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Abstract: The increasing emergence of fungicide-resistant pathogens requires urgent solutions for
crop disease management. Here, we describe a structural investigation of new fungicides obtained
by combining strobilurin and succinate dehydrogenase inhibitor pharmacophores. We identified
compounds endowed with very good activity against wild-type Pyricularia oryzae, combined in
some cases with promising activity against strobilurin-resistant strains. The first three-dimensional
model of P. oryzae cytochrome bc1 complex containing azoxystrobin as a ligand was developed.
The model was validated with a set of commercially available strobilurins, and it well explains
both the resistance mechanism to strobilurins mediated by the mutation G143A and the activity
of metyltetraprole against strobilurin-resistant strains. The obtained results shed light on the key
recognition determinants of strobilurin-like derivatives in the cytochrome bc1 active site and will
guide the further rational design of new fungicides able to overcome resistance caused by G143A
mutation in the rice blast pathogen.

Keywords: rice blast; crop protection; cytochrome bc1 complex; antifungal compounds; homology
modeling; molecular docking

1. Introduction

The mitochondrial respiratory chain is one of the most important targets for the
development of agricultural fungicides [1]. Different fungicide classes act on enzymes
within the respiratory chain, the most important being succinate dehydrogenase inhibitors
(SDHI, or complex II) and strobilurins (quinone outside inhibitors, QoI, or complex III) [2–6].
Strobilurins interact with the cytochrome bc1 complex (complex III) involved in electron
transfer, oxidation of hydroquinone, and reduction of cytochrome c in the mitochondrial
respiratory chain. Strobilurin fungicides have been a milestone in the fungicide market, and
they are still among the best-selling agrochemicals worldwide. Succinate dehydrogenase
(SDH), on the other side, is a particular enzyme on the interface between the tricarboxylic
acid cycle (TCA) and the mitochondrial respiratory chain. It couples the oxidation of
succinate to fumarate in TCA with the reduction of ubiquinone to ubiquinol in the electron
transfer chain. SDHI are the fastest growing class of fungicides in terms of newly discovered
products [7].

Notwithstanding their enormous potential, both fungicide classes have a single-site
mode of action, which makes them prone to resistance development in fungal pathogen
populations. The resistance to strobilurins is most often determined by a single amino
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acid substitution from glycine to alanine (G143A) and until now has been detected in
approximately 50 different pathogens, while diverse mutations in the B, C, and D subunits
of the SDH enzyme are known in ca. 20 fungal species [8–10]. Strict anti-resistance measures
are being applied particularly to strobilurin use to ensure their long-lasting activity and to
delay the spread of fungicide resistance, e.g., limited number of treatments, preferably in a
mixture or rotation with fungicides having a different mode of action [11].

Rice blast, caused by the fungus Pyricularia oryzae, is one of the most serious fungal
diseases of cultivated rice worldwide, causing each year 10–30% yield losses corresponding
to ca. 70 billion USD of economic loss [12–14]. It is managed predominantly by fungicides,
especially in regions where traditional rice blast-susceptible varieties are grown, and
breeding of resistant varieties has been neglected. During the years, diverse fungicide
classes have been used against P. oryzae, among which β-tubulin inhibitors (e.g., benomyl),
sterol biosynthesis inhibitors (e.g., propiconazole), melanin biosynthesis inhibitors (e.g.,
tricyclazole), antibiotics (e.g., kasugamycin), or QoI/strobilurins (e.g., azoxystrobin) [15,16].
In Europe and particularly in Italy, only strobilurins and demethylation inhibitors (DMI)
are currently approved [17]. Therefore, to augment the portfolio of fungicides for rice blast
management and to delay/overcome the resistance development against at-risk fungicides,
new solutions are urgently needed.

In the search for innovative antifungal treatments, we reported in a recent paper
the development of new hybrid fungicides obtained by combining the pharmacophore
features of QoI and SDHI [18]. The first-generation hybrid compounds (Figure 1, 1a–c)
featured the three ring-based structure of azoxystrobin (2) and contained the methyl-(E)-β-
methoxyacrylate strobilurin pharmacophore connected by a proper linker to the carbox-
amide pharmacophore of three commercial SDHI inhibitors, e.g., mepronil (3), fluopyram
(4), and boscalid (5). The pilot hybrid compounds showed good in vitro mycelium growth
inhibition of the rice blast pathogen, Pyricularia oryzae; however, they almost completely
lost their activity on strobilurin-resistant strains.
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Figure 1. First generation of dual compounds 1a–c [18], commercial strobilurins (2), and succinate
dehydrogenase inhibitors (SDHIs) (3–6), chosen as templates.

The major goal of this work was to modify the structure of the most promising
candidate 1a in order to obtain highly active compounds, possibly capable of overcoming
strobilurin resistance in P. oryzae.
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The strobilurin pharmacophore was maintained unaltered, as it was previously found
to interact very strongly with the enzyme. Instead, attention was focused on the follow-
ing aspects:

1. Spatial orientation of the two pharmacophores
2. Role and nature of the linker
3. Nature and substitution pattern of the SDHI pharmacophore.

2. Results

To address the objectives described above, we synthesized compounds reported in
Figure 2. Initially, we investigated the influence of the orientation of the two pharma-
cophore moieties. For this purpose, we prepared derivatives 7 and 8 with SDHI and
QoI pharmacophores positioned in ortho and para relative positions on the central ring,
respectively (Figure 2). Moreover, we varied the position of the substituent (methyl group)
on the benzamide ring (compounds 9 and 10).
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(7–15).

Successively, we investigated the effect of the introduction of diverse substituents
on the benzamide ring. Thus, we prepared compounds 11a–g bearing substituents with
different steric and stereoelectronic properties.

After this, we changed the nature of the aromatic ring in the SDHI moiety, replacing
the benzamide with a heterocyclic amide (compounds 12 and 13). Compound 13 is featured
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with the pyrazole carboxamide found in the commercial SDHI inhibitor fluxapyroxad (6,
Figure 1).

Finally, we focused our attention on the linker between the two pharmacophores. In
compounds 14a–c, we increased the distance between the strobilurin and SDHI moieties,
using glycine, β-alanine, and γ-aminobutyric acid (GABA) as linkers. In addition, a further
aromatic ring was placed between the two active moieties in compound 15 (Figure 2).

2.1. Chemistry

Compound 7 was prepared by reacting (E)-methyl 2-(2-(bromomethyl)phenyl)-3-
methoxyacrylate [18] with tert-butyl 2-hydroxyphenylcarbamate 16, followed by removal of
the Boc protecting group and acylation of the resulting compound 18 with 2-methylbenzoic
acid. The same synthetic strategy was used to obtain the isomer 8 starting from tert-butyl
4-hydroxyphenylcarbamate 19 (Scheme 1).
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Scheme 1. Synthesis of compounds 7–8. Reagents and conditions: (a) K2CO3, (E)-methyl 2-(2-
(bromomethyl)phenyl)-3-methoxyacrylate, 18-crown-6, acetone, 3 h, reflux, 23% for 17, and 64% for
20; (b) TFA, CH2Cl2, 3 h, 0 ◦C, 98% for 18, and 95% for 21; (c) 2-methylbenzoic acid, EDC·HCl, HOBt,
DIPEA, CH2Cl2, 24 h, rt, 35% for 7, and 64% for 8.

The synthesis of compounds 9–13 started from the common precursor 22 [18], which
was coupled with the suitable carboxylic acid using EDC·HCl and HOBt as coupling
reagents and DIPEA at 0 ◦C (Scheme 2).

Compounds 14a–c were prepared starting from 2-methylbenzoic acid 23, which was
condensed with glycine, β-alanine, and GABA, respectively, to obtain intermediate acids
24a–c. Coupling with the amine 22 in the presence of EDC and HOBt provided the desired
compounds 14a–c. Compound 15 was obtained by reaction of 23 with 3-aminobenzoic
acid to give 25, which was then condensed with 22 following the protocol described above
(Scheme 3).



Int. J. Mol. Sci. 2021, 22, 3731 5 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
 

 

 
Scheme 1. Synthesis of compounds 7–8. Reagents and conditions: (a) K2CO3, (E)-methyl 2-(2-(bro-
momethyl)phenyl)-3-methoxyacrylate, 18-crown-6, acetone, 3h, reflux, 23% for 17, and 64% for 20; 
(b) TFA, CH2Cl2, 3h, 0 °C, 98% for 18, and 95% for 21; (c) 2-methylbenzoic acid, EDC·HCl, HOBt, 
DIPEA, CH2Cl2, 24h, rt, 35% for 7, and 64% for 8. 

The synthesis of compounds 9–13 started from the common precursor 22 [18], which 
was coupled with the suitable carboxylic acid using EDC·HCl and HOBt as coupling rea-
gents and DIPEA at 0 °C (Scheme 2). 

MeO OMe

O

O NH2

MeO OMe

O

O N
H

O R

MeO OMe

O

O N
H

O
S

Me

MeO OMe

O

O N
H

O

N
N

F F

Me

MeO OMe

O

O N
H

O

Me

MeO OMe

O

O N
H

O

11a R = OCH3
11b R = NHCOCH3
11c R = I
11d R = OBn
11e R = OH
11f  R = NHBoc
11g R = NH2

1213

22

9

10

a
b c

de

f

g

 
Scheme 2. Synthesis of compounds 9–13. Reagents and conditions: (a) 3-methylbenzoic acid, 
EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt 84%; (b) 4-methylbenzoic acid, EDC·HCl, HOBt, DIPEA, 
CH2Cl2, 0°C to rt 82%; (c) for 11a: 2-methoxybenzoic acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to 
rt, 64%; for 11b: 2-acetamidobenzoic acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt; 59%; for 11c: 
2-iodobenzoic acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt, 86%, for 11d: 2-benzyloxybenzoic 
acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt, 71%, for 11f: 2-tert-butoxycarbomylaminobenzoic 
acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt, 41%; (d) 3-methylthiophene-2-carboxylic acid, 
EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt, 62%; (e) 3-(difluoromethyl)-1-methyl-1H-pyrazole-4-
carboxylic acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0 °C to rt, 57%; (f) 10% Pd/C, H2, ethyl acetate, rt, 
overnight, 91%; (g) TFA, CH2Cl2, 2h, rt, 52%. 

Scheme 2. Synthesis of compounds 9–13. Reagents and conditions: (a) 3-methylbenzoic acid, EDC·HCl, HOBt, DI-
PEA, CH2Cl2, 0 ◦C to rt 84%; (b) 4-methylbenzoic acid, EDC·HCl, HOBt, DIPEA, CH2Cl2, 0◦C to rt 82%; (c) for 11a:
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Scheme 3. Synthesis of compounds 14–15. Reagents and conditions: (a) (COCl)2, CH2Cl2, DMF, 0 ◦C, rt, 63%; (b) for 24a:
glycine, 2M NaOH, 8 h, rt, 19%; for 24b: β-alanine, 2M NaOH, overnight, rt, 24%; for 24c: GABA, 2M NaOH, 2 h at 0 ◦C
then overnight at rt, 41%; (c) i. EDC·HCl, HOBt, CH2Cl2, 30′ at 0 ◦C; ii. 22, DIPEA, CH2Cl2, at 0 ◦C then overnight at rt, for
14a: 18%, for 14b: 49%, for 14c: 33%; (d) 3-aminobenzoic acid, TEA, CHCl3, 51%; (e) i. EDC·HCl, HOBt, CH2Cl2, 30′ at 0 ◦C;
ii. 22, DIPEA, CH2Cl2, at 0 ◦C then overnight at rt, 33%.

2.2. Biological Activity

The inhibitory activity of the novel compounds 7–15 on the mycelium growth of P.
oryzae was evaluated and compared to the activity of the reference compound 1a (Figure 3,
Table 1). Acetone (ACT), used as a solvent, did not show any inhibitory activity on P. oryzae
mycelium growth. The commercial fungicides azoxystrobin (AZX; QoI) and fluxapyroxad
(FXP, SDHI) and the newly synthesized compounds were tested at the final concentration
of 25 mg/L. AZX inhibited > 90% of the growth of wild-type (WT) strains, while the
strobilurin-resistant (RES) strains were inhibited to < 50%. On the contrary, FXP (SDHI)
showed low activity on WT strains (65% inhibition) but > 90% inhibition of RES strains.
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Figure 3. Mycelium growth of wild-type (WT) and QoI-resistant (RES) Pyricularia oryzae strains on control malt-extract agar
media (C = control, ACT = 1% acetone) and media supplemented with azoxystrobin (AZX), fluxapyroxad (FXP), or dual
compounds (Cpds 1a, 7–15) at a concentration of 25 mg/L. Error bars represent the standard deviation of the mean.

Table 1. Inhibition of mycelium growth of wild-type (WT) and QoI-resistant (RES) Pyricularia oryzae
(Scheme 1), acetone (ACT), and media supplemented with azoxystrobin (AZX), fluxapyroxad (FXP),
or dual compounds (Cpds 1a, 7–15) at a concentration of 25 mg/L.

WT RES
Compound % Inhibition a Tukey HSD b % Inhibition Tukey HSD

Control 0 a 0 a
ACT 0 a −4 a
AZX 92 m 47 c
FXP 67 f h i 94 d
1a 72 h i j 20 b
7 25 b c 26 b
8 67 f g h i 26 b
9 63 e f g h 28 b

10 78 j k l 52 c
11a 79 i j k l 30 b
11b 83 k l 84 d
11c 71 h i j 35 b
11d 58 e f g 23 b
11e 84 k l m 50 c
11f 58 e f 23 b
11g 55 e 27 b
12 73 h i j k 22 b
13 87 l m 57 c

14a 42 d 15 b
14b 38 d 20 b
14c 18 b 15 b
15 31 c d 21 b

a Inhibition (%) was calculated as I% = (C − T)/C*100, where C = is growth on control medium, and T = is growth
on treated medium. b Tukey post hoc test of mycelium growth data. The different letters indicate statistically
significant differences between mean growth (p > 0.05).

2.3. SDH and Qo Inhibitory Activity of Compound 11b

As compound 11b showed very promising biological activity on both WT and RES
strains of P. oryzae (>80% inhibition), we hypothesized that it maintained good Qo and
SDH inhibitory activity. The measurement of decylubiquinol:Cyt c reductase activity (i.e.,
the Cyt bc1 complex activity) was performed to evaluate the QoI action of the selected
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compound. To this purpose, the reduction rate of Cyt c mediated by the mitochondrial
fraction of P. oryzae was measured using decylubiquinol (DBH2) as the electron-donor
substrate. The DBH2: Cyt c reductase activity was inhibited by 58 ± 18% by the compound
11b (50 µM). A similar inhibition value (61 ± 10%) was observed for azoxystrobin (50 µM),
thus confirming that 11b retained the QoI action.

SDH enzymatic assay was performed measuring the electron transfer rate mediated
by the mitochondrial fraction of P. oryzae in the presence of 2,3-dimethoxy-5-methyl-p-
benzoquinone and succinate by a colorimetric method, using the redox dye 2,6-dichlorophen
olindophenol (DCPIP, Figure 4).
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Figure 4. Effect of compound 11b on the P. oryzae mitochondrial SDH activity. To evaluate the
percent of inhibition due to the SDHI action, the rates of the succinate:2,3-dimethoxy-5-methyl-p-
benzoquinone dehydrogenase activity of the mitochondrial fraction were measured at 25 ◦C (λ = 595
nm) using DCPIP in the presence of 11b and the reference compound, fluxapyroxad (FXP), at the
indicated concentrations. Data represent the mean ± standard deviation of at least three independent
trials. Different superscript letters indicate statistically significant differences (Tukey HSD, p ≤ 0.01).

Fluxapyroxad showed > 90% inhibition of SDH activity at the concentration of 40 µM.
Surprisingly, at the same concentration, no SDH inhibition was observed for compound
11b. By increasing the concentration to 400 µM, approximately 23% inhibition of the SDH
enzyme activity was observed.

2.4. In Silico Modeling and Docking

Since no experimental structures for P. oryzae cytochrome bc1 in complex with azoxys-
trobin are available, we produced a 3D model by homology. The Ramachandran plot
(Figure 5), the side-chain packing, and the stereochemical quality were carefully checked to
verify that all these parameters were suitable and consistent with typical values found in
template crystallographic structures.

The final model contained azoxystrobin that was transferred by the selected template
(PDB ID: 1SQB). The selected docking procedure, thoroughly described in the Materials
and Methods section, was validated testing well-known strobilurin QoI: azoxystrobin,
trifloxystrobin, kresoxim-methyl, and metominostrobin, characterized by the presence of
a β-methoxyacrylate, α-methoxyimino acetate, or α-methoxyimino-N-methylacetamide
pharmacophore, respectively (Figure 6). Metyltetraprole, a newly discovered strobilurin
derivative insensitive to G143A mutation and thus active also against strobilurin-resistant
pathogens [19,20], was added to validate the QoI binding site of the model.
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The top-scoring docking solution for all the validation-set compounds showed a
binding mode highly similar to the azoxystrobin placement in the bovine cytochrome bc1
(PDB ID: 1SQB) [21], in which the pharmacophore was very close to the G143 protein
residue (Figure 7A–G, Table 2). The only validation compound with a top-scoring solution
having a completely different orientation was pyraclostrobin; however, the second solution
was similar to the co-crystallized azoxystrobin. The orientation of the methylester and the
bioisosteric groups showed an interesting variability, with two different solutions (file S1).
The superposition of the top-scoring poses for the entire validation set confirms a key role
for Glu273 (Figure 7G) as observed in other organisms [22].
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included in the validation set: (A) azoxystrobin, (B) kresoxim-methyl, (C) metyltetraprole, (D) metominostrobin, (E)
pyraclostrobin (the second top-scoring pose), and (F) trifloxystrobin. In (G), all validation set poses are reported to highlight
their binding mode and the interaction with GLU273.

Table 2. Top-scoring docking solutions for all chemicals in the validation set. a Glide XP Score indicates the approx. binding
affinity (kcal/mol) of the top-scoring binding pose. b MM-GBSA indicates a more accurate binding affinity (kcal/mol) of the
top-scoring binding pose. c Number of poses for each compound obtained by the molecular docking procedure. d Range
of the binding affinities (kcal/mol) for each tested chemical of the validation set. e Number of generated poses with an
orientation similar to azoxystrobin (as transferred from the template) for each tested compound of the validation set.

Ligand Glide XP a

[kcal/mol]
MM-GBSA b

[kcal/mol]
Number of Poses c Range d

[kcal/mol]
Orientation of the
Generated Poses e

azoxystrobin −10.6 −76.4 5 (−10.6; −9.4) 5/5
trifloxystrobin −9.8 −65.6 2 (−9.8; −9.7) 2/2

kresoxym-methyl −10.4 −68.9 1 (−10.4) 1/1
metominostrobin −9.9 −79.3 1 (−9.9) 1/1

pyraclostrobin −8.4 −61.7 5 (−10.0; −5.7) 3/5
metyltetraprole −10.2 −62.9 2 (−10.2; −9.8) 2/2

After validating the docking procedure, the five most active new compounds (10,
11a, 11b, 11e, and 13) were docked to gain more insights into their binding interactions
(Table 3). All the five selected compounds showed a top-scoring pose with an orientation
similar to the co-crystallized azoxystrobin in 1SQB and to the validation set, i.e., with the
methoxyacrylate moiety close to G143; some other poses with higher energy values showed
an orientation not compatible with the azoxystrobin/strobilurin binding mode.

The top-scoring poses of all five compounds showed a very similar binding mode,
characterized by a strong overlap of the common rings and functional groups, as reported
in Figure 8.

Figure 9 describes the ligand interaction diagram for azoxystrobin, metyltetraprole,
and compound 11b, showing the role of Glu273 in the formation of a stable H-bond
between the carbonyl function of the ester group and the amide function of the protein
backbone. Moreover, in both azoxystrobin and metyltetraprole, Phe129 plays a stabilizing
role through the formation of a π-π stacking interaction with the aromatic ring distal with
respect to the methoxyacrylic function.
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Table 3. Top-scoring docking solutions for the selected five novel compounds showing the highest biological activity
against Pyricularia oryzae. a Glide XP Score indicates the approx. binding affinity (kcal/mol) of the top-scoring binding
poses. b MM-GBSA indicates a more accurate binding affinity (kcal/mol) of the top-scoring binding pose. c Number of
poses for each compound obtained by the molecular docking procedure. d Range of the binding affinities (kcal/mol) of
individual poses for each tested novel compound. e Number of generated poses with an orientation similar to azoxystrobin
(as transferred from the template) for each tested novel compound.

Ligand Glide XP a

[kcal/mol]
MM-GBSA b

[kcal/mol]
Number of Poses c Range d

[kcal/mol]
Orientation of the
Generated Poses e

10 −11.7 −83.9 3 (−11.7; −9.1) 3/3
11a −9.1 −60.3 5 (−9.1; −7.4) 1/5
11b −9.4 −59.6 5 (−9.4; −7.4) 3/5
11e −12.6 −83.3 5 (−12.6; −11.6) 5/5
13 −12.2 −78.7 2 (−12.2; −10.8) 2/2
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Figure 9. Ligand interaction diagram for (A) azoxystrobin, (B) metyltetraprole, and (C) compound 11b. H-bond between
the carbonyl function of the ester group and Glu273 is pointed out by the purple arrow, and π-π stacking between the distal
aromatic ring and Phe129 is pointed out by green line.
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Since compound 11b maintained its biological activity also against strobilurin-resistant
strains containing the G143A mutation (Figure 3), we tested the impact of this mutation on
the cytochrome bc1 complex using a specific residue scan tool. The mutant protein showed
a positive unfavorable ∆Affinity (approx. 5.7 kcal/mol), similar to the ∆Affinity value for
azoxystrobin (approx. 4.7 kcal/mol) on the same mutant. On the contrary, the impact of
the same mutation on the molecular recognition of metyltetraprole was negligible (approx.
−0.7 kcal/mol), suggesting that the correctly oriented and less bulky methyltetrazolone
ring did not negatively interact with the methyl group of A143.

3. Discussion

Rice blast is the main fungal disease of cultivated rice worldwide, causing 10–30% yield
losses each year. Its management still relies on the use of fungicides, but the development
of resistance augments food insecurity and requires urgent and innovative solutions.

In this paper, we report a structural investigation on new fungicides obtained by
combining the pharmacophores of two classes of marketed antifungal compounds: strobil-
urins and SDH inhibitors. The study focused on the structural variations/modifications
of a previously identified hit candidate, with the aim to increase the antifungal activity
both on wild-type and, more importantly, on strobilurin-resistant strains of P. oryzae. The
spatial orientation of the two pharmacophores, the role and nature of the linker, and the
substitution patterns of the SDHI pharmacophore were studied to shed light on the key
structural determinants of their activity.

The obtained results clearly show that the relative orientation of the QoI and SDHI
pharmacophores and the entire shape of the fungicide strongly impact the biological activity
of the hybrid molecule. In particular, arranging the SDHI and QoI pharmacophores in ortho
position on the central ring (Figure 2, compound 7) resulted in a significant drop in activity
against the wild-type strains. Compound 8, with the two pharmacophores in para position,
maintained activity comparable to 1a (meta position), remaining, however, almost inactive
on resistant strains. This indicates that the introduction of the SDHI pharmacophore in
ortho position probably creates a steric obstacle to the binding of the QoI-pharmacophore
in the cytochrome b binding pocket, while meta and para orientations do not interfere with
the binding.

The position of the substituent (methyl group) on the benzamide ring of the SDHI
pharmacophore also affects the biological activity of the compounds. In particular, com-
pound 10 with the methyl group in para on the carboxamide ring had higher activity on
the resistant strains (52% inhibition) than compounds 9 (28%) and 1a (20%).

Increasing the length of the spacer between the two pharmacophores was deleterious.
In fact, compounds 14a–c, with glycine, β-alanine, and γ-aminobutyric acid as linkers, and
15, with an additional aromatic ring between the two active moieties, showed low activity.
Interestingly, the activity decreased with the increase of the chain length (14a versus 14b
versus 14c).

Changing the nature of the aromatic ring in the SDHI moiety by replacing the ben-
zamide with a heterocyclic amide (compounds 12 and 13) maintained a good activity of
dual compounds on WT strains (73% and 87%, respectively). Interestingly, compound
13, which was featured with the pyrazole carboxamide found in the commercial SDHI
inhibitor fluxapyroxad, maintained some activity also on RES strains (57% inhibition).

The introduction of substituents with different steric and stereoelectronic properties
on the SDHI benzamide ring had a major effect on the activity of dual compounds. Com-
pounds 11a and 11c showed activity comparable to the reference scaffold 1a, while 11d, 11g,
and 11f were endowed with a lower efficacy. Compounds 11b and 11e showed excellent
inhibition of wild-type strains (>80% inhibition), with compound 11b maintaining a strong
activity also on resistant strains.

Unexpectedly, 11b showed low activity against SDH enzyme in the succinate:quinone
oxidoreductase (SQR) assay. This prompted us to further investigate the binding mode of
the compound with cytochrome bc1 by developing a three-dimensional model of P. oryzae
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cytochrome bc1 supramolecular assembly in complex with azoxystrobin. We simulated
the putative binding site of our novel compounds, evidencing that they share the same
binding mode of a set of selected commercially available strobilurins. Our in silico analysis
suggests that the new compounds have the same molecular recognition mechanism of
azoxystrobin for the P. oryzae cytochrome bc1 Qo binding site, as pointed out by their very
good approx. binding free energy values computed through Glide XP Score, spanning
from −12.6 to −9.1 kcal/mol, and from binding free energy values computed through
MM-GBSA, spanning from −83.9 to −59.6 kcal/mol.

Interestingly, our finding suggests that the unique activity of the compound 11b
against resistant strains of P. oryzae cannot be easily explained by our simulations, as
the G143A mutation negatively impacts the binding of the compound differently from
metyltetraprole. We speculate that additional targets other than cytochrome bc1 and SDH
could be involved in the observed activity. Another intriguing hypothesis is that 11b could
undergo biotransformation in P. oryzae, resulting in a compound able to efficiently bypass
the resistance. Future efforts will be devoted to elucidating the peculiar activity of this
promising compound.

Nevertheless, the availability of a new model for P. oryzae cytochrome bc1 in com-
plex with azoxystrobin paves the way for a further rational design of new highly active
compounds, possibly able to overcome the well-known strobilurin resistance in P. oryzae.

4. Materials and Methods
4.1. Chemistry

All reagents and solvents were reagent grade or were purified by standard methods
before use. Melting points were determined in open capillaries on an SMP3 apparatus and
are uncorrected.

1H NMR spectra were recorded on 300 and 600 MHz spectrometers; 13C NMR spectra
were recorded on 300 and 600 MHz spectrometers. Solvents were routinely distilled prior
to use; anhydrous THF and Et2O were obtained by distillation from sodium benzophenone
ketyl; anhydrous CH2Cl2 was obtained by distillation from phosphorus pentoxide.

All reactions requiring anhydrous conditions were performed under a positive nitro-
gen flow, and all glassware was oven-dried. Isolation and purification of the compounds
were performed by flash column chromatography on silica gel 60 (230–400 mesh). Analyti-
cal TLC was conducted on TLC plates (silica gel 60 F254, aluminum foil).

Compounds on TLC plates were detected under UV light at 254 and 365 nm or were
revealed by spraying with 10% phosphomolybdic acid (PMA) in EtOH.

Compounds 16 [23], 19 [24], (E)-methyl 2-(2-(bromomethyl)phenyl)-3-methoxyacrylate [18],
22 [18], 24a [25], 25 [26], 2-benzyloxybenzoic acid [27], and 2-tert-butoxycarbonylaminobenzoic
acid [28] were prepared as reported in literature.

The synthetic procedures for the obtainment of all the new compounds are reported
in the Supplementary Material.

4.2. Fungal Strains

In this study, four strains of Pyricularia oryzae were used; two strains belonging to
the Italian population and sensitive to quinone outside inhibitor (QoI) fungicides (WT):
A2.5.2 and TA102; and two strains belonging to the Japanese population and resistant to
QoI (RES): PO1312 and PO1336. The strains belong to a vast collection of monoconidial
isolates maintained at the laboratory of plant pathology, University of Milan [29,30]. The
strains were maintained as single-spore isolates on malt-agar medium (MA: 20 g/L malt
extract, Oxoid, U.K.; 15 g/L agar, Oxoid, U.K.) at 4 ◦C.

4.3. Fungicides

The commercial fungicides azoxystrobin (AZX, Amistar SC—suspension concentrate,
22.9% ai., Syngenta Crop Protection) and fluxapyroxad (FXP, Sercadis EC—emulsifiable
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concentrate, 30% ai., BASF Italia, S.p.A.) were used as standards to evaluate the activity of
QoI (azoxystrobin) and SDHI (fluxapyroxad) fungicides.

4.4. Inhibition of Mycelium Growth of Pyricularia oryzae by Novel Dual Compounds

The inhibitory activity of the novel dual compounds and commercial fungicides on
the mycelium growth of P. oryzae was evaluated as described previously [18]. In short:
a mycelium plug (0.5 cm in diameter) obtained from actively growing fungal colonies
of P. oryzae A2.5.2, TA102, PO1312, and PO1336 was transferred to MA medium plates
supplemented or not with commercial fungicides (AZX, FXP) and tested compounds at the
concentration of 25 mg/L in three biological replicates. Due to the low solubility of the
tested dual molecules in water, they were dissolved in acetone. Therefore, two controls
were included: MA medium (C, control) and MA medium supplemented with acetone
at the final concentration of 1% v/v (ACT). The plates were incubated at 24 ◦C in the
dark. The mycelium growth was measured at 7 days after inoculation (DAI), and the
inhibition of mycelium growth (%) was calculated by comparing the mycelium growth on
control and fungicide-supplemented plates. The inhibition percentage was calculated as
I% = (C−T)/C*100, where C = mycelium growth in the control medium and T = mycelium
growth in the medium added with the tested compound. For AZX and FXP, the control
was MA medium. For tested compounds, the control was considered ACT.

4.5. Enzyme Inhibition Assay for the Measurement of SDHI and QoI Action

P. oryzae mitochondrial fraction from the A2.5.2 strain was prepared as described
previously [18].

The SDHI action was evaluated measuring the succinate: quinone oxidoreductase
(SQR) activity (i.e., the succinate dehydrogenase activity; EC 1.3.5.1) of the mitochondrial
fraction in the presence of 11b compound using a method based on the use of the redox
dye, 2,6-dichlorophenolindophenol (DCPIP) [31], with some modifications as described
previously [18]. The enzyme reaction was monitored at 595 nm at fixed times using a fixed
wavelength microplate reader (iMark™; Bio-Rad Laboratories, Inc., Hercules, CA, USA).
To calculate the SQR reaction rate, the absorbance decrease due to the DCPIP reduction
during the 2–60 min time interval was considered. Fluxapyroxad (37047, Sigma Aldrich,
Milan, Italy) was used as the reference SDHI.

The strobilurin-like (QoI) action was evaluated measuring the decylubiquinol: Cyt
c reductase activity (i.e., the Cyt bc1 complex activity; EC 1.10.2.2) of the mitochondrial
fraction in the presence of the 11b compound, using the method described by Zhu et al. [32]
with some modifications [18]. Azoxystrobin (31697, Sigma Aldrich, Milan, Italy) was used
as the reference QoI.

In both enzyme assays, the enzyme rate in the presence of the tested molecule
(ratemolecule) was compared to that achieved in the presence of the compound diluent
DMSO (rateDMSO), in order to calculate the percent of inhibition (I %) as follows:

I % =
ratemolecule − rateDMSO

rateDMSO
× 100 (1)

4.6. Statistical Analysis

The mycelium growth data for each treatment were grouped based on the QoI resis-
tance of P. oryzae strains (WT or RES) and were submitted to ANOVA followed by a Tukey’s
HSD post hoc test for multiple comparisons (p < 0.05) using the TukeyC package and R
software, version R4.0.0 [33,34].

Similarly, ANOVA followed by posthoc Tukey’s HSD test for multiple comparisons
was used for enzymatic activity data analysis.
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4.7. In Silico Modeling
4.7.1. Homology Modeling of Cytochrome bc1 Complex

The Pyricularia oryzae cytochrome bc1 complex (complex III) primary structures were
downloaded from the UniProt Protein Knowledgebase database (entry: Q85KP9 form
P. grisea and G4N4E1 from P. oryzae, respectively [18]). After a protein BLAST search of
the Protein Data Bank (RCSB PDB) database for homolog templates, the crystallographic
structure of bovine cytochrome bc1 (PDB ID: 1SQB [21]), co-crystallized with azoxystrobin,
chains E and N, was selected as a template for both subunits. Two alignments produced
by the ClustalΩ software and manually optimized for cytochrome b and 1SQB chain N
were used. Comparative model building was carried out by Schrödinger BioLuminate [35]
Multiple Sequence Viewer/Editor in the knowledge-based model setting, including azoxys-
trobin, heme groups, and Fe-S clusters. The geometry of the final model was checked by
the Ramachandran plot.

4.7.2. Ligand Preparation

Available/commercial ligands were downloaded from PubChem, and original ones
were built with the Maestro 3D Builder tool. All ligands were prepared for docking with
the LigPrep panel, using the OPLS3e [36] force field.

4.7.3. Molecular Docking and Affinity Calculations

The molecular docking procedure was carried out with the Schrödinger Small-Molecule
Drug Discovery Suite [37]. The QoI binding site of the cytochrome bc1 complex was identi-
fied by the presence of azoxystrobin transferred from the bovine cytochrome bc1 complex
(PDB ID: 1SQB [21]). Molecular docking was carried out via Glide in its extra precision
(XP) mode [38–40]. Before the docking procedures, our model of cytochrome bc1 complex
was prepared and energy-minimized via the BioLuminate Protein Preparation Wizard with
the OPLS3e [36] force field. The same force field was applied in all the molecular docking
procedures. The binding free energy of all the complexes produced by our molecular dock-
ing pipeline was evaluated via both Glide XP Score and Prime MM-GBSA that combines
molecular mechanics with generalized Born and surface area scoring function [41]. The
accuracy of the proposed methods is associated with a low level of accuracy. Glide XP
Score is an empirical scoring function that approximates the ligand binding free energy,
and that is generally good enough to separate ligands putatively from non-ligands. In
Eberini et al. [42], we used an empirical scoring function for estimating ligand binding
free energy after molecular docking: the comparison between computed and experimental
affinities (i.e., dissociation constants, Ki, computed from ∆G values) showed approx. one
order of magnitude accuracy for our predictions. An approach associated with a higher
level of accuracy than the one based on Glide XP Score is based on MM-GBSA that allows
the ligand to relax in the binding site.

4.7.4. Mutant Generation and Evaluation

The evaluation of the impact of G143A mutation on the enzyme stability and on the
affinity for compound 11b was carried out with the Maestro BioLuminate Residue Scanning
Tool, which considers the impact of a mutation on the stability of the protein (∆Stability)
and on the affinity (∆Affinity) for the tested ligand(s), expressed in kcal/mol [43].

Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/article/10.3390/ijms22073731/s1.
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