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Abstract: Sex is a significant variable in the prevalence and incidence of neurological disorders. Sex
differences exist in neurodegenerative disorders (NDs), where sex dimorphisms play important roles
in the development and progression of Alzheimer’s disease, Parkinson’s disease, and amyotrophic
lateral sclerosis. In the last few years, some sex specific biomarkers for the identification of NDs
have been described and recent studies have suggested that microRNA (miRNA) could be included
among these, as influenced by the hormonal and genetic background. Failing to consider the possible
differences between males and females in miRNA evaluation could introduce a sex bias in studies by
not considering some of these sex-related biomarkers. In this review, we recapitulate what is known
about the sex-specific differences in peripheral miRNA levels in neurodegenerative diseases. Several
studies have reported sex-linked disparities, and from the literature analysis miR-206 particularly has
been shown to have a sex-specific involvement. Hopefully, in the near future, patient stratification
will provide important additional clues in diagnosis, prognosis, and tailoring of the best therapeutic
approaches for each patient. Sex-specific biomarkers, such as miRNAs, could represent a useful tool
for characterizing subgroups of patients.

Keywords: neurodegenerative diseases; biomarkers; microRNAs; sex differences; Alzheimer’s
disease; Parkinson’s disease; amyotrophic lateral sclerosis

1. Introduction

Neurodegenerative diseases (NDs) have a huge impact on healthcare systems. They
often are multifactorial with a complex pathophysiology, which makes an early diagnosis
and identify effected treatments difficult. Several studies suggest that neuronal abnor-
malities start to appear 10–20 years before the onset of symptoms. Treatments are only
symptomatic, and no pharmacological therapies are currently available to stop the un-
derlying disease process [1]. There is a growing need for new tools having the ability to
detect patients in their preclinical stage, monitor the disease progression, improve the
understanding of various drug mechanisms targeting different pathogenic processes, and
identify any response to treatment in a more sensitive and objective way. Using biomarkers,
we can detect biochemical changes that appear when neurons begin to die. MicroRNAs
(miRNAs) are highly conserved small noncoding RNAs regulating post-transcriptional
gene expression. Since their discovery, a large number of miRNAs have been described.
They are remarkably stable in human biofluids and easy to manage. As a result, miRNAs
have emerged as powerful diagnostic or prognostic biomarkers in the pathophysiology of
different neurodegenerative disorders and conditions affecting the central nervous system,
in particular in older adults [2,3].
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Gender differences have been a focus of interest in a growing number of studies in
recent years. Several human conditions show gender or sex differences when considering
their pathogenetic mechanisms, their progression, the age of onset, and treatment response.
Recent studies suggest that the cause may lay in miRNA expression levels and that these
differences might be influenced by a hormonal and genetic background [4]. Ignoring these
differences could alter the meaning of the obtained results, as clusters or families of genes
or molecular determinants, which have the potential to cause different disease onsets, could
be missed or their functions and roles may not be further investigated. Moreover, failing to
consider possible differences between males and females in miRNAs and in biomarkers in
general could introduce a gender bias in the study.

Therefore, in this review, by analyzing the studies summarized in Table 1 and dis-
cussed in Table 2, we have tried to find an answer to the question: “Can we identify
sex-specific biomarkers involved in the early and differential diagnosis, and which could,
eventually, be useful to treat patients in a personalized way?”.

2. microRNAs as Possible Biomarkers in Neurodegenerative Diseases

Biomarkers are powerful tools in biomedical research, and can be useful as supports
in selecting the best therapeutic strategies. Testing-specific biomarkers allow monitoring
modulations in normal or pathological conditions and give the opportunity to identify
diseases in their early stages or to follow them throughout their progression. Clinical
symptoms in the early stages might be very subtle, manifesting only when molecular and
cellular alterations have already occurred. Thus, there is an increasing effort to develop
molecular diagnostic and prognostic markers that meet certain requirements, such as easy
accessibility, high specificity and sensitivity, low costs, and applicability to laboratories
with standard equipment, for example peripheral biomarkers.

The most well established markers for the detection and monitoring of the preclinical
and clinical stages of Alzheimer’s disease (AD) include cerebrospinal fluid (CSF) measures
of Aβ42, total tau (t-tau), and phospho-tau (p-tau) [5], while the most promising for the
diagnosis and monitoring of the progression of Parkinson’s disease (PD) is probably the
assay of alpha-synuclein [6]. Other tools useful to support AD diagnosis are magnetic
resonance imaging for hippocampal atrophy [7], the 18F-FDG PET to identify abnormal
brain metabolism [8], and amyloid PET to detect the amyloid deposition [9]. However,
these tests are invasive and expensive, and thus difficult to adopt in routine clinical practice.

An important novelty in this field is represented by peripheral circulating miRNAs.
They are found in peripheral biofluids (saliva, blood, plasma, serum, urine), and there-
fore are easy to obtain from patients without any substantial risk to health. Moreover,
miRNAs are remarkably stable in human biofluids and are easy to manage, thus they
are increasingly emerging as promising powerful diagnostic or prognostic biomarkers
of different pathophysiological processes [10] in conditions affecting the central nervous
system, particularly in older adults. Interestingly, circulating miRNAs and miRNA profiles
specific for AD, mild cognitive impairment (MCI) syndrome, PD, and amyotrophic lateral
sclerosis (ALS) have been defined and characterized [11–13].

MicroRNAs are short non-coding RNAs (20–25 nucleotides), which are emerging
as fundamental factors that are mostly displaying their functions at post-transcriptional
levels. These short RNA sequences exert their action by binding to the 3’UTR of their target
genes to negatively modulate their expression. Depending on the precision of the sequence
complementarity, miRNAs can induce translational repression or mRNA degradation.

Each gene transcript might be targeted by several miRNAs and each single miRNA
can bind and regulate hundreds of direct targets. Due to their number and complexity,
miRNA–mRNA interactions are far from being well demonstrated.

Canonically, miRNAs are encoded as individual or cluster transcripts, with the latter
containing several different miRNAs. Many miRNAs are located in the intron region of host
protein coding genes [14]. Typically, miRNAs are generated from longer primary miRNA
transcripts (pri-miRNA and pre-miRNA), which undergoing two sequential cleavages
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and passing to the RNase III enzymes Drosha and Dicer, produce the mature and biolog-
ically active molecules, which form the silencing complex together with the argonaute
(AGO) protein.

It is important to note that miRNAs have unique characteristics, which make them
possible candidate biomarkers. Differing from coding genes, miRNAs do not require
translation and their expression level usually corresponds to their activity. Moreover, they
are highly stable and easily preserved in biological specimens, thus making their analysis
more informative than the analysis of longer RNAs. Even more importantly, growing
data indicate that circulating miRNAs are representative of the releasing tissues and their
detection in plasma or serum supports their use in non-invasive diagnostic or prognostic
methods, which can eventually lead to the identification of therapeutic targets.

3. MicroRNAs in the Brain: From Function to Gender Differences

Besides their relevant physiological roles, the deregulation of miRNAs is involved in
the onset and progression of several human pathological conditions, including neurode-
generative diseases. Significant sex differences have been associated with physiological
and pathological miRNA functions. Differences in their expression levels can lead to a
propensity to develop specific diseases, such as the higher risk of developing Alzheimer’s
disease observed in females.

Males and females have considerable differences in their hormonal and genetic pro-
files [4], and these variables are known to impact on microRNAs. In particular, sex steroid
hormones, such as estrogens, progesterone, and testosterone, are known to regulate the
expression of several microRNAs [15–18].

In recent years, a growing number of studies have highlighted the impacts of sex-
related microRNA expression on brain development [19], with sex hormones showing the
ability to bind to nuclear hormone receptors in order to induce a direct or indirect alteration
in gene expression [20]. Furthermore, during miRNA biogenesis, sex hormones could also
have a huge impact on miRNAs regulation. In fact, estradiol has been proven to alter the
expression of AGO, Drosha, and Dicer [21].

Surprisingly, despite genomic distribution analysis showing that the human X chromo-
some has a higher density of miRNAs compared to autosomes and the Y-chromosome [22,23],
no literature data are currently available on sex-chromosome-related microRNAs impli-
cated in NDs.

Due to the extreme complexity of the miRNA-based regulatory circuitries, further
in depth analyses will be required in order to understand in a more definite way their
physiological and pathological activity, and to confirm their promising roles as biomarkers.

Focusing on the hot spot of this review, very high-throughput sequencing experi-
ments were interpreted, suggesting that the number of miRNAs expressed in the human
brain is over 1000, although currently only ~550 have been annotated in all humans [24].
Certain miRNAs and other non-coding RNAs have been suggested to act as “complexity
multipliers” to help translate the ~25,000 human protein-coding genes into the human
cerebral cortex, thus participating in neurodevelopmental and neurophysiological network
integration [25]. The expression of brain miRNA changes continuously during brain devel-
opment, with some miRNAs being enriched during the early phase of brain maturation
and others during the late phase. Many miRNAs are highly expressed in the adult nervous
system in a spatially and temporally controlled way in both normal physiology and in
certain pathological conditions. Indeed, miRNAs have been implicated in various aspects
of dendrite remodeling and synaptic plasticity, as well as in experience-dependent adaptive
changes of neural circuits in postnatal developmental and the adult brain [26].

Moreover, some miRNAs are “exclusive” to different cell populations. As an example,
in the human hippocampus, miR-124 and miR-320 are expressed mainly by neurons, in the
substantia nigra miR-320 is mainly expressed by pigmented cells, while miR-107 is barely
expressed by the same cell types [27]. The functions of brain miRNAs are clearly not related
only to cell fate determination along developmental lineages, but also to neuroplasticity
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and to many other neurobiological functions, including the regulation of the synthesis
of synaptic proteins, the morphogenesis of the dendritic spine, and in plasticity-related
diseases [28].

Ziats and colleagues observed significant sex differences in the expression of 40
miRNAs in the prefrontal cortex of males and females. The majority of sex-biased gene
expression occurred in adolescence (65%), suggesting that miRNA-targeted gene expression
differences become most pronounced around puberty, probably due to the hormonal
influence of this life stage [29]. Importantly, Murphy and colleagues observed a differential
expression of microRNAs according to sex in the development of the cortex in rats [19].
They performed expression studies in male and female cortices isolated from postnatal day
0 (P0), postnatal day 7 (P7), and adult rats, showing differential miRNA levels between
males and females at each developmental stage. They focused in particular on the miR-200
family, which has a “biphasic” expression, being higher in female rats at P0, inverting
its expression at P7, and being higher in male rats during adult life. Moreover, Cui and
colleagues identified 73 female-biased miRNAs and 163 male-biased miRNAs in several
tissues, including brain tissue [30].

4. Sex Differences in Neurodegenerative Diseases

Human pathological conditions that show differential incidence rates, clinical man-
ifestations, and progression according to sex can be extremely interesting as a focus of
research [31]. In particular, sex is a significant variable in the prevalence and incidence
of neurological disorders [32]. Sex differences can be observed in age at onset, disease
severity, progression, and response to treatment [33]. The biological factors underlying
these sex disparities are currently poorly understood. Although traditionally attributed to
hormonal effects, recent evidence has described the role of genetics, and in particular of
the sex chromosomes in these sexual dimorphisms.

The response of the central nervous system (CNS) to sex steroids is complex and
depends on the type, amount, and cellular distribution of sex hormone receptors. Female
sex hormones, and in particular estrogens, have neuroprotective effects on the CNS [34,35],
while more controversial data have been reported on the effect of male hormones [36,37].

Sex differences can be also observed in neurodegenerative disorders, where sex dimor-
phisms play an important role in the development and progression of AD, PD, and ALS.
Considering sex as a biological variable, research promises to advance our understanding
of the pathophysiology and treatment of these conditions.

AD is a multifactorial, degenerative condition characterized by progressive cognitive
decline. It is one of the most common neurodegenerative disorders, affecting more than
45 million individuals throughout the world. The disease is defined and diagnosed based
on the presence of amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), which
lead to oxidative stress, neuroinflammation, neural dysfunction, and neurodegeneration.
Interestingly, Aβ peptides and tau protein clearance could also have main roles in the
development of AD and others neurodegenerative pathologies [38–41]. Women and men
have been reported to have differential vulnerability, pathogenesis, and clinical presen-
tation. The prevalence of AD has been estimated to be higher in women than in men
(2:1 female/male ratio) [42], with postmenopausal women contributing to over 60% of all
affected subjects [43]. Despite a number of contrasting reports on sex-related differences in
the incidence rates of AD [44–49], overall the evidence seems to homogeneously point to a
higher incidence of AD in older women [50,51]. However, the biological causes underlying
the sex-specific phenotypes in AD and the other neurodegenerative diseases are not yet
well understood.

Some of the evidence has demonstrated that non-nuclear membrane estrogen receptor
α (mERα) can play a role in the mechanism; mERα regulates a coordinated framework
of defense strategies aimed at counteracting chronic oxidative imbalance, mitochondrial
dysfunction, and brain energy dysmetabolism, which is a causative factor of neuronal cell
degeneration, as well as in determining neuron survival [52,53]. Estrogens have a wide
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range of beneficial actions in the brain and in other tissues, and their loss may increase the
risk of AD. Many studies suggest that reductions of estrogen in adulthood are associated
with an increased risk of AD in women [54].

As for male sex hormones, similarly to the association between low estrogen levels
and an increased risk of AD in women, lower testosterone levels may lead to a higher risk
of AD in men. Moffat and colleagues [55] showed that testosterone depletion is an early
component of the risk of AD in men, at least ten years prior to the clinical diagnosis of
dementia. Importantly, the loss of testosterone in brain tissue is a key component of the
disease process [56,57], and this mechanism is sex-specific because testosterone levels are
not significantly different in women with AD [57].

PD is a progressive neurodegenerative disorder. Its main pathological feature is the
progressive loss of midbrain dopaminergic (DA) neurons in the substantia nigra pars
compacta (SNc) and the presence of misfolded a-synuclein-positive cytoplasmic inclusions,
called Lewy bodies, in the surviving neurons [58,59].

PD has a 1.5 higher frequency in men than women [60,61] at all ages and for all
ethnicities [62], but it has a higher mortality rate and faster progression in women [63].

Several studies have reported certain specific sex differences in the clinical and cogni-
tive characteristics of PD. PD in women starts with a more benign phenotype, probably due
to the protective effect of estrogens, as the age of onset is correlated with the fertile life span.
Moreover, gonadal hormones and sex chromosomes might modulate the risk of develop-
ing PD by influencing epigenetic mechanisms [62,64,65]. Preclinical evidence [62,66,67]
suggested a potential neuroprotective effect of estrogens on dopaminergic neurons and in
preventing brain damage through anti-inflammatory, anti-oxidative, and anti-apoptotic
mechanisms [68,69], along with possible inhibitory effects on the formation and stabiliza-
tion of α-synuclein fibrils, a key pathological feature of PD. However, the progression of the
disease in women leads to a higher risk of developing highly disabling treatment-related
complications, such as motor and non-motor fluctuations, as well as dyskinesia [66,70].

As for AD, higher levels of estrogens are inversely correlated with the severity of
PD symptoms, and women who experienced early natural or surgical menopause show a
higher risk of PD [71].

Conflicting results have been observed regarding the functional role of male sex
hormones in PD. In particular, one study reported that the prevalence of testosterone
deficiency in male PD patients is higher than in men during their healthy aging [72].
Whether this imbalance is a precondition to or a consequence of PD is currently unknown.

Well-established effects of sex have been also reported on certain pathological and
epidemiological features of ALS. ALS is a complex neurodegenerative disease primarily
characterized by the progressive loss of both upper and lower motor neurons in the brain
and spinal cord, leading to fatal paralysis and respiratory failure [73]. As for PD, males are
more susceptible to the disease [74] and sometimes develop more severe symptoms [75].
Both the incidence and prevalence rates of ALS in males and females depend on the age
classes. However, older patients with ALS are more likely to be female, suggesting that
menopause and associated hormonal changes could be involved in the higher frequency of
the disease in older women [76].

Effects of sex on the most common clinical forms of the disease and types of symptom
onset have been observed. A higher proportion of spinal onset was reported amongst men,
while a higher frequency of bulbar onset was reported amongst women [77].

Several studies have described a protective effect of hormones in ALS murine mod-
els [77]. In fact, female hormones prevent cell death and reduce the neuroinflammation
in neural and muscular cells. In particular, a study performed on SOD1 G93A (the most
relevant human mutation in ALS pathogenesis) in mice showed that progesterone slowed
down the progression of the disease and extended the life span of male mice with ALS,
due to the activation of autophagic degradation of mutant SOD1 [77]. As for the effects
of male sex hormones on the risk of ALS, testosterone efflux seems to have a role during
prenatal life, irrespective of sex, in the lifelong risk of ALS, with increased prenatal levels of
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testosterone being a potential independent risk factor [78]. Importantly, ALS patients who
had higher levels of testosterone and a lower progesterone/free testosterone ratio showed
more rapid deterioration of respiratory parameters [79].

However, sex differences in the clinical features of ALS should be further investigated
to understand the molecular mechanisms at the base of such dimorphisms and to develop
more effective treatment options for ALS.

5. Peripheral Sex-Related miRNAs and Neurodegenerative Diseases

In the last few years, certain sex-specific biomarkers for the identification of NDs have
been described [11], such as progranulin (PGRN) levels as markers in the pathogenesis of
AD [80]. Among them, certain miRNAs have been identified as sex-related biomarkers,
which are influenced by the hormonal and genetic background [4]. Tables 1 and 2 summa-
rize certain characteristics of studies reporting sex-related miRNA differences in peripheral
samples of subjects with AD, PD, and ALS.

5.1. Alzheimer’s Disease and Frontotemporal Dementia

We found several studies investigating some miRNAs as peripheral sex-specific
biomarkers for AD and frontotemporal dementia (FTD).

Grasso and coauthors when analyzing plasma samples in a population of 48 patients
with FTD and 46 healthy controls found significant downregulation of miR-663a, miR-502-
3p, and miR-206 (p = 0.0001, p = 0.0002, p = 0.02, respectively) in FTD patients. However,
stratification of data according to sex showed significant differences in miR-663a and
miR-502-3p in both males and females and significant differences in miR-206 only in male
subjects. To obtain a discriminating measure between FTD subjects and healthy controls
(HCs), they calculated a combined score of three miRNAs when applying a Bayesian
approach and obtained a classifier accuracy of 84.4%. Combined miRNA levels showed
higher sensitivity (100%) and specificity (87.5%) in distinguishing FTD patients from
HCs in males versus females. Interestingly, miR-502-3p is located on the X-chromosome
(miRbase) [81]. Moreover, they found a significant difference in let-7e-5p levels between
HCs and FTD females, but no difference was found between males and in the overall
population.

Sex-specific differences in miR-206 were also evaluated in a longitudinal study includ-
ing a five-year follow up, with the aim of identifying a biomarker capable of predicting
the conversion from MCI to dementia by analyzing miRNA expression in 96 plasma sam-
ples (30 MCI patients, 35 AD patients, 31 HCs). The results showed miR-206 as the most
promising marker, however with no sex-related differences [82].

Another study on plasma samples investigated miR-127-3p levels in patients with
FTD (54 samples) compared with patients with AD patients (20 samples) and controls
(53 samples). The results showed an underexpression of this miRNA in FTD samples.
After stratifying data according to sex, the same trend was observed in both males and
females, with good ROC diagnostic values [83]. The area under the curve (AUC) values
of miR-127-3p for discrimination between FTD and HC was 0.7684 in males and 0.8264
in females, and for discrimination between FTD and AD was 0.9263 in males and 0.8714
in females.

Denk and colleagues [84] investigated the differential expression of miRNAs in serum
samples of 38 HCs, 48 patients with FTD, and 47 patients with AD. Of the investigated
miRNAs, miR-103a-3p, miR-106a-5p, and miR-1246 were the best at discriminating between
FTD and AD in males but not in females. Similar results were found in CSF samples.

Interestingly, certain sex-specific differences in diagnostic accuracy were reported
in the study by Siedlecki-Wullich and colleagues [85]. They replicated an analysis of
biomarkers in plasma samples of subjects with AD, FTD, and MCI. The aim of the study
was to validate certain miRNAs as biomarkers capable of discriminating between the three
conditions. The results showed a significant upregulation of miR-92a-1-3p in AD compared
with control, overexpression of miR-181c-5p and miR-210-3p in both AD and MCI, while
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no miRNA was dysregulated in FTD. The ROC diagnostic value for males was better than
for female, in particular the specificity was higher in males, while sensitivity was higher in
females. The AUC values for all three miRNAs showed that their ability to discriminate
between MCI and controls switched from a value of 0.89 with 84.62% sensibility and 85.71%
specificity in females to a value 0.96 with 100% sensibility and 85.71% specificity in males.
The AUC values for the three miRNAs in discriminating between AD and HC increased
from 0.85 (92.86% sensibility, 71.43% specificity) in females to 0.94 (75% sensibility, 100%
specificity) in males [85].

However, not all studies on sex differences in miRNA levels reported positive results.
Galimberti and colleagues performed a study in 2014 on serum samples from 22 patients
with AD, 10 with FTD, 18 with non-inflammatory conditions, and 8 controls with inflam-
matory diseases. They found some downregulated miRNAs in AD versus all other groups,
but no sex-related differences were reported [86]. Another study was performed on blood
samples from a large population of 465 subjects, including two control groups (healthy and
other neurological diseases such as Parkinson’s disease, schizophrenia, or bipolar disorders)
compared with patients with AD and MCI. The results showed a dysregulation of almost
twelve miRNAs in patients with Alzheimer’s disease but none with differential expression
in males and females [87]. Similarly, Cosìn-Tomàs et al. found two downregulated miRNAs
in plasma samples from patients with AD compared to healthy controls, describing no
sex-related differences [88]

5.2. Parkinson’s Disease

Looking at PD, a study performed on 667 plasma samples obtained from 269 patients
with PD, 222 HCs, and 176 neurodegenerative disease controls (NDC) [89] reported a
higher expression of miR-132 in neurons and altered levels in other neurodegenerative
diseases. The results showed a significantly higher expression of this miRNA in males with
PD but not in females with PD compared to controls, while no differences were observed
between PD and ND controls. Further analyses of miR-132 and Nurr1 levels (a protein
involved in dopamine regulation) showed a negative correlation between higher levels of
miR-132 and lower levels of this protein, suggesting a possible role of this miRNA in Nurr1
regulation.

The MiR-132 family, along with miR-134, was reported in a validation study, where 50
plasma samples collected from MCI patients and 50 from healthy controls were analyzed.
The discrimination between controls and MCI according to ROC was more accurate in
males for miR-132 family members (miR-128, miR-132, miR-87) and in females for miR-134
family (miR-134, miR-323, miR-382) [90].

A study on serum samples [91] reported the analysis of the miRNA-29 family in
a population of 80 PD patients and 80 HCs. The levels of miR-29a and miR-29c were
significantly higher in females than in males in both controls and in patients with PD.

In another study on salivary samples, Chen and colleagues [92] enrolled 30 patients
with PD and 30 HCs and analyzed microRNAs that regulate the deglycase DJ-1 gene
expression, finding no differences between sexes.

5.3. Amyotrophic Lateral Sclerosis

Regarding ALS, Toivonen [93] analyzed the serum samples of 12 patients with ALS
and 12 HCs. When comparing results from male patients with male controls, no significant
differences were observed, although miR-206 was close to significance (3.4-fold upregu-
lation, p = 0.1). When comparing results between female patients and controls, miR-206,
miR-133b, and miR-145 were upregulated (5.4-fold p = 0.02; 2-fold p = 0.03; 1.4-fold p = 0.04).
As described above, sex-related miR-206 levels were investigated in two other studies on
FTD [81] and AD [82].
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Table 1. Main features of studies included in the review.

Studies Country Specimen Participants Sample Size Age (Mean ± SD) Sex (M/F)

Cases Controls Cases Controls Cases Controls

Alzheimer’s Disease and Frontotemporal Dementia

[81] Italy Plasma FTD/HC 48 46 72 ± 8 73 ± 7 20 (42%)/28 (58%) 18 (39%)/28 (61%)

[87] USA,
Germany Blood

AD
MCI

HC/OND
145 AD
38 MCI

214 HC
68 OND

72.9 ± 9.8
71.6 ± 6.2

68.9 ± 7.8
57 ± 18.7

76 (52%)/69 (47%) AD
18 (47%)/20 (53%)MCI

103 (48%)/111 (52%) HC
23 (34%)/45 (66%) OND

[84] Germany CSF, Serum FTD/AD/HC 96 FTD
95 AD 82 65 ± 9.2

65 ± 9.3 64 ± 11.3 78 (81%)/18 (19%) FTD
69 (73%)/26 (27%) AD 58 (71%)/24 (29%)

[83] Italy Plasma FTD/AD/HC 54 FTD
20 AD 53 70.3 ± 8.8

71.3 ± 8 71.6 ± 7.3 19 (35%)/35 (65%) FTD
10 (50%)/10 (50%) AD 20 (38%)/33 (62%)

[88] Spain Plasma AD/PAD
HC

36 AD
36 PAD 36 68.1

68.9 66.64 15 (42%)/21 (58%) AD
18 (50%)/18 (50%) PAD 16 (44%)/20 (56%)

[86] Italy Serum
CSF

AD/FTD
NINDC/INDC

22 AD
10 FTD

18NINDC
8 INDC

72.7 ± 0.6
69.4 ± 0.6

68.8± 0.71
66.5± 0.22

8 (36%)/14 (64%) AD
2 (20%)/8 (80%) FTD

13 (72%)/5 (28%) NINDC
0 (0%)/8 (100%) INDC

Mild Cognitive Impairment (MCI)

[82] Spain Plasma MCI/AD/HC 30 MCI
35 AD 31 76.8 ± 4.0

84.6 ± 3.5 75 ± 4.7 13 (43%)/17 (57%) MCI
14 (40%)/21 (60%) AD 17 (55%)/14 (45%)

[85] Spain Plasma MCI/AD/HC 26 MCI
56 AD 14 72 ± 8.5

77.8 ±6.7 68.3± 8.99 10 (38%)/16 (62%) MCI
15 (27%)/41 (73%) AD 7 (50%)/7 (50%)

[90] USA Plasma MCI/HC 50 50 68.2 65.1 21 (42%)/29 (58%) 26 (52%)/24 (48%)

Parkinson’s disease

[92] China Saliva PD/HC 30 30 63.2 ± 10.2 59.7 ± 12.8 20 (67%)/10 (33%) 16 (53%)/14 (47%)

[89] China Plasma PD/HC/NDC 269 222 HC
176 NDC 66.1 ± 0.61 66.2 ± 0.61

66.2 ± 0.74 157 (58%)/112 (42%) 130 (59%)/92 (41%) HC
105 (60%)/71 (40%) NDC

[91] China Serum PD/HC 80 80 64.0 ± 5.8 63.3 ± 5.4 48 (60%)/32 (40%) 48 (60%)/32 (40%)

Amotrophic Lateral Sclerosis

[93] NR Serum ALS/HC 12 12 57.0 ± 12.2 54.0 ± 14.5 6 (50%)/6 (50%) 6 (50%)/6 (50%)

AD: Alzheimer’s Disease; MCI: Mild Cognitive Impairment; FTD: Frontotemporal Dementia; HC: Healthy Controls; PD: Parkinson’s Disease; NDC: Neurodegenerative Disease Controls; OND: Other
Neurological Diseases; PAD: Preclinical AD; NINDC: Non-Inflammatory Disease Controls; INDC: Inflammatory Disease Controls; ALS: Amyotrophic Lateral Sclerosis.
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Table 2. Summary of differences between sexes in miRNA levels from studies including patients with NDs.

Studies Specimen miRNA Differences between Sexes Possible Roles

Alzheimer’s Disease and Frontotemporal Dementia

[81] Plasma
miR-206

miR-502-3p, miR-663a
let-7e-5p

Downregulated in FTD vs. HC males (p < 0.05).
Underexpressed both in males (p < 0.01; p < 0.1) and females

(p < 0.1; p < 0.01).
Downregulated in females with FTD (p < 0.05)

miR-206: synaptogenesis and neurogenesis.
miR-502-3p: schizophrenia.

miR-663a: inflammatory response, neuronal differentiation
and development

[87] Blood 10 miRNAs differentially expressed No differences Notch signaling pathway.

[84] CSF, Serum
41 miRNAs differentially expressed:

miR-103a-3p, miR-106a-5p,
miR-1246

No differences in expression level.
AUC values better in males than females (miR-103a-3p: AUC

= 0.80; miR-106a-5p: AUC = 0.80; miR-1246: AUC = 0.85)

miR-103a-3p and miR-106a-5p: involved in
neuropathological processes by targeting LRP1, CDK5R1,
DLG4 (Chang et al., 2017), APP, BACE1, PSEN1 (Yilmaz

et al., 2016). miR1246: not yet studied

[83] Plasma miR-127-3p Downregulated in FTD with respect to AD or HC both in
males (p < 0.0001; p < 0.05) and females (p < 0.001; p < 0.0001) neuronal proliferation, differentiation and development

[88] Plasma miR-34a-5p, miR-545-3p No differences

miR-34a-5p: synaptic plasticity, glutamate receptors,
potassium/sodium channels, antiapoptotic protein BCL-2

and SIRT1, inhibits pentose phosphate pathway in
neurons and the mitochondrial functions.

miR-545-3p targets the mRNA of the APOE receptor
involved in Aβ clearance

[86] Serum, CSF miR-125b, miR-6b No differences cell-cell communication

Mild Cognitive Impairment

[82] Plasma miR-206 No differences neuronal survival, differentiation and signals transmission

[85] Plasma miR-92a-1-3p, miR-181c-5p,
miR-210-3p

No differences in expression levels.
The ROCs show better diagnostic power in males (AUC =

0.957) than in females (AUC = 0.821)
synaptic plasticity, especially the glutammaergic ones

[90] Plasma
6 miRNAs analysed:

miR-132 sets
miR-134 sets

No differences in expression levels.
Better accuracy for male miR-132 sets of ROC (AUC = 0.99)

compared with female (AUC = 0.98) and general ROCs (AUC
better value = 0.97), and for female miR-134 sets of ROC (AUC
= 0.96) compared with male (AUC = 0.90) and general ROCs

(AUC better value = 0.93)

miR-132 and miR-134 family: Tau network and
neuron growth
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Table 2. Cont.

Studies Specimen miRNA Differences between Sexes Possible Roles

Parkinson’s disease

[92] Saliva miR-874 No differences Synaptic function, morphogenesis, neurotransmitter
regulation

[89] Plasma miR-132 Upregulated in male PD (p < 0.01). Negative correlation with Nurr 1

[91] Serum miR-29a, miR-29b, miR-29c Upregulated in female PD (p = 0.041; p = 0.0062; p = 0.0107). Neurons survival, maturation, proliferation, synaptic
plasticity, and morphogenesis

Amotrophic Lateral Sclerosis

[93] Serum miR-206 Upregulated in female ALS (p = 0.02) synaptogenesis and neurogenesis

AD: Alzheimer’s Disease; MCI: Mild Cognitive Impairment; FTD: Frontotemporal Dementia; PD: Parkinson’s Disease; ALS: Amyotrophic Lateral Sclerosis; AUC: Area Under the Curve.
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6. Conclusions and Futures Perspectives

Several drugs for the treatment of NDs have been investigated in clinical trials in the
last 15 years, but all with inconclusive results. No new medications have been recently
approved by the drug regulatory agencies, and effective pharmacological treatments for
NDs are still lacking. A possible reason for this failure might be linked to the idea that only
very early interventions can be effective in these conditions. However, another possible
reason could be the view of neurodegeneration as a homogeneous group of diseases. It
is important to underline that there is no “one-size-fits-all” treatment that can be useful
for all patients; rather, according to the concept of precision medicine, treatments must be
personalized, addressing the etiology of the disease in each person. In this context, it could
be useful to characterize specific subpopulations of patients by considering genetic and
epigenetic factors, and gender differences could be one of these factors. Epidemiological
data confirm strong male–female disparities in the onset and progression of AD, PD, and
ALS. Although these differences could be partly due to gender-related specific behaviors,
recent results also indicate biological variations as key players. Among them, microRNAs
seem to have an important function in defining a molecular sex-related asset due to their
sex hormone regulation. In this review, we reported sex-specific differences of peripheral
miRNA levels in some NDs. As an example, miR-206, which is underexpressed in males
with FTD and overexpressed in males with ALS, is regulated by hormones [94–96]. MiR-132
was found to be a particularly expressed miRNA in the cerebellum of males [97], which
might explain why Yang and co-authors found it to be more upregulated in plasma samples
of male patients with PD. Likewise, miR-29a and miR-29c were found to be more expressed
in the cerebellum of females, which might link to the upregulation in the sera of female PD
patients [91].

However, few papers have shown significant differences between miRNA expression
levels in males and females in NDs. This may not necessarily be due to a lack of sex-specific
correlation, but to the fact that most of these studies did have the primary objective of
investigating gender differences, meaning sex was not considered as part of the investigated
biological factors. Moreover, the number of studies that have performed a subgroup
analysis of males and females is very low compared to the large number of papers published
on peripheral miRNAs. Failing to consider the possible differences between males and
females in the evaluation of biomarkers such as miRNAs could introduce a sex bias in
studies, increasing the risk of missing some of these sex-related specificities. To date, no
miRNA has been practically implied in neurodegenerative diseases.

This could be due to the complexity of these pathologies, but also to the variability of
the types of study, the diagnostic criteria used for enrolment, the sizes of the populations
studied, the types of tissue chosen, and the methodologies used to study the biomarkers.
Future studies should aim to adopt a more thorough methodology to consider sex among
biological variables when studies on biomarkers are designed.
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