3], fatty liver [4], acceler-
ation of Alzheimer’s disease [5,6], macular degeneration [7,8], dry eye [9,10], hemolytic
anemia [11], osteopenia [12,13], skin atrophy [14,15], skeletal muscle atrophy [16], luteal
degeneration [17], and alteration of the gastrointestinal microbiota [18]. SOD1 loss leads to
the accumulation of oxidative molecules, including lipid peroxides, carbonylated proteins,
oxidized nucleic acids, and advanced glycation end products, which results in widespread
impaired cellular signaling, gene expression, and cell death in tissues [19]. Therefore, SOD1
plays a central role in cytoplasmic O2

•− metabolism in intracellular redox regulation.
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Mammalian XOR is ubiquitously expressed and catalyzes the conversion of hypox-
anthine to xanthine and xanthine to uric acid. XOR can be found in two inter-convertible
forms: (1) xanthine oxidase (XO) is an O2

•−-mediated type that uses oxygen and generates
O2

•−, while (2) xanthine dehydrogenase (XDH) is an NAD+-mediated type that uses NAD+

as a cofactor and leads to reduced nicotinamide adenine dinucleotide production but not
the generation of O2

•− [20]. These two types of XOR differ in the structure of the active site
loop and the loop containing flavin adenine dinucleotide and molybdenum domains [21].
Pharmacological intervention with XO inhibitors has shown that XO is involved in various
acute-injury models, such as ischemia-reperfusion injury [22,23], hyperglycemic cardiomy-
opathy [24], and neurodegeneration induced by spinal cord injury [25]. These results
suggest that XO-mediated O2

•− production impairs organ integrity under pathological
conditions. Since XOR-knockout mice die within six weeks after birth due to renal fail-
ure [26], it is difficult to elucidate the role of XOR in vivo. To clarify the pathophysiological
contribution of XOR, Kusano et al. generated two types of knock-in (KI) mice for XO-
locked- or XDH-stable KI mutations [21]. The XO-locked-type mice that generate O2

•−,
but not the XDH-stable-type mice that do not generate O2

•−, showed markedly increased
tumor growth associated with the activation of macrophages [21]. However, the distinct
roles of XO or XDH in aging-like pathologies induced by SOD1 deficiency remain unclear.

In the present study, to investigate the pathological significance of XOR-mediated
O2

•− in Sod1−/− mice, we generated SOD1 and XO-locked type- or XDH-stable-type KI
double-mutant mice and investigated the pathological association between XO-produced
O2

•− and age-related pathologies caused by SOD1 deficiency. Furthermore, we adminis-
tered XOR or NOX inhibitors to Sod1-deficient mice and investigated the protective effect
of suppression of XO- and NOX-derived O2

•− on the aging-like phenotypes induced by
oxidative stress.

2. Results
2.1. XO-Locked or XDH-Stable Types Failed to Improve the Aging-Like Phenotypes of
Sod1−/− Mice

Since the physiological and pathological roles of XO/XDH conversion remain contro-
versial, we used XO-locked-type mutant mice (W338A/F339L) to elucidate the pathological
role in XO-derived O2

•− in vivo [21,27]. To confirm the contribution of XO to the phe-
notypes of Sod1−/− mice, we generated Sod1−/− XO-locked-type double-mutant mice
(Figure 1). Sod1−/− XO-locked-type mice were born according to the Mendelian rule
without lethality, showing no apparent growth abnormalities (data not shown). As with
Sod1−/− mice, the Sod1−/− XO-locked-type double-mutant mice also showed reduced red
blood cells and splenomegaly (Figure 1A,B). The XO-locked type did not further exacerbate
the progression of fatty liver, muscle atrophy, bone loss, or body weight in Sod1−/− mice
(Figure 1C–F).

The XDH-stable-type mutation cannot convert to an XO form, which produces O2
•−.

We, therefore, expected XDH-stable-type mutations to rescue the aging-like phenotypes
via reduction of the O2

•−-induced oxidative damage in Sod1−/− mice. To further clarify
the protective effect of XDH against aging-like pathologies, we also analyzed the tissue
changes in Sod1−/− XDH-stable-type (C995R) KI double-mutant mice (Figure 2). Sod1−/−

XDH-stable-type double-mutant mice were born normally without any lethal or apparent
growth abnormalities (data not shown). Unexpectedly, XDH-stable type did not improve
the hemolytic anemia associated with the splenomegaly induced by SOD1 deficiency
(Figure 2A,B). Consistent with the XO-locked type, the XDH-stable type also failed to
change the systemic pathologies, including fatty liver, muscle atrophy, bone loss, and
low body weight in Sod1−/− mice (Figure 2C–F). These results suggest that neither XO
nor XDH types of XOR are involved in the various aging-like pathologies induced by
SOD1 deficiency.
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Figure 1. A phenotypical analysis of Sod1, xanthine oxidase (XO)-locked-type double-mutant mice. 
Relative changes in the red blood cell count (A), ratio of spleen weight/body weight (B), ratio of 
liver weight/body weight (C), ratio of muscle weight/body weight (D), bone mineral density (E), 
and body weight (F) of wild-type (WT), Sod1−/−, XO-locked-type, and Sod1−/− XO-locked-type male 
and female mice (4–5 months of age, n = 5–6). * p < 0.05, ** p < 0.01 vs WT. # p < 0.05, ## p < 0.01 vs 
XO-locked type. Data are shown as the mean ± SD. 
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in the red blood cell count (A), spleen weight (B), ratio of spleen weight/body weight (C), ratio of 

Figure 1. A phenotypical analysis of Sod1, xanthine oxidase (XO)-locked-type double-mutant mice.
Relative changes in the red blood cell count (A), ratio of spleen weight/body weight (B), ratio of liver
weight/body weight (C), ratio of muscle weight/body weight (D), bone mineral density (E), and
body weight (F) of wild-type (WT), Sod1−/−, XO-locked-type, and Sod1−/− XO-locked-type male
and female mice (4–5 months of age, n = 5–6). * p < 0.05, ** p < 0.01 vs. WT. # p < 0.05, ## p < 0.01 vs.
XO-locked type. Data are shown as the mean ± SD.
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in the red blood cell count (A), spleen weight (B), ratio of spleen weight/body weight (C), ratio of
muscle weight/body weight (D), bone mineral density (E), and body weight (F) of WT, Sod1−/−,
XDH-stable, and Sod1−/− XDH-stable male mice (4–5 months of age, n = 3). * p < 0.05, ** p < 0.01.
Data are shown as the mean ± SD.
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2.2. XO Inhibitor Fails to Improve the Aging-Like Pathologies in Sod1−/− Mice

In vitro studies using rodents have revealed that the administration of allopurinol
(30–50 mg/kg/day), an XO inhibitor, via drinking water reduces serum uric acid by 50–90%
for 2–14 weeks [28–30]. According to these experimental protocols, we administered
allopurinol (30 mg/kg/day) for 8 weeks to determine the improvement effect of XO-
derived O2

•− inhibition on tissue degeneration in Sod1−/− mice. In wild-type (WT) mice,
the administration of allopurinol did not change the body weight, suggesting no noticeable
adverse effects (Figure 3A). Sod1−/− mice exhibited no significant changes in body weight
due to allopurinol administration, and their body weight remained lower than that of
WT mice (Figure 3A). Unexpectedly, Sod1−/− mice administered allopurinol exhibited
significant bone loss, anemia, fatty liver, and muscle and skin atrophy compared with WT
mice (Figure 3B–F).
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Figure 3. Administration of allopurinol to adult Sod1−/− female mice. The body weight (A), total bone mineral density (B),
red blood cell count (C), ratio of liver weight/body weight (D), ratio of muscle weight/body weight (E), and skin thickness
(F) of WT and Sod1−/− female mice (7 months of age, n = 4–5) administered allopurinol for 8 weeks. * p < 0.05, ** p < 0.01.
Data are shown as the mean ± SD.

To investigate the potential effects of sex differences, we also administered allopurinol
to Sod1−/− male mice. As in female mice, allopurinol did not improve any of these
pathologies in Sod1−/− male mice (Figure 4). Furthermore, to investigate the contribution
of O2

•− derived from other pathways, we also administered apocynin (0.4 g/kg/day), an
NOX inhibitor, to Sod1−/− mice. Apocynin treatment also failed to improve the systemic
aging pathologies in Sod1−/− male mice (Figure 4). These results suggest that O2

•− derived
from XO and NOX has no association with tissue pathologies in Sod1−/− mice.
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** p < 0.01. Data are shown as the mean ± SD.

3. Discussion
3.1. Contribution of XO-Derived O2

•− to Tissue Pathology

The two types of KI mice for XO-locked- or XDH-stable TKI mutations are powerful
tools for clarifying the pathological effects of XOR in various tissues. In contrast to the
therapeutic effects of allopurinol on the tissue pathologies induced by acute injuries [22–25],
modulation of XO activity by genetic engineering or pharmacological techniques failed to
attenuate aging-associated pathologies induced by Sod1−/− mice (Figures 1–4). We also
found that apocynin did not alter the tissue pathologies in Sod1−/− mice (Figure 4). In an
in vitro study, treatment with a mixture of allopurinol, apocynin, and Nω-Nitro-L-arginine
methyl ester hydrochloride, an NOS inhibitor, failed to attenuate the ROS accumulation in
Sod1−/− cells (data not shown). These data strongly suggest that SOD1 does not physiologi-
cally catalyze O2

•− derived from XO, NOX, or NOS. Mitochondria produce ROS, including
O2

•−, through the electron transport chains of complexes I and III and release O2
•− to both

sides of the inner mitochondrial membrane [31]. SOD1 is also slightly localized in the inter-
membrane space of mitochondria in rats and yeast [32–34], suggesting that SOD1 mainly
catalyzes O2

•− in the intermembrane space and cytoplasm. In contrast, mitochondrial
SOD2 mainly degrades O2

•− in the mitochondrial matrix. Paraquat generates mitochon-
drial O2

•− via complex I inhibition, resulting in mitochondrial dysfunction [35]. Paraquat
treatment actually shortened the life span of Sod1−/− mice [36], suggesting that O2

•−

derived from mitochondria plays a major role in SOD1-mediated metabolism in cytoplasm.
Other mechanisms of ROS production have also been reported, such as via cyclooxygenase,
Fenton, and Haber–Weiss reactions mainly generating peroxy and hydroxy radicals [37].
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These reactions may contribute slightly but not markedly to SOD1-mediated metabolism
in cells.

SOD1 deficiency also increases ROS, proinflammatory cytokines, and lipoperoxides in
various organs, including the muscle, skin, liver, and blood [4,15,19,38–41]. The status of
redox, inflammation, and lipoperoxides in Sod1−/− XOR double-mutant mice should be
clarified in future studies. Furthermore, Sod1−/− mice exhibited various tissue pathologies,
including anemia, fatty liver, muscle atrophy, bone loss, and skin atrophy (Figures 1–4).
In contrast, tissue pathologies induced by XO activation occur, especially in the heart,
vascular tissue, and nerves [22–25], and do not overlap with affected tissues in Sod1−/−

mice, suggesting that XO-mediated oxidative damages may show distinct organ selectivity
from Sod1−/− mice. We recently demonstrated that Sod1 loss activates the Forkhead box
O3–matrix metalloproteinase-2 axis in the skin [42], suggesting that selective signaling
pathways are activated by SOD1-catalyzing O2

•− from mitochondria.
In the present study, we were unable to match the age of Sod1−/− mice in Figures 1–4.

Although we noted no marked difference in the pathological features of Sod1−/− mice
between 4 and 12 months of age, the results need to be reinvestigated with the same proto-
cols. Since complete SOD1 loss has not been reported in human diseases, the interpretation
of our result using knockout mice is limited. A partial inhibition model of SOD1, such as
that using an inhibitor, would be valuable for revealing the cross talk between aging-like
pathology and O2

•− generation.

3.2. Contribution of XO-Derived O2
− to Tissue Pathology

XOR catalyzes the reaction steps from hypoxanthine to xanthine and from xan-
thine to uric acid in the pathway of purine metabolism [20]. Uric acid is also known
as the classical radical scavenger, such as singlet oxygen, peroxyl radicals, and hydroxyl
radicals [43,44]. Antioxidant activity of uric acid protects the erythrocyte membrane
from lipid oxidation [45,46]. Uric acid also improves various pathologies, including
sclerosis, Parkinson’s disease, acute stroke, ischemia-induced brain injury, allergic en-
cephalomyelitis, doxorubicin-induced cardiotoxicity, and hepatopathy induced by hem-
orrhagic shock [47–53]. Uric acid itself also generates some radicals and acts as a pro-
oxidant [43]. Uric acid amplified the oxidation of liposomes via peroxynitrite genera-
tion [54]. This oxidant–antioxidant paradox of uric acid further complicates our under-
standing of the contribution of XO to the tissue pathology caused by oxidative stress in
Sod1−/− mice.

3.3. Pathological Effect of XO on Aging and Tumorigenesis

Aging is also associated with the progressive impairment of homeostasis as a result
of chronic redox imbalance and inflammation. XO is upregulated by proinflammatory
cytokines, such as tumor necrosis factor-α and interleukin-6 [55]. Indeed, the XO expression
and activity have been shown to increase in an age-dependent manner in the liver, kidney,
thymus, aorta, and plasma [56–58]. XO-derived O2

•− stimulates activator protein 1 activity
via c-jun N-terminal kinase and p38 in vascular smooth muscle [59], suggesting XO as a
possible O2

•− donor in inflammation-related pathologies. These reports suggest that O2
•−

released from mitochondria causes chronic pathologies, and XO-derived O2
•− induces

acute tissue damage.
A high level of ROS leads to the activation of various oncogenic pathways [60]. We

previously demonstrated that XO-locked-type KI mice promote tumor growth due to
increased ROS production in macrophages [21]. Sod1−/− mice also show hepatocarcino-
genesis progress associated with the accumulation of oxidative damage in late life stages [3].
To clarify the contribution of SOD1 to tumorigenesis, we generated Sod1−/− p53−/− double-
knockout mice. Compared to p53−/− mice, Sod1−/− p53−/− double-knockout mice showed
significantly accelerated tumorigenesis by 4 months of age (Watanabe et al. submitted),
suggesting alteration of the tumorigenesis profiles by redox imbalance. Neither Sod1−/−

XO-locked-type nor Sod1−/− XDH-stable-type double-mutant mice exhibited tumor for-
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mation in the liver or other tissues at 7–12 months of age (data not shown). At older ages,
XO-locked- and XDH-stable-type mutations may alter tumorigenesis in Sod1−/− mice.
To clarify the contribution of XOR to tumorigenesis in Sod1−/− mice, further analyses
are needed to characterize the pathogenic macrophages and tumorigenesis in Sod1−/−

XO-locked-type and Sod1−/− XDH-stable-type double-mutant mice.
In conclusion, KI mutations of XOR and inhibitors of XO or NOX did not alter the

aging-like pathologies in Sod1−/− mice, suggesting that XOR-mediated O2
•− production

contributes relatively little to the aging-like pathologies in Sod1−/− mice. SOD1 may use
O2

•− produced by physiological and biological systems, such as mitochondrial energy
production. The production source of O2

•− may affect tissue homeostasis and the optimal
therapeutic strategy in ROS-related diseases in humans. Our results provide new insight
into the pathophysiological role of O2

•− in oxygen metabolism by SOD and XOR.

4. Materials and Methods
4.1. Animals and Genotyping

Sod1−/− mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA).
Genotyping of the Sod1−/− allele was performed via genomic polymerase chain reaction
using genomic DNA isolated from the tail tip, as reported previously [14]. Two Xdh gene-
modified mice, the XO-locked (W338A/F339L mutant) and the XDH-stable (C995R mutant)
types [21], were kindly provided by Drs. Teruo Kusano, Takeshi Nishino (Nippon Medical
School, Bunkyo-ku, Japan), and Ken Okamoto (The University of Tokyo, Bunkyo-ku,
Japan). These animals were housed under a 12 h/12 h light/dark cycle and fed ad libitum.
In addition, they were maintained and studied according to the protocols approved by
the animal care committee of Chiba University and the National Center for Geriatrics
and Gerontology.

4.2. Administration of Allopurinol and Apocynin

The WT and Sod1−/− mice were given 1 mM allopurinol (30 mg/kg/day, 09-12502;
FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) and 2 mg/mL of apocynin (0.4
g/ kg/day, 6002; EXTRASYNTHASE, Metropole de Lyon, France) in drinking water daily
for 8 weeks from 7 weeks of age (female) and 12 weeks of age (male).

4.3. Analysis of Aging-Like Pathologies

Red blood cells were measured using Celltac a (MEK-6358; NIHON KODEN, Shinjuku-
ku, Japan). Bone mineral density of the whole body was measured using a PIXImus instru-
ment (Lunar Corp., Madison, WI, USA). The thickness of the isolated back skin was mea-
sured using a PEACOCK dial thickness gauge (OZAKI MFG. CO., LTD., Itabashi-ku, Japan).

4.4. Statistical Analyses

Statistical analyses were performed using one-way analysis of variance/Tukey’s test
for comparisons of three or more groups. Differences between data were considered
significant when p-values were less than 0.05. All data are expressed as the mean ±
standard deviation (SD).
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