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Abstract: Despite the rapid progress in diagnosis and treatment of cardiovascular disease (CVD),
this disease remains a major cause of mortality and morbidity. Recent progress over the last two
decades in the field of molecular genetics, especially with new tools such as genome-wide association
studies, has helped to identify new genes and their variants, which can be used for calculations of risk,
prediction of treatment efficacy, or detection of subjects prone to drug side effects. Although the use of
genetic risk scores further improves CVD prediction, the significance is not unambiguous, and some
subjects at risk remain undetected. Further research directions should focus on the “second level” of
genetic information, namely, regulatory molecules (miRNAs) and epigenetic changes, predominantly
DNA methylation and gene-environment interactions.
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1. Introduction

Cardiovascular disease (CVD) remains the most common cause of death in the major-
ity of countries worldwide [1]. It includes coronary heart disease, cerebrovascular disease,
peripheral arterial disease, rheumatic and congenital heart diseases, and venous throm-
boembolism (www.who.int/cardiovascular-disease#tab=tab_1/ accessed on 5 March 2021).
Death rates from coronary heart disease (CHD) and stroke have generally been higher in
Central and Eastern Europe (CEE) [2]. A decline in CVD mortality has been reported in
most European countries; however, the decline in CVD mortality in CEE countries started
substantially later [3]. Molecular genetics and pharmacogenetics play a key role in the diag-
nosis, prevention, and treatment of CVD. Genetic testing is used to identify the underlying
genetic etiology in patients with suspected cardiovascular disease such as hypertrophic
cardiomyopathy or familial hypercholesterolemia, and to determine who in the family has
inherited the causal variant and is therefore at risk of developing CVD. Genetic testing
should be carried out in well-phenotyped individuals and coupled with comprehensive
family evaluation to aid in interpretation and application of the results [4]. Molecular ge-
netics technologies applied to cardiovascular studies have enabled chromosome mapping
and the identification of many genes involved in primary etiology (Figure 1).

Coronary artery disease and other common, complex cardiovascular diseases are
heritable to variable extents. Our understanding of how DNA variants connect to function
and how genetics may translate to the clinic has increased significantly over the past
two decades [5]. In the following review, we present important examples of the genetic
modification of CVD risk as well as the gene-environment and gene-pharmacotherapy
relationships with regard to future use of these findings in personalized medicine.
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Figure 1. Genetic predisposition CVD. There are five nongenetic risk factors of CVD and all are under significant genetic 
control. Some selected genes with SNPs influencing mentioned risk factors and subsequently CVD are shown. Probably 
highest number of SNPs is associated with dyslipidemia, most powerful variants are associated with diabetes and obesity 
and the smallest effects have been observed in field of hypertension. Interestingly, smoking is by far the strongest predictor 
of CVD, but the list of genes associated with smoking behaviour is short and there is a lack of studies focused on these 
genes in CVD patients. 
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polymorphisms is involved. However, monogenetic conditions can lead to severe prema-
ture CVD and early death if unrecognized and untreated. 

The most common monogenic disease leading to premature CVD is familial hyper-
cholesterolemia (FH). FH has a frequency of approximately 1:200 and is caused primarily 
by mutations within the LDL receptor (LDLR), apolipoprotein B (APOB), and PCSK-9 
genes [6]. The relative frequencies of monogenic variants might vary slightly among dif-
ferent populations, but the most frequent are mutations in LDLR [7,8]. Although more 
than 2900 LDLR mutations have been identified, approximately one-thousand mutations 
are considered to be the cause of FH. In contrast with single missense mutations in the 
APOB gene, pathogenic and likely pathogenic mutations in the LDLR gene are mostly 
exonic substitutions and missense rearrangements [9,10]. 

Hypertrophic cardiomyopathy (HCM) is the most common familial heart disease 
with vast genetic heterogeneity. Mutations in 11 or more genes encoding proteins of the 
cardiac sarcomere (>1400 variants) are responsible for (or associated with) HCM. Genetic 
testing also allows expansion of the broad HCM disease spectrum and diagnosis of HCM 
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control. Some selected genes with SNPs influencing mentioned risk factors and subsequently CVD are shown. Probably
highest number of SNPs is associated with dyslipidemia, most powerful variants are associated with diabetes and obesity
and the smallest effects have been observed in field of hypertension. Interestingly, smoking is by far the strongest predictor
of CVD, but the list of genes associated with smoking behaviour is short and there is a lack of studies focused on these
genes in CVD patients.

2. Monogenic vs. Polygenic Determination

The majority of CVDs and CVD risk factors have polygenic backgrounds; thus, the
interplay between environmental and lifestyle risk factors with risk alleles of dozens
of polymorphisms is involved. However, monogenetic conditions can lead to severe
premature CVD and early death if unrecognized and untreated.

The most common monogenic disease leading to premature CVD is familial hyperc-
holesterolemia (FH). FH has a frequency of approximately 1:200 and is caused primarily
by mutations within the LDL receptor (LDLR), apolipoprotein B (APOB), and PCSK-9
genes [6]. The relative frequencies of monogenic variants might vary slightly among differ-
ent populations, but the most frequent are mutations in LDLR [7,8]. Although more than
2900 LDLR mutations have been identified, approximately one-thousand mutations are
considered to be the cause of FH. In contrast with single missense mutations in the APOB
gene, pathogenic and likely pathogenic mutations in the LDLR gene are mostly exonic
substitutions and missense rearrangements [9,10].

Hypertrophic cardiomyopathy (HCM) is the most common familial heart disease
with vast genetic heterogeneity. Mutations in 11 or more genes encoding proteins of the
cardiac sarcomere (>1400 variants) are responsible for (or associated with) HCM. Genetic
testing also allows expansion of the broad HCM disease spectrum and diagnosis of HCM
phenocopies with different natural history and treatment options, but is not a reliable
strategy for predicting prognosis [11].

Other monogenic CVDs are rather rare in comparison to FH, such as sitosterolemia or
Marfan syndromes, which occur with frequencies of less than 1:1000, and the frequencies
of many other diseases are so rare that they have not even been determined (Table 1) (for a
detailed review, see [11]).
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Table 1. Selected examples of monogenic cardiovascular diseases.

Gene(s) CVD Manifestation Frequency

LDLR, APOB, PCSK9 Familial hypercholesterolemia
High concentrations of LDL and total cholesterol;
xanthomas; arcus lipoides cornae; xanthalesmas;

coronary heart disease
1:200–250

ABCG5, ABCG8 Sitosterolemia
High plasma sitosterol, campesterol;

hypercholesterolemia; premature coronary heart
disease; xanthomas

1:2000

MYH7, MYBPC3, TNNT2, TPM1,
MYL2, MYL3, PLN, Hypertrophic cardiomyopathy

Hypertrophy of left ventricle, shortness of breath,
diastolic dysfunction, left ventricular

outflow ischemia
1:500

PKP2, DSP, DSG2, JUP, TMEM43 Arrhythmogenic right
ventricular cardiomyopathy

Ventricular arrhythmias, right
ventricular cardiomyopathy 1:5000

MYH7, MYBPC3, TNNT2, MYH6,
MYPN, ANKRD1, RAF1,

DES, DMD
Familial dilated cardiomyopathy Diastolic dysfunction, left ventricular hypertrophy,

atrial fibrillation, congestive heart failure 1:2500

FBN1, TGFBR1, TGFBR2, SMAD3,
TGFB2, TGFB3, SKI Marfan’s syndrome

Aortic aneurysm or dissection, valvular heart
disease, enlargement of the proximal pulmonary

artery, congestive heart failure, arrhythmias
1:5000

ACTA2, FBN1, MYH11, TGFBR1/2,
LOX, COL3A1, TGFB2/3

Thoracic aortic aneurysm
and dissection

Chest pain, renal cysts, thumb-palm sign, temporal
arteritis, bicuspid aortic valve, abdominal

aneurysm, intracranial aneurysm,
unknown

BMPR2, BMPR1B, CAV1, KCNK3,
SMAD9, ACVRL1, ENG, EIF2AK4 Pulmonary arterial hypertension

Right ventricular failure, impaired brachial artery
flow-mediated dilation, increased pulmonary

vascular resistance
15:1,000,000

KCNQ1/H2/E1/J2, SCN5A,
CAV3, CALM1/2 Long QT syndrome

Malignant arrhythmia, palpitations, syncope,
anoxic seizures secondary to

ventricular arrhythmia
1:2000

KCNH2 Short QT syndrome Abbreviated QTc interval on the ECG, propensity
for atrial and ventricular arrhythmias, unknown

SCN5A Brugada syndrome Elevation of the ST, ventricular fibrillation,
syncope, arrhythmia 1:2000

For more details, see [11].

Sitosterolemia is a rare autosomal recessive disorder that is clinically similar to FH.
Homozygous or compound heterozygous mutations in either ABCG5 or ABCG8 genes that
lead to increased plant sterol (primarily sitosterol) absorption and plasma concentrations,
xanthomas and accelerated atherosclerosis have been recognized as the molecular basis of
the disease [12,13].

Marfan’s syndrome is an autosomal dominant disorder that has high penetrance with
variable expression. It is caused by many different types of mutations in fibrillin 1 (FBN1)
and manifests mostly as cardiovascular but also skeletal and ocular abnormalities. Affected
individuals are usually very tall, and they have long limbs, long faces, long fingers and
toes, hypomusculature, and chest, spine, hip, and foot deformities [14].

More than 100 monogenic CVDs have been identified, and at least 10 million peo-
ple worldwide may have some of them [11] (for some examples see Table 1). Monogenic
CVDs are characterized by early onset, usually severe symptoms, poor prognosis, and
high mortality and disability rates. Therefore, monogenic CVDs cannot be underestimated,
underdiagnosed, or undertreated. Fortunately, advances in gene testing technology, par-
ticularly next-generation sequencing, have triggered increased attention on the genetic
diagnosis of “pre-symptomatic” subjects.

3. Association Studies

During the era of candidate gene studies, the genes and polymorphisms for analyses
were selected according to our knowledge about the pathophysiology of the disease. This
pioneering era was prone to many false positive (as well as false negative) results, and this
was mainly due to the low numbers of examined subjects, which was often just a couple of
dozen samples. Moreover, highly significant results were not confirmed in the following
replication (often also small) studies.

However, some single genes/variants of unambiguous and high importance have
been detected by this approach. Among them, polymorphisms within apolipoprotein E
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(APOE; OMIM acc. No. 107741) [15] as the determinant of plasma cholesterol levels,
apolipoprotein A5 (APOA5; OMIM acc. No 606368) [16] as the determinant of plasma
triglycerides, or melanocortin receptor type 4 as the determinant of body weight (MC4R;
OMIM acc. No 155541) [17] shall be mentioned as successful and important examples of
those days’ achievements.

4. Genome Wide Association Studies (GWAS)

After the era of candidate gene studies and chromosome mapping, GWAS significantly
improved and extended our understanding of the genetic background of many noncom-
municable diseases, including CVD and CVD risk factors [18]. The GWAS principle is
“hypothesis free” [19]. This approach has led to the detection of many significant variants
(followed by the identification of new genes) with completely unknown clinical importance.

The first GWAS dealing with CVD risk or CVD risk factors were published approxi-
mately 15 years ago [20–22], for review see [23].

GWAS have led to the detection of the most powerful genetic determinants of CVD,
which are represented by SNPs (single nucleotide polymorphisms) within the human
chromosome 9p21.3 region [24]. Variants were detected in a “gene-free” region (“gene
desert”) later recognized as long noncoding regulatory RNA ANRIL (antisense noncoding
RNA in the INK4 locus; located within the p15/CDKN2B-p16/CDKN2A-p14/ARF gene
cluster) (OMIM acc. No. 613149) loci. The risk allele is associated with an increased
risk of myocardial infarction (MI) by approximately 30–35%, and this effect is relatively
homogenous in different populations and ethnic groups. Importantly, the detected variants
are not associated with any of the traditional CVD risk factors (with the exception of
diabetes), pointing at so far unknown mechanisms leading to atherosclerosis.

Interestingly, variants at these loci are associated with a wider spectrum of noncom-
municable diseases. For example, associations have been shown for different types of
cancer [25], glaucoma [26], or even autism [27]. These findings highlight the importance of
these loci and the clustered SNPs as an exceptional genetic hotspot as a base of different
diseases associated SNPs.

The second example of the “new” gene, which was detected due to GWAS, is sortilin
(OMIM acc. No. 602458). GWAS signals within the CELSR2/PSRC1/SORT1 gene cluster
were among the strongest signals associated with the risk of CVD [21] and plasma levels of
LDL cholesterol [28]. Additionally, in this case, the mechanisms by which SORT1 influences
plasma cholesterol levels were (and remain in detail so far) unknown. SORT1 encodes
a multiligand sorting receptor that is expressed mainly in the liver and plays a role in
intracellular trafficking. It binds to apolipoproteins E, B, and A5, which are important
proteins acting in lipid metabolism (reviewed by [29]). SORT1 influences VLDL transport
through the hepatic Golgi apparatus and simultaneously interacts with PCSK9 and influ-
ences LDLR degradation. Finally, it could serve as a low-capacity alternative LDL receptor
(reviewed by [30]). However, although the effects of SORT1 on plasma cholesterol levels
and MI risk have been well proven and repeatedly confirmed, the results from animal
models [31,32] are not uniform and sometimes show conflicting results. The roles of SORT1
seem to be very complex and controversial, and the exact molecular mechanism remains
unclear. Thus, the essential answer has not been provided regarding the association of
increased or decreased liver expression with an increased risk of hypercholesterolemia and
higher CVD risk.

Despite the important role of SORT1 in the determination of plasma cholesterol levels
at the population level, a large study failed to detect any FH-associated mutation within
this gene [33]. As the gene codes for the protein responsible for intracellular cholesterol
transport, mutations within this gene may be severely deleterious and lead to lethal conse-
quences in utero. This might explain why these mutations do not occur in the population.

At this point, we cannot omit FTO, which is probably the most interesting GWAS-
detected gene and has gained multidisciplinary interest. GWAS demonstrated that FTO
(“fat mass and obesity associated gene”; OMIM acc. No. 610966) was simultaneously
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associated with obesity [34,35] and an increased risk of type 2 diabetes mellitus (T2DM)
development [36]. Variants in strong linkage disequilibrium clustering within the first
intron of the gene are responsible for the increased risk. The associations with body mass
index (BMI) and T2DM were quickly confirmed in later studies, and the association with
BMI was described in all major ethnicities with the exception of black Africans, in whom
the frequency of the risky allele and the proportion of BMI variation explained (reviewed
by [37]) were much lower. The contribution of FTO variants to the risk of myocardial
infarction was described shortly after the abovementioned first associations [38,39], fol-
lowed by recognition of its role in renal failure [40], Alzheimer’s disease [41], diabetes
complications [42], and even in the determination of total mortality [43].

Similar to ANRIL, the function of FTO is regulatory rather than structural or transport.
A recent review [44] suggested that the variants exert their effects through another gene
located in a cluster (RPGRIP1-l/FTO/IRX3) with FTO, namely, IRX3 (Iroquois homeobox
protein 3). IRX3, whose promoter binds to enhancers located within the 1st intron of FTO
and whose expression is influenced by tagging FTO variants, has also been associated
with body weight in animal models. IRX3 is highly expressed in the pancreas, suggesting
susceptibility to FTO/IRX3 through the potential effect of insulin secretion.

Nevertheless, the roles of FTO as an important epigenetic modifier influencing nucleic
acid methylation [45], telomere length determination [46,47], and serving as a transcrip-
tional coactivator [48] have been described in the literature.

It can be concluded that the variants within the FTO 1st intron region are among the
most important and interesting hits from the era of GWA studies.

It is important to note that the GWAS-detected variants within the known candidate
genes from the “association studies” era are often different (and more powerful) than the
original variants identified in association studies.

The selected examples of the most powerful and most interesting genes/SNPs playing a
role in CVD determination or in the determination of CVD risk factors are listed in Table 2.

Table 2. Examples of genes which SNPs are associated with increased risk of cardiovascular disease
(CVD) or with strong effect on CVD risk factors.

Gene Effect on Ref

ANRIL Risk of myocardial infarction [24]
SORT1 Plasma cholesterol levels [21,28]
APOA5 Plasma triglyceride levels [16,49]

FTO BMI values, risk of T2DM and myocardial infarction [34–36,38,39]
TCF7L2 Risk of T2DM [50]
APOE Plasma cholesterol levels [15]
MC4R BMI values [51]

CHRNA5-A3-B4 Smoking addiction [52]
UMOD Hypertension [53]

5. Gene Score
5.1. Polygenic Predisposition

As mentioned above, single SNPs have a relatively minor effect on disease risk (usually
with OR between 1.05–1.50 per allele) or just a slight effect on biochemical/anthropometrical
parameters. For example, they are associated with increasing plasma total cholesterol by
approximately 0.10–0.35 mmol/L; body weight by max. approximately 500–700 g per risky
allele or blood pressure by 2–5 mmHg.

Although it is clear that noncommunicable diseases have polygenic backgrounds [54],
the number of studies focused on polygenic determination of CVD is limited. Nonetheless,
the published results show that polygenic scores represent the right approach for the
personalized management of diseases (Figure 2).



Int. J. Mol. Sci. 2021, 22, 4182 6 of 19

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 20 
 

 

Table 2. Examples of genes which SNPs are associated with increased risk of cardiovascular dis-
ease (CVD) or with strong effect on CVD risk factors. 

Gene Effect on Ref 
ANRIL Risk of myocardial infarction [24] 
SORT1 Plasma cholesterol levels [21,28] 
APOA5 Plasma triglyceride levels [16,49] 

FTO BMI values, risk of T2DM and myocardial infarction [34–36,38,39] 
TCF7L2 Risk of T2DM [50] 
APOE Plasma cholesterol levels [15] 
MC4R BMI values [51] 

CHRNA5-A3-B4 Smoking addiction [52] 
UMOD Hypertension [53] 

5. Gene Score 
5.1. Polygenic Predisposition 

As mentioned above, single SNPs have a relatively minor effect on disease risk (usu-
ally with OR between 1.05–1.50 per allele) or just a slight effect on biochemical/anthropo-
metrical parameters. For example, they are associated with increasing plasma total cho-
lesterol by approximately 0.10–0.35 mmol/L; body weight by max. approximately 500–700 
g per risky allele or blood pressure by 2–5 mmHg. 

Although it is clear that noncommunicable diseases have polygenic backgrounds 
[54], the number of studies focused on polygenic determination of CVD is limited. None-
theless, the published results show that polygenic scores represent the right approach for 
the personalized management of diseases (Figure 2). 

 
Figure 2. Theoretical example of gene score construction. Theoretical example of unweighted gene score (based on sum of 
the risky alleles) in group of patients and controls. With 10 genes (polymorphisms) the values could be between 0 and 20. 
In fact, the lowest and the highest values are almost never presented. There is significant shift in the distribution curve in 
patient groups to the higher numbers of risky alleles. Still, there is also significant overlap between the patients and con-
trols in gene score values. 

An analysis of “only” one SNP is undoubtedly important to describe its potential in 
the determination of human phenotype/disease. However, such analyses, albeit of im-
portance and interest, do not represent unquestionable proof and are not sufficient for 
identifying the risk factors leading to disease development. To overcome this problem, 

Figure 2. Theoretical example of gene score construction. Theoretical example of unweighted gene score
(based on sum of the risky alleles) in group of patients and controls. With 10 genes (polymorphisms) the
values could be between 0 and 20. In fact, the lowest and the highest values are almost never presented.
There is significant shift in the distribution curve in patient groups to the higher numbers of risky alleles.
Still, there is also significant overlap between the patients and controls in gene score values.

An analysis of “only” one SNP is undoubtedly important to describe its potential in the
determination of human phenotype/disease. However, such analyses, albeit of importance
and interest, do not represent unquestionable proof and are not sufficient for identifying
the risk factors leading to disease development. To overcome this problem, simultaneous
analysis of more SNPs and the calculation of so-called gene risk scores or genetic risk
scores (GRSs) or polygenic risk scores (PRSs) seem to be a reasonable approach [55,56]. A
variable number of polymorphisms are being used for gene score construction, from a few
to thousands.

5.2. Unweighted and Weighted Genetic Risk Score

To calculate the GRS, alias PGS, two approaches are being used. The simple unweighted
GRS (uGRS) summarizes the number of risk alleles, regardless of the effect size of each
allele, and the weighted GRS (wGRS) takes into account the real effect of the SNP on the
risk/biochemical parameter. Thus, for example, ANRIL variants will have higher power than
risky alleles within other genes.

Both approaches have some advantages and pitfalls. The disadvantage of the wGRS
is that the exact effect of the SNP on the parameter of interest within the population must
be known for further calculations. This could be problematic because not all effects are
necessarily generally applicable, even within populations of identical or similar ethnicities,
as others and we have shown for the MLXIPL gene and plasma triglyceride values [57–59].
The wGRS could also be influenced by age, sex, and a wide list of environmental factors.

In contrast, for the simple uGRS, the exact effect of each genotype/allele does not
have to be known, and information about the risky status is sufficient, although even this
could be confusing, especially between the different ethnicities. For example, Japanese
researchers [60] included AB0 gene variants in the GRS used for plasma lipid level estima-
tion. Variants within this gene were not reported as significant in GWAS performed on
Caucasians. An identical study that used different variants within the genes for SORT1,
LDLR, and HMGCR showed that the effect sizes for the genes were different in compari-
son to the Global Lipids Genetics Consortium score (http://lipidgenetics.org accessed on
5 March 2021).

http://lipidgenetics.org
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Given that the calculation of the GRS shall be used for disease risk estimation in young,
asymptomatic subjects (to allow the detection of subjects at risk as soon as possible to initi-
ate intensive and focused lifestyle interventions, potentially followed by pharmacological
treatments), the use of the uGRS seems to be a sufficient tool.

5.3. GRS Examples

Initial studies focused on simultaneous analyses of several polymorphisms in associ-
ation with plasma cholesterol levels were published (without attracting much attention)
more than a quarter of century ago [61,62] and included APOE, APOB, and LDLR genes.

The golden age of the gene scoring began after the description of the human genome
and after wider availability of high-throughput genotyping technologies. Briefly, there
is a wide list linking the GRS and obesity prediction [63], plasma TG values [64,65], or
hypertension [66].

Talmud et al. [67] used a preselected list of 65 SNPs to estimate the risk of T2DM
development. Although the individual odds varied between 0.93 and 1.32, if the subjects
from the top vs. bottom quintiles of the gene score were compared, the 10-year risk of
T2DM development was almost 3 times higher for the top-quintile subjects.

Very detailed and extensive analyses on the identical phenotype were performed in
the Estonian Biobank cohort [68]. Two different types of gene scores were used: Weighted
and double weighted (taking into account the P values from all available studies for the
SNPs of interest). Furthermore, different numbers of SNPs (from 65 to 2100) were used in
different models, as well as different types of adjustments. Interestingly, the best prediction
for T2DM manifestation was reached with the GRS that included 1000 SNPs and in the
model without adjustment for BMI.

Using the 53 SNPs, Morris et al. [69] did not significantly improve CVD risk predictions
based on traditional risk factors. Some utility has been demonstrated for intermediate-
risk groups only, which was not surprising because a significant number of the selected
SNPs used for the risk estimation were associated with traditional risk factors, mainly
dyslipidaemia. Moreover, the effect of some individual SNPs used for GRS calculation was
not confirmed in this study, thus highlighting the risk of inaccuracies, if external values are
used for the calculation.

GRS is also used for the detection of so-called “polygenic FH” (see above), although
FH was originally recognized as a monogenic disease. Currently, approximately 20% of
clinically diagnosed FH cases are suggested to have the polygenic form of FH [6,70]. FH
patients without monogenic causes have been shown to have a high GRS resulting from
the contribution of several (usually 6–12) common LDL-C-raising SNPs.

A study published by Khera et al. [71] can serve as an extreme example of the use of
the GRS in CVD prediction. The authors used more than 6 million SNPs for the risk estima-
tion, and the high GRS was associated with a 3.7-fold increased likelihood of myocardial
infarction. The cost–benefit of such analysis is thus questionable because the strongest
CVD-associated SNPs within the ANRIL loci (see above) have ORs of approximately 1.7 in
the case of homozygosity.

Thus, including such extremely high numbers of SNPs will not add as much value as
expected; moreover, the optimum has not been identified.

6. Nutrigenetics

In the vast majority of noncommunicable diseases, neither the genes nor the environ-
ment or lifestyle individually are sufficient to fully explain the risk of the disease. Thus, we
need to improve our understanding of the interactions between the genes and environment,
especially between genes and diet.

From environmental and lifestyle factors, an unhealthy diet (beyond smoking) is one
of the leading causes of mortality and morbidity worldwide. In fact, the Global Burden of
Disease project estimated that in 2015, nutritional risk factors were responsible for more
deaths and disease worldwide (calculated as % of disability adjusted life years—DALY)
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than any other risk [72]. An earlier analysis from the WHO found that an unhealthy
diet together with physical inactivity contributed to 57% of cardiovascular deaths globally
(//apps.who.int/iris/handle/10665/44203, accessed 5 March 2021). Genetic determinants
of eating habits have been the focus of considerable scientific interest for decades.

An important area of research in this topic is to identify genetic targets for the purpose
of personalized medicine and personalized nutrition. The interaction between dietary
habits and genes is extremely complex and can go both ways: Specific genetic characteris-
tics can influence the effect of the diet on biochemical or anthropometrical characteristics
(nutrigenetics); however, what we eat may also have an impact on gene expression (nu-
trigenomics).

Within nutrigenetics, there are several illustrative examples showing how SNPs could
influence the effect of consumed nutrients on plasma lipids or body weight.

Cholesterol 7 alpha-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile
acid synthesis cascade, the only metabolic pathway for cholesterol elimination from the
body [73]. There are several functional polymorphisms within the CYP7A1 promotor
region. In a primary study, rs3808607 significantly influenced cholesterol decrease in a
subset of males in the Czech population based post-MONICA study after marked changes
in dietary habits (caused by socioeconomic changes between 1988 and 1996) and sug-
gested the highest sensitivity of CC homozygotes [74]. The results were later confirmed
in interventional studies based on dietary cholesterol intake in male volunteers [75] and
in randomized trial focused on plant sterol consumption [76] or interventions based on
cafesterol consumption [77].

The abovementioned FTO gene interacts with many dietary factors. Subjects with low
protein intake and the “BMI-increasing” allele of FTO have the highest BMI values, and
this interaction is particularly strong in distinct Asian populations [78]. The modification
of the effect of FTO on BMI values through protein intake has also been found in children
and adolescents [79]. Finally, higher birth weight also attenuated an association between
the FTO genotypes and BMI values in adulthood [80].

Homocysteine, which is believed to be a risk factor for MI and stroke, is associated with
the dietary intake of folate. It has been shown that the effect of methylene tetrahydrofolate
reductase (MTHFR) polymorphism on homocysteine concentration is larger in regions with
low folate intake than in regions where folate fortification is common [81].

The abovementioned risk associated with variants within the ANRIL, long noncoding
regulatory RNA, although not associated with traditional risk factors, could be modified
by dietary habits. It has been described [82] that increased intake of sugar-sweetened
beverages interacts with ANRIL variants. An increased risk of nonfatal MI was observed
only in subjects consuming more than 2 servings daily. Interestingly, this interaction was
not observed in consumers of fruit juice only, despite identical energy intake per servings.

The list of potentially interesting nutrigenetic associations is long; however, a number
of results remain unconfirmed in subsequent independent studies. The list of reviews and
opinion papers on the topic is probably as long as the list of original results, but some of
them are useful to read [83–85].

The significant lack of knowledge in the field of nutrigenetics and lack of a descrip-
tion of real and valid gene-environment interactions are much more complicated than
originally believed.

In one of our previous studies, we focused on the determination of binge drinking and
alcohol consumption within the large HAPIEE study, which involved almost 30,000 subjects
from four countries [86]. For the differentiation between the subgroups of binge drinkers
and controls, the two genes of interest (FTO and ADH1B), sex, smoking status, and drinking
pattern were gradually included in the model and examined. Discrimination into these
subgroups has resulted in subgroups with approximately 200–500 subjects. Thus, even
the use of very large, precisely defined, and extensively and homogenously phenotyped
subjects cannot guarantee unquestionable results and final answers, and such studies need
to be replicated in independent cohorts.

//apps.who.int/iris/handle/10665/44203
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7. Pharmacogenetic of CVD Treatment

The metabolism, effects, and side effects of all drugs are being determined and/or
modified by genetic background. Pharmacogenetics will help us understand the complex
relationships and determine individualized/personalized approaches to pharmacotherapy.
There is significant interpatient variability in drug response, much of which has a genetic
basis. Specifically, genotypes can influence drug metabolism, drug transport, and a person’s
sensitivity to a drug [87].

In pharmacogenetics, the interactions between genetic variants and drug efficacy
and/or susceptibility to undesirable side effects (USEs) are analyzed. This field has the
potential to improve health outcomes by identifying individuals who have a greater benefit
from treatment or who are at greater risk of harm caused by medication intolerance [88].

Statins are inhibitors of hydroxymethylglutaryl CoA-reductase (key enzyme of choles-
terol biosynthesis), and they are among the most frequently used drugs. Despite the
relatively low USE prevalence, the numbers of affected subjects are huge because the
number of patients taking statins is enormous.

There are several genes with the potential to be helpful in the detection of subjects
prone to statin USE (mostly muscle symptoms) [89–91].

The most powerful transporter seems to be the SLCO1B1 drug transporter. The gene
encodes an organic anion-transporting polypeptide OATP1B1, which regulates the hepatic
uptake of statins. A common variant (rs4363657) within this gene is associated with a
significantly increased risk of myopathy, and carriers of two risk alleles have a 16-fold
increased risk [92]. Later studies suggested [93–95] that this risk is limited to subjects on
high statin doses (at least 40 mg daily), especially to patients treated with simvastatin.

For the treatment of hypertension, an important drug class is beta-blockers. It is
recommended to examine the variants within CYP2D6 for the optimal dosing and avoiding
the USE of this drug class [96].

8. Epigenetics

The term epigenetic has been several times redefined and recently, the most accepted
definition is that epigenetic information represents the type of genetic information, which
is not directly included in the DNA sequence. There are several mutual characteristics
of epigenetic factors. They are reversible and not stable across the entire life span of
individuals, and they can be influenced by the subjects’ lifestyle (e.g., by physical activity,
smoking status, dietary habits). At least some of them (DNA methylations) are clearly
heritable similarly to the DNA sequence. Epigenetic changes have primarily regulatory
effects. There are two major types of epigenetic information [97] potentially associated
with CVD that are commonly analyzed; (i) regulatory noncoding RNA, mostly represented
by microRNA (miRNA) and (ii) DNA methylation.

Despite the modification of histones (mostly acetylation, methylation. and phospho-
rylation), which can potentially affect DNA replication, chromosome condensation or
alternative gene splicing could have important consequences in connection with CVD [98],
there is a significant lack of concise and well-performed studies.

8.1. Regulatory Non-Coding miRNA

MicroRNAs (miRNAs) are endogenous, short noncoding single-stranded RNA molecules,
~22 nucleotides in length, which act as transcriptional regulators and are involved in posttran-
scriptional processes.

MiRNAs are derived from transcripts that form distinctive hairpin structures. Pro-
cessing of the hairpin into the mature miRNA allows the formation of an RNA-induced
silencing complex (RISC) [99]. The miRNAs then pair with targeting mRNAs by binding
to the different gene regions: 3′-untranslated region (3′UTR), 5′UTR, promoter or coding
sequences. miRNA binding can both repress or activate translation. The crucial binding
location for translational regulation resides in the mature miRNA sequence, called the seed
region [100,101].
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Deregulation of miRNA expression plays a crucial role in the pathogenesis of numer-
ous diseases, including cardiovascular diseases. Changes in miRNA expression and/or
function have been associated with various cardiovascular complications, such as my-
ocardial infarction, cardiac hypertrophy, cardiomyopathy, or arrhythmias [102,103]. MiR-
NAs are expressed in cardiomyocytes, fibroblasts, endothelial cells, and vascular smooth
muscle cells and control virtually all aspects of cardiovascular biology, including car-
diac remodeling and fibrosis, apoptosis, inflammation, proliferation, angiogenesis, and
metabolism [104].

MicroRNAs play a critical role in myocardial infarction by regulating apoptotic,
necrotic, and autophagic cell death. Many miRNAs are differentially regulated in heart tis-
sue in response to myocardial infarction depending on the type of myocardial injury [105].

MiRNAs are involved in every stage of the biological process of atherosclerosis, that
is, endothelial dysfunction, cellular adhesion, plaque development, and plaque rupture
(Table 3). Moreover, endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs),
which participate in pathways of plaque and thrombus formation, may potentially release
miRNAs in systemic circulation [106].

Table 3. List of selected regulatory miRNA involved in CVD development.

miRNA Function

miR-15 family, miR-34 family, miR-499, miR-320, miR-24, miR-1,
miR-16, miR-21, miR-92a, miR-375, miR-103/107,

miR-133a/b, miR-214

Differently regulated in heart tissue in response to
myocardial infarction

miR-34a, miR-217, miR-146a Endothelial cell senescence
miR-126, miR-31, miR-17-3p Vascular inflammation

miR-21, miR-221, miR-222, miR-143/145 cluster, miR-1, miR-10a SMC (smooth muscle cell) differentiation, survival, proliferation,
and dedifferentiation

miR-155, miR-125a-5p Monocytes/macrophages lipid uptake and
inflammatory responses

miR-146a, miR-128, miR-365, miR-503 Effect on migration of macrophages
miR-33, miR-302a, miR-122, miR-370, miR-335, miR-378, miR-27,

miR-125a-5p, miR-33a/b, miR-144, miR-223,
miR-148a, miR-128-1

Cholesterol homeostasis and fatty acid oxidation

For more details, see [100–114].

Several miRNAs have been associated with regulatory mechanisms involved in EC
senescence [107,108] and regulate vascular inflammation [109,110]. In addition to proin-
flammatory cytokines, changes in miRNA expression levels due to blood flow have the
potential to affect networks of genes regulating endothelial and vascular smooth muscle
cell function, inflammation, and atherosclerosis [111].

In response to endothelial dysfunction and inflammatory cell infiltration, SMCs mi-
grate from the media to the intima and proliferate to form neointimal lesions. The switch
from a contractile to a synthetic proliferative phenotype in SMCs is controlled by miRNAs,
some of which are essential for the acquisition of the contractile phenotype, SMC differenti-
ation, and the structural integrity of the aorta [112]. MiR-133 was reported to prevent the
phenotypic switching of SMCs, and miR-21, miR-221, and miR-222 promote SMC survival,
proliferation, and dedifferentiation [113].

Lipid uptake and inflammatory responses in monocytes/macrophages are regulated
by miRNAs, such as miR-155 and miR-125a-5p [114,115]. As a result, neointimal accumula-
tion of foam cells and fatty streaks can be reduced, which is a main determinant of plaque
development and instability.

MiRNAs regulate signaling and lipid homeostasis pathways that alter the balance
of atherosclerotic plaque progression and regression. MiRNAs have been identified to be
potent posttranscriptional regulators of genes involved in the regulation of cholesterol
homeostasis and fatty acid oxidation, fatty acid metabolism, and lipogenesis [116], and
have been shown to play a key role in governing HDL metabolism [117].



Int. J. Mol. Sci. 2021, 22, 4182 11 of 19

Circulating miRNA released from cells can be detected in virtually all human body
fluids [118]. Unlike intracellular miRNAs, circulating miRNAs show remarkable stability
and resistance to degradation by endogenous RNases. MiRNAs can be released into
the blood circulation by various mechanisms, including active secretion, apoptosis, or
necrosis. It has been proposed that circulating miRNAs reside in microvesicles, which
may provide protection from RNase activity and account for the shedding of miRNAs
into the circulation [119]. Cell-secreted miRNAs play an important role in cell-to-cell
communication. The stability of circulating miRNAs has stimulated interest in their use as
biomarkers for the diagnosis and prognosis of various diseases, including CVD.

8.2. DNA Methylation

DNA methylation seems to be the most important and most extensively studied DNA
epigenetic modification in association with CVD [120]. DNA methylation affects cytosine
within CpG sites across the entire genome. Of all the epigenetic markers, DNA methylation
is the most stable and occurs approximately within every second gene, and 70% of all CpGs
within the human genome are methylated [121]. Generally, the global DNA methylation
pattern can be analyzed: Methylation within long-interspersed nuclear elements (LINE-1)
or within ALU sequences. Finally, detailed differences near the candidate genes within their
regulatory elements could be analyzed using comparative bisulfite sequencing. Epigenetic
changes could lead to an increase in both the transcription machinery and gene silencing.
The importance of appropriate nutrition is underlined here—the sufficient intake of methyl-
group donors, such as folate and other B vitamins, is necessary for optimal epigenetic
regulation [122].

Agha and colleagues [123] performed a large epigenome-wide profiling study and
detected that out of the almost 500,000 CpGs, the methylation levels at more than 50 CpG
sites were significantly associated with incident CVD or myocardial infarction. These CpG
sites mainly influenced genes involved in calcium homeostasis and calcium-dependent
regulation, cardiac remodeling, and leukocyte transendothelial migration.

The importance of prenatal nutrition for the development of CVD in adulthood was
suggested in a study in which six loci sensitive to prenatal nutrition were examined [124].
Increased methylation at GNASAS (alias NESPAS, with a highly imprinted expression pat-
tern involved in the regulation of fetal nutrient demand) was associated with an increased
risk of MI in females.

The results from the German KORA study [125] pointed to the importance of DNA
methylation for the determination of plasma lipids. Interestingly, it seems that many more
CpG sites are involved in the determination of plasma triglycerides and total cholesterol
than in the determination of LDL and HDL cholesterol levels.

9. Telomeres

Telomeres are nucleoprotein complexes located at the ends of the linear chromosomes,
and they protect chromosomes from DNA degradation and fusion. In humans, telomeres
consist of thousands of TTAGGG hexanucleotides and a protein complex called shelterin.
Telomere length is used as a marker of biological/cellular age [126], as telomeres become
shorter with each cell division. It is worth mentioning that most studies analyze the relative
telomere length, not the absolute telomere length.

Shorter telomere length was associated with an increased risk of cardiovascular mor-
tality in several large longitudinal studies [127,128]. Additionally, some CVD risk factors
were associated with telomere length, such as obesity, plasma lipids, or hypertension. These
associations could be influenced by the age of examined subjects and generally showed
strong heterogeneity effects [129–131].

It is important to remember that in contrast to SNPs or mutations, the pattern of
epigenetic changes, unfortunately, will not be identical in different tissues [132–134]. Thus,
for example, the relevance of information obtained from DNA isolated from peripheral
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blood (which is the most common source of DNA) for cardiac cell function is not abso-
lutely justified.

10. Geographical and Ethnical Differences

Different populations and ethnicities have significant differences in genetic back-
grounds, and these differences may influence disease development.

Rare mutations are geographically specific, which is not surprising because the preva-
lence differences are based often on the “founder effect”. However, important and ex-
traordinary differences are also observed for allelic frequencies of many common and
important variants.

At this point, apolipoprotein L1 (APOL1, OMIM acc No. 603743) and its variants
should be mentioned. The APOL1 gene encodes an ion channel, and there are two known
functional variants (rs73885319 and rs71785313). These variants are associated with an
approximately twofold-fold increased risk of CVD (and even with a 10-fold increased risk
of renal failure) [135]. The spread of these variants is a result of their primary function:
Protection against Trypanosoma brucei infection (cause of sleeping disease) [136]; thus, as a
result of selection pressure, they occur in black Africans only [49].

Additionally, variants within the abovementioned APOA5 gene show strong intereth-
nic differences (for review see [137]). For example, one of the variants (rs3135506) com-
monly present in almost 30% of Hispanics and in approximately 14% of Caucasians and
Africans is almost completely missing in Asians (less than 1%). In contrast, the minor allele
of the APOA5 variant rs2075291 is present in Asians only.

Significant differences could also be observed within the large ethnic groups, de-
spite hundreds of years of inhabiting identical geographic regions. The largest Middle
European minority are Roma/Gypsy subjects, exhibiting identical ethnicity as the majority—
Caucasians. Between Roma Caucasians and non-Roma Caucasians, significant differences
were described (not only) in genetic predisposition to T2DM, albeit in both directions
depending on the set of SNPs selected [138,139].

Another example of interethnic difference originating from nutrition-based selection
pressure is the rs1229984 variant within the alcohol dehydrogenase (ADH1B, OMIM ac. No.
103720) gene. The enzyme encoded by ADH1B is the key metabolizer of ethanol, and two
isoforms (with His or Arg at amino acid position 47) exhibit highly significant differences
in ethanol catabolism. Slow metabolizers (Arg carriers) consume approximately 30% more
ethanol than rapid Arg metabolizers [140]. This paradox is caused by the fact that rapid
metabolizers accumulated the first ethanol degradation product, acetaldehyde, which
causes unpleasant reactions to alcohol consumption. There are extreme allelic differences
between Europeans (~5% of the His allele) and Asians (~80% of the His allele) [141], and the
differences are considered the result of selection pressure in the past. Increased aldehyde
concentrations associated with allele His help to degrade toxins, products of rice decay.
Due to the medieval era, most European inhabitants consumed beer and wine because
water was highly sludge-contaminated; however, in Asia, this problem was solved by
boiling water, and tea was preferably consumed.

The abovementioned examples clearly point to the fact that the use of general GWAS
results for calculation could be misleading, especially when different ethnicities and males
or females or subjects from different geographical regions with different lifestyle habits
are examined.

11. Heritability of CVD risk Modifiers: Less Understood Piece of the Puzzle

The list of the CVD risk factors or factors associated with CVD seems to be end-
less [142], and at least partial genetic determination can be assumed for all risk factors
as well as risk modifiers, which was suggested by the latest versions of ESC/EAS guide-
lines [143]. However, studies evaluating the genetic component of complex risk modifiers
and factors known to be associated with increased CVD risk (e.g., socioeconomic factors,
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climate, psychosocial factors, etc.) are infrequent and difficult to conduct and evaluate and
interpret [144].

12. Conclusions and Future Direction

“One size will not fit all” is the basis of personalized medicine, which has been
promulgated over the last decade at conferences and meetings and fills the pages of
scientific journals. Unfortunately, large gaps remain in clinical practice, and the motivation
for bringing this approach closer to patients may also be lacking [145].

Although nutrigenetic and nutrigenomic research has made some notable discoveries
over the last years, such as identifying genetic determinants of obesity, lipid metabolism,
or type 2 diabetes [146–148], the application of these findings in clinical or public health
practice is also infrequent. Nonetheless, despite the methodological challenges, this line of
research has the potential to offer practitioners the opportunity to provide dietary advice that
is specifically tailored to the needs of the individuals. Unfortunately, such an approach is more
often detectable at the private level and rarely supported by health insurance companies.

Determining the genetic determinants of our response to diet or treatment could be
important for a number of reasons for both clinical and public health research and practice.

We can measure the genes, improve the accuracy of dietary assessments, and reduce
the impact of measurement bias and residual confounders, which are often major limi-
tations in traditional nutritional epidemiological analyses that could help to tailor more
detailed recommendations. Although enormous amount of genetic information is available,
more extensive assessment of such information relative to other traditional risk factors
have not been performed; thus, genetic information has not been adequately used for CVD
risk estimation.

Explosive progress achieved in understanding the rapidly evolving science underlying
CVD genomics has resulted in fee-for-service testing, making genetic information widely
available. Proper interpretation of these results is even more important than ever before.
The power of genetic analysis lies most prominently in screening family members at risk for
developing disease and excluding unaffected relatives, which is information not achievable
otherwise. Genetic testing also allows expansion of the broad underlying inherited risk
conditions spectrum and precise diagnosis of pathologies with different natural history and
treatment options. Interfacing a heterogeneous disease such as CVD with the vast genetic
variability of the human genome, and high frequency of novel mutations, has created
unforeseen difficulties in translating complex science (and language) into the clinical arena.
Indeed, proband diagnostic testing is often expressed on a probabilistic scale, which is
frequently incompatible with clinical decision making. Major challenges rest with making
reliable distinctions between pathogenic mutations and benign variants, and those judged
to be of uncertain significance. Genotyping in CVD risk prediction can be a powerful tool
for family screening and diagnosis. However, wider adoption and future success of genetic
testing in the practicing cardiovascular community depends on a standardized approach
to DNA variability interpretation, and bridging the communication gap between basic
scientists and clinicians.
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Vohnout, B. Association of metabolic and genetic factors with cholesterol esterification rate in HDL plasma and atherogenic index
of plasma in a 40 years old Slovak population. Physiol. Res. 2011, 60, 785–795. [CrossRef] [PubMed]

60. Tada, H.; Kawashiri, M.A.; Nomura, A.; Teramoto, R.; Hosomichi, K.; Nohara, A.; Inazu, A.; Mabuchi, H.; Tajima, A.;
Yamagishi, M. Oligogenic familial hypercholesterolemia, LDL cholesterol, and coronary artery disease. J. Clin. Lipidol. 2018,
12, 1436–1444. [CrossRef]

61. Poledne, R.; Hubácek, J.; Písa, Z.; Pistulková, H.; Valenta, Z. Genetic markers in hypercholesterolemic and normocholesterolemic
Czech children. Clin. Genet. 1994, 46, 88–91. [CrossRef]

62. Pedersen, J.C.; Berg, K. Gene-gene interaction between the low density lipoprotein receptor and apolipoprotein E loci affects lipid
levels. Clin. Genet. 1990, 38, 287–294. [PubMed]

63. Shabana; Shahid, S.U.; Hasnain, S. Use of a gene score of multiple low-modest effect size variants can predict the risk of obesity
better than the individual SNPs. Lipids Health Dis. 2018, 17, 155. [CrossRef]

64. Hubacek, J.A.; Dlouha, D.; Adamkova, V.; Schwarzova, L.; Lanska, V.; Ceska, R.; Satny, M.; Vrablik, M. The gene score
for predicting hypertriglyceridemia: New insights from a Czech case-control study. Mol. Diagn. Ther. 2019, 23, 555–562.
[CrossRef] [PubMed]

65. Johansen, C.T.; Wang, J.; Lanktree, M.B.; McIntyre, A.D.; Ban, M.R.; Martins, R.A.; Kennedy, B.A.; Hassell, R.G.; Visser, M.E.;
Schwartz, S.M.; et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic
spectrum of hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1916–1926. [CrossRef] [PubMed]

66. El Rouby, N.; McDonough, C.W.; Gong, Y.; McClure, L.A.; Mitchell, B.D.; Horenstein, R.B.; Talbert, R.L.; Crawford, D.C.; eMERGE
Network; Gitzendanner, M.A.; et al. Genome-wide association analysis of common genetic variants of resistant hypertension.
Pharmacogenom. J. 2019, 19, 295–304. [CrossRef] [PubMed]

67. Talmud, P.J.; Cooper, J.A.; Morris, R.W.; Dudbridge, F.; Shah, T.; Engmann, J.; Dale, C.; White, J.; McLachlan, S.; Zabaneh, D.; et al.
Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 2015, 64, 1830–1840. [CrossRef]

68. Läll, K.; Mägi, R.; Morris, A.; Metspalu, A.; Fischer, K. Personalized risk prediction for type 2 diabetes: The potential of genetic
risk scores. Genet. Med. 2017, 19, 322–329. [CrossRef]

69. Morris, R.W.; Cooper, J.A.; Shah, T.; Wong, A.; Drenos, F.; Engmann, J.; McLachlan, S.; Jefferis, B.; Dale, C.; Hardy, R.; et al. Marginal
role for 53 common genetic variants in cardiovascular disease prediction. Heart 2016, 102, 1640–1647. [CrossRef] [PubMed]

70. Trinder, M.; Li, X.; DeCastro, M.L.; Cermakova, L.; Sadananda, S.; Jackson, L.M.; Azizi, H.; Mancini, G.B.J.; Francis, G.A.;
Frohlich, J.; et al. Risk of premature atherosclerotic disease in patients with monogenic versus polygenic familial hypercholes-
terolemia. J. Am. Coll. Cardiol. 2019, 74, 512–522. [CrossRef]

71. Khera, A.V.; Chaffin, M.; Zekavat, S.M.; Collins, R.L.; Roselli, C.; Natarajan, P.; Lichtman, J.H.; D’Onofrio, G.; Matera, J.;
Dreyer, R.; et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with
early-onset myocardial infarction. Circulation 2019, 139, 1593–1602. [CrossRef]

72. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental
and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease
Study 2015. Lancet 2016, 388, 1659–1724. [CrossRef]

73. Hubacek, J.A.; Bobkova, D. Role of cholesterol 7alpha-hydroxylase (CYP7A1) in nutrigenetics and pharmacogenetics of cholesterol
lowering. Mol. Diagn. Ther. 2006, 10, 93–100. [CrossRef] [PubMed]

74. Hubacek, J.A.; Pitha, J.; Skodová, Z.; Poledne, R.; Lánská, V.; Waterworth, D.M.; Humphries, S.E.; Talmud, P.J. Czech MONICA
Study. Polymorphisms in CYP-7A1, not APOE, influence the change in plasma lipids in response to population dietary change in
an 8 year follow-up; results from the Czech MONICA study. Clin. Biochem. 2003, 36, 263–267. [CrossRef]

http://doi.org/10.1371/journal.pone.0045731
http://www.ncbi.nlm.nih.gov/pubmed/23049848
http://doi.org/10.1002/ajmg.b.30828
http://doi.org/10.1016/j.cjca.2020.03.001
http://doi.org/10.1093/hmg/ddz187
http://doi.org/10.1097/HCO.0000000000000629
http://doi.org/10.1002/cphg.95
http://www.ncbi.nlm.nih.gov/pubmed/31765077
http://doi.org/10.1038/ng.2007.61
http://www.ncbi.nlm.nih.gov/pubmed/18193046
http://doi.org/10.1007/s00439-008-0577-6
http://doi.org/10.33549/physiolres.932069
http://www.ncbi.nlm.nih.gov/pubmed/21812522
http://doi.org/10.1016/j.jacl.2018.08.006
http://doi.org/10.1111/j.1399-0004.1994.tb04208.x
http://www.ncbi.nlm.nih.gov/pubmed/1980097
http://doi.org/10.1186/s12944-018-0806-5
http://doi.org/10.1007/s40291-019-00412-2
http://www.ncbi.nlm.nih.gov/pubmed/31222479
http://doi.org/10.1161/ATVBAHA.111.226365
http://www.ncbi.nlm.nih.gov/pubmed/21597005
http://doi.org/10.1038/s41397-018-0049-x
http://www.ncbi.nlm.nih.gov/pubmed/30237584
http://doi.org/10.2337/db14-1504
http://doi.org/10.1038/gim.2016.103
http://doi.org/10.1136/heartjnl-2016-309298
http://www.ncbi.nlm.nih.gov/pubmed/27365493
http://doi.org/10.1016/j.jacc.2019.05.043
http://doi.org/10.1161/CIRCULATIONAHA.118.035658
http://doi.org/10.1016/S0140-6736(16)31679-8
http://doi.org/10.1007/BF03256448
http://www.ncbi.nlm.nih.gov/pubmed/16669607
http://doi.org/10.1016/S0009-9120(03)00025-0


Int. J. Mol. Sci. 2021, 22, 4182 17 of 19

75. Kovár, J.; Suchánek, P.; Hubácek, J.A.; Poledne, R. The A-204C polymorphism in the cholesterol 7alpha-hydroxylase (CYP7A1)
gene determines the cholesterolemia responsiveness to a high-fat diet. Physiol. Res. 2004, 53, 565–568. [PubMed]

76. MacKay, D.S.; Eck, P.K.; Gebauer, S.K.; Baer, D.J.; Jones, P.J. CYP7A1-rs3808607 and APOE isoform associate with LDL cholesterol
lowering after plant sterol consumption in a randomized clinical trial. Am. J. Clin. Nutr. 2015, 102, 951–957. [CrossRef]

77. Hofman, M.K.; Weggemans, R.M.; Zock, P.L.; Schouten, E.G.; Katan, M.B.; Princen, H.M. CYP7A1 A-278C polymor-
phism affects the response of plasma lipids after dietary cholesterol or cafestol interventions in humans. J. Nutr. 2004,
134, 2200–2204. [CrossRef]

78. Merritt, D.C.; Jamnik, J.; El-Sohemy, A. FTO genotype, dietary protein intake, and body weight in a multiethnic population of
young adults: A cross-sectional study. Genes Nutr. 2018, 13, 4. [CrossRef]

79. Qi, Q.; Downer, M.K.; Kilpeläinen, T.O.; Taal, H.R.; Barton, S.J.; Ntalla, I.; Standl, M.; Boraska, V.; Huikari, V.; Kiefte-de
Jong, J.C.; et al. Dietary intake, FTO genetic variants, and adiposity: A combined analysis of over 16,000 children and adolescents.
Diabetes 2015, 64, 2467–2476. [CrossRef]

80. Kim, J. Are genes destiny? Exploring the role of intrauterine environment in moderating genetic influences on body mass. Am. J.
Hum. Biol. 2020, 32, e23354. [CrossRef]

81. Holmes, M.V.; Newcombe, P.; Hubacek, J.A.; Sofat, R.; Ricketts, S.L.; Cooper, J.; Breteler, M.M.; Bautista, L.E.; Sharma, P.;
Whittaker, J.C.; et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine,
and stroke risk: A meta-analysis of genetic studies and randomised trials. Lancet 2011, 378, 584–594. [CrossRef]

82. Zheng, Y.; Li, Y.; Huang, T.; Cheng, H.L.; Campos, H.; Qi, L. Sugar-sweetened beverage intake, chromosome 9p21 variants, and
risk of myocardial infarction in Hispanics. Am. J. Clin. Nutr. 2016, 103, 1179–1184. [CrossRef] [PubMed]

83. Peña-Romero, A.C.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. The future of nutrition: Nutrigenomics and nutrigenetics in
obesity and cardiovascular diseases. Crit. Rev. Food Sci. Nutr. 2018, 58, 3030–3041. [CrossRef] [PubMed]

84. Barrea, L.; Annunziata, G.; Bordoni, L.; Muscogiuri, G.; Colao, A.; Savastano, S.; Obesity Programs of Nutrition, Education,
Research and Assessment (OPERA) Group. Nutrigenetics-personalized nutrition in obesity and cardiovascular diseases. Int. J.
Obes. Suppl. 2020, 10, 1–13. [CrossRef] [PubMed]

85. Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in personalized nutrition: Can you “Eat for your
genes”? Nutrients 2020, 12, 3118. [CrossRef]

86. Hubacek, J.A.; Pikhart, H.; Peasey, A.; Malyutina, S.; Pajak, A.; Tamosiunas, A.; Voevoda, M.; Holmes, M.V.; Bobak, M.
The association between the FTO gene variant and alcohol consumption and binge and problem drinking in different gene-
environment background: The HAPIEE study. Gene 2019, 707, 30–35. [CrossRef]

87. Johnson, J.A.; Cavallari, L.H. Pharmacogenetics and cardiovascular disease—Implications for personalized medicine. Pharmacol.
Rev. 2013, 65, 987–1009. [CrossRef]

88. Rodríguez Vicente, A.E.; Herrero Cervera, M.J.; Bernal, M.L.; Rojas, L.; Peiró, A.M. Personalized medicine into health national
services: Barriers and potentialities. Drug Metab. Pers. Ther. 2018, 33, 159–163. [CrossRef]

89. Vrablik, M.; Zlatohlavek, L.; Stulc, T.; Adamkova, V.; Prusikova, M.; Schwarzova, L.; Hubacek, J.A.; Ceska, R. Statin-associated
myopathy: From genetic predisposition to clinical management. Physiol. Res. 2014, 63 (Suppl. 3), S327–S334. [CrossRef]

90. Canestaro, W.J.; Austin, M.A.; Thummel, K.E. Genetic factors affecting statin concentrations and subsequent myopathy: A
HuGENet systematic review. Genet. Med. 2014, 16, 810–819. [CrossRef]
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