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Abstract: Backgroud: The prediction of drug–target interactions (DTIs) is of great significance in drug
development. It is time-consuming and expensive in traditional experimental methods. Machine
learning can reduce the cost of prediction and is limited by the characteristics of imbalanced datasets
and problems of essential feature selection. Methods: The prediction method based on the Ensemble
model of Multiple Feature Pairs (Ensemble-MFP) is introduced. Firstly, three negative sets are
generated according to the Euclidean distance of three feature pairs. Then, the negative samples
of the validation set/test set are randomly selected from the union set of the three negative sets
in the validation set/test set. At the same time, the ensemble model with weight is optimized
and applied to the test set. Results: The area under the receiver operating characteristic curve
(area under ROC, AUC) in three out of four sub-datasets in gold standard datasets was more than
94.0% in the prediction of new drugs. The effectiveness of the proposed method is also shown
with the comparison of state-of-the-art methods and demonstration of predicted drug–target pairs.
Conclusion: The Ensemble-MFP can weigh the existing feature pairs and has a good prediction effect
for general prediction on new drugs.

Keywords: drug–target interactions; ensemble model of Multiple Feature Pairs (Ensemble-MFP);
model weight sum; support vector machines

1. Introduction

The prediction of drug–target Interaction (DTI) based on machine learning is very
important in pharmacology and drug design [1–3]. It can also be considered as one direction
in chemogenomics, which is a new interdisciplinary subject of biology, chemistry and
informatics [4,5]. Traditional DTI methods are time-consuming, costly, and make it difficult
to obtain three-dimensional structures of compounds and proteins [6–8]. The technology
of machine learning accelerates the development of drug–target interactions, especially in
reducing the blindness of experiments [9–13].

The characteristics of imbalance datasets in drug–target interaction predictions restrict
the development of machine learning [1,14–18]. In the datasets of DTIs, the drug–target
pairs with identified interactions which are labeled positive are sparse. At the same time,
there are no validated negative samples, that is, non-interaction, in most databases [19].
In other words, the datasets of DTIs cannot provide enough reliable positive and negative
samples for machine learning to obtain stable models [20]. To solve this problem, extraction
methods of negative samples were studied. The random sampling method is used for
negative extraction in various papers, which randomly selects negative samples from
unlabeled sets [1,21]. Other negative sampling methods were also discussed. Liu et al.
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assumed that the negative samples can be extracted by their dissimilar characteristics from
positive ones [22]. Hu et al. introduced the method based on Euclidean distance for nega-
tive sampling, and obtained better predictions [7]. Moderlet et al. introduced a bootstrap
aggregating technique for negative sampling in Positive-Unlabeled (PU) problems [23].

The effective feature pairs selection in DTIs is another problem that restricts machine
learning [1,24]. There are many types of features that can describe the characteristics
of drugs or target proteins. The feature pair of DTI can be defined as the combina-
tion of one or more drug descriptors and one or more target descriptors. The dimen-
sions of drug descriptors and target descriptors can be different or the same according
to the feature extraction methods. Researchers have explored many types of feature
pairs to predict drug–target interactions. Wei et al. predicted the interactions combined
with 881-dimensional drug-descriptors, and target-descriptors of 567-dimensionals and
1449-dimensionals [25]. Bahi et al. combined 193-dimensional drug-descriptors based
on the RCPI package and 1290-dimensional target-descriptors from PROFEAT to pre-
dict the interactions [11]. Feng et al. proposed the Deep Belief Network (DBN) for DTI
based on 6144-dimensional Extended-Connectivity Fingerprints (ECFP) of drugs, and the
8420-dimensional Protein Sequence Composition (PSC) [26].

The prediction based on the Ensemble models of Multiple Feature Pairs (Ensemble-
MFP) for new drugs prediction is studied in this work. Negative sampling based on the
Euclidean distance, which is used to obtain the most dissimilar samples compared with
positive sampling, is highly dependent on the calculated feature pairs, and in particular,
the prediction of negative sampling based on different feature pairs is more prone to bias.
At the same time, considering that the basic feature pairs of DTI are not clear and it is
difficult to discover new feature pairs, an ensemble of the models based on existing feature
pairs to have better predictions is necessary. The construction of a validation set and
test set is designed to ensure the generalization ability of the algorithm and avoid the
problem of overfitting. The final model is the weighted sum of sub-models corresponding
to three feature pairs in this work, and the weights are optimized. Finally, the results on
the test sets show that the algorithm is effective. Through the prediction of independent
datasets by the proposed model, some drug–target pairs with interactions were predicted,
which shows that the ensemble model has a good predictive effect on new drugs (see
Appendix C). At the same time, we also provide several groups of drug–target pairs that
may have interactions for further research in wet-lab. It should be noted that although the
research regards the drug–target interaction as a binary classification problem, the actual
situation is more complex with the strength of interactions, inhibitor or agonist, and so
forth. Therefore, our model has limitations in broader predictions.

2. Materials and Methods
2.1. Benchmark Datasets

The benchmark dataset used in this work is the Gold Standard Dataset, which was first
introduced by Yamanishi et al. It was collected and constructed in 2008, from KEGG BRITE,
DrugBank, BRENDA, and SuperTarget [19,27–30]. According to the different characteristics
of the target protein, it was divided into four sub-datasets: the enzyme, GPCR, ion channel,
and nuclear receptor. It is publicly available on http://web.kuicr.kyoto-u.ac.jp/supp/
yoshi/drugtarget/, accessed on 1 July 2008. Table 1 shows their statistical information in
detail. It can be seen from the Table that the number of positive samples is far less than
that of unlabeled samples, that is, the data are seriously imbalanced. It is very important
that the prediction research needs reliable negative sample information.

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Table 1. Statistics of gold-standard datasets.

Enzyme GPCR Ion Channel Nuclear Receptor

Drugs 445 223 210 54
Targets 664 95 204 26

DTIs 2926 635 1476 90
unlabeled DT-pairs 292,554 20,550 41,364 1314

2.2. Evaluation Criteria

The Area Under the Curve for the receiver operating characteristic (Area Under
ROC, AUC), is the performance criteria used in this work. The metrics, such as Accuracy,
Precision, Recall, and so forth are sufficient in general classification problems, but hold no
significance in imbalanced datasets [1]. Some of the parameters used for evaluation are
calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1_score =
2 × Precision × Recall

Precision + Recall
, (4)

where TP, TN, FP, and FN are true positive, true negative, false positive and false negative,
respectively. In these parameters, “positive” and “negative” represent drug–target pairs
labeled as interaction or non-interaction in the benchmark dataset. At the same time,
“true” and “false” mean that the prediction of the drug–target pair is right or wrong.
ROC curves are drawn according to the True Positive Rate (TPR) and False Positive Rate
(FPR) of different thresholds in the classification, and are recommended for comprehensive
evaluation, especially in imbalance classification. AUC is the area under the ROC curve, and
can be easily compared. It ranges from 0 to 1, and the larger the value, the better the model.
Application of AUC can be found in most papers related with classification [1,17,31–33].

2.3. Negative Sampling and Data Construction

Negative samples are mainly generated based on the Euclidean distance in this work.
Different from the random sampling method, the Euclidean distance-based sampling
method holds that the farther the sample is from the positive center, the more reliable the
negative sample is [7]. Its formula is as follows:

Dis =
√

∑ (posd,t − unlabeld,t)2, (5)

where posd,t denotes the positive samples’ center of the mean calculation. unlabeld,t de-
notes the unlabeled samples. All unlabeled samples will be sorted according to their
distance from the center of positive samples (Dis). The larger the Dis is, the more reliable
the negative samples are. In order to avoid the negative sample difference caused by
different feature units, all features used are firstly normalized. At the same time, Principal
Components Analysis (PCA) is performed to avoid the interference of correlation in the
calculation of the Euclidean distance. Although the sampling method is effective, it has a
high dependence on the selected feature pairs and is difficult to be generalized, especially
for the negative samples generated by different feature pairs, or is selected randomly.
In order to improve the generalization ability of the model and obtain better prediction
results, this work designs an ensemble model method of multiple feature pairs.
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Data construction is based on 5-fold cross-validation. In order to make the model
reliable for new drugs, the drugs in the dataset are divided with the ratio of 0.6, 0.2, and
0.2, respectively. In other words, DT pairs are divided into the training set, validation set,
and test set according to different drugs. This work uses three feature pairs to get three
corresponding models, and generates more general negative samples in the validation
set and test set. The negative sampling process of the validation set and test set is shown
in Figure 1.

Figure 1. The negative sampling process of the validation set and test set.

Firstly, in the validation set/test set, based on Euclidean distance calculation, three
feature pairs are used for negative sampling. Then, the negative samples were combined
into U-vali/U-test. Random selection from U-vali/U-test can get more general negative
samples for the validation set/test set. For the training set, the three feature pairs are
trained respectively by the method of negative sampling based on Euclidean distance,
and three models are obtained. According to these three models, the validation set is
weighted and optimized to get a better weight vector, which is applied to the test set.
The calculation formula of ensemble models is as follows,

dec = ∑ wi × deci, (6)

where wi represents the weight of feature pair i. deci represents the decision vectors
predicted by modeli. dec and modeli denote the optimized decision vector in the validation
set/test set and the model trained according with feature pair i. The flowchart of the
proposed algorithm is shown in Figure 2.

Figure 2. The flowchart of the Ensemble-MFP algorithm.

2.4. Feature Pairs and Algorithm

Feature pairs used in Ensemble-MFP are extracted from the PaDEL-Descriptor and
PROFEAT. The PaDEL-Descriptor is a free software for generating drug-descriptors, and is
available on https://www.winsite.com/, accessed on 12 October 2010 [34]. PROFEAT
is a webservice for calculation protein features, and can be used on http://bidd.group/,
accessed on 12 April 2011 [35,36]. Table 2 lists the feature pairs used in the proposed
method, which have better predictability in all sub-datasets of the gold standard dataset.
In the Table, Estate-FP, MACCS-FP and Sub-FP Count are shorts for Electrotopological State
Fingerprints, MACCS Fingerprints, and the Substructure Fingerprints Count, respectively.

https://www.winsite.com/
http://bidd.group/
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AAC, APAAC and QSO are short for Amino Acid Composition, Amphiphilic Pseudo-
Amino Acid Composition, and Quasi-Sequence-Order descriptors, respectively.

Support vector machines (SVM) and its toolbox Libsvm (version 3.23) are adopted in
this work. The Radial Basis Function (RBF) kernel, which can easily process the nonlinear
classification problems, is used, and the kernel function only needs to adjust two parame-
ters, c and γ. The parameters are adjusted in the form of an exponent, with the bottom of
2 [37]. Finally, the optimized parameters have good performance in four sub-datasets, that
is, c = 2−4 and γ = 2−7.

Table 2. Feature Pairs used in Ensemble-MFP.

Drug Descriptor Dimension Target Descriptor Dimension

Feature Pair 1 Estate-FP 79 AAC 20
Feature Pair 2 MACCS-FP 166 APAAC 80
Feature Pair 3 Sub-FP Count 307 QSO 160

3. Results
3.1. Performance on DTIs

The ROC curve is shown in Figure 3, which represents the predictions in the validation
set and the test set. All DT-pairs containing these drugs are omitted from the training
set. Similarly, predictions on different targets are shown in Figure A1. It is shown that
the prediction results of the test sets are very close to those of the validation set, which
proves that there are no overfitting problems in this work. More evaluation information
about these predictions is listed in Table 3.

Figure 3. ROC-curves predicted on the validation set and the test set of each sub-dataset. The experi-
ments are based on different drugs of the training set, validation set, and test set.
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Table 3. Prediction results of the proposed method.

Enzyme GPCR Ion Channel Nuclear Receptor

Accuracy (%) 89.92 ± 0.93 # 96.50 ± 0.70 85.01 ± 1.68 84.32 ± 12.44
Precision (%) 90.37 ± 0.93 98.89 ± 0.16 84.90 ± 1.68 91.29 ± 13.70

Recall (%) 100 ± 0.00 97.14 ± 0.96 100.00 ± 0.00 89.68 ± 17.01
F1-scores (%) 94.94 ± 0.72 98.01 ± 0.23 91.83 ± 0.98 90.48 ± 8.72

AUC (%) 95.92 ± 0.39 94.32 ± 0.57 95.97 ± 0.26 83.87 ± 7.38
# The value in the Table means the average ± standard deviation.

3.2. Comparison with State-of-the-Art Methods

Various methods based on the gold standard dataset are compared. Table 4 shows the
average results of the proposed method, and compares four feature vector-based algorithms
based on the same dataset, such as that by Wang et al., Multi-scale Features Deep Repre-
sentations (MFDR), Cao et al., and FRnet-DTI [1,9,25,38]. In these methods, the predictions
were obtained by 5-fold cross-validation which were the same as our method. Wang et al.
used the stacked autoencoder of deep learning based on the drug molecular structure and
protein sequence to predict interactions between drugs and targets. Based on the large-scale
drug/target features reconstructed by the autoencoder, SVM is used to predict drug–target
interactions in the MFDR method. Cao et al. predicted interactions between the drugs
and the target proteins according to the MACCS substructure fingerprint of the drug and
the amino acid composition, Composition (C), Transformation (T), and Distribution (D) of
the target protein. FRnet-DTI is composed of two convolutional neural networks, FRnet-
Encode and FRnet-Predict, for feature manipulation and classification. Except for MFDR,
other methods only segment the DT-pairs, and do not consider whether there are drugs that
have been trained in the test set; we reproduce these models based on the algorithm in their
original paper, and test the drug segmentation test set mentioned in this proposed work.
In addition, considering that the negative samples of these algorithms are based on random
sampling, we also verify the negative samples of the test set (ran-proposed), and the results
are shown in the Table 4. The results show that this method has the best prediction effect
in GPCR and ion channel. In enzymes, the predicted results of FRnet-DTI were only 1.3%
higher than that of the proposed method. Considering the FRnet-DTI algorithm using
two convolutional neural networks for feature extraction and prediction, this method is
simple to implement and has closed results. For nuclear receptors, the average results are
poor with all the compared algorithms, which may be due to the small dataset and lack
of enough training information. The lack of information in nuclear receptor also makes
the results unstable, as shown in Figure 4. The predictions based on random sampling
(ran-proposed) are also comparable with other methods. In Table 4, the best prediction for
each sub-dataset is marked as bold.

Table 4. Comparison with state-of-the-art methods on the gold standard dataset. Proposed and
ran-proposed represent the predictions with proposed work and random sampling, respectively.

AUC Enzyme GPCR Ion Channel Nuclear Receptor

Wang et al. 0.916 0.897 0.907 0.775
MFDR 0.969 0.904 0.933 0.886

Cao et al. 0.938 0.839 0.875 0.809
FRnet-DTI 0.972 0.912 0.943 0.872
Proposed 0.959 0.943 0.960 0.839

ran-proposed 0.933 0.908 0.925 0.821
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Figure 4. Fluctuations of AUCs in four sub-datasets.

4. Discussion
4.1. Robustness of Prediction

Robustness of the proposed method is discussed. To show the effectiveness and
stability of the proposed algorithm, the experiments were carried out 20 times, and the
fluctuations of AUCs are shown in Figure 4. It can be seen that, except for the nuclear
receptor, the other three sub-datasets have stable predictions in both the validation set and
test set.

4.2. Weight Optimization of Ensemble Models

The weights of different feature pairs are optimized to obtain better predictions. AUC
is the evaluation criteria used in the optimization process. In the process of optimization,
w1(0 ≤ w1 ≤ 1), w2(0 ≤ w2 ≤ (1 − w1)) and w3(w3 = 1 − w1 − w2) represent the weights
of feature pair 1, feature pair 2, and feature pair 3, respectively. It can be seen from Figure 5
that the prediction results vary with the different weight sequences, which proves the
rationality of the Ensemble-MFP algorithm in this work. The maximum predicted results
correspond to the optimized weight sequence (w1 = 0.1, w2 = 0.2, w3 = 0.7).

4.3. Comparison between Ensemble Models and Individual Model

It is shown that the prediction results based on the Ensemble models of multiple feature
pairs are better than the individual feature pair model in the test set. For each sub-dataset
in Figure 6, Ensemble represents the predictions based on the Ensemble-MFP method, and
Fea-1, Fea-2, and Fea-3 represent the results based on only feature pair 1, feature pair 2, and
feature pair 3, respectively. In order to make the comparison reliable, all the positive and
negative samples used in the training set, validation set, and test set in this part are the same.
It is shown that the result of ensemble models is better than that of the individual model
with each feature pair, which proves the superiority of the ensemble design. In addition,
even if the multiple feature pairs used in the ensemble model are connected to form longer
features with weights, better prediction results cannot be obtained, because the ensemble
model can simulate more general negative samples (Figure A2).
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Figure 5. Heatmap of various weights.

Figure 6. Comparison between Ensemble Models and Individual Model.

4.4. External Validation

External validation dataset is used to demonstrate the effectiveness of the proposed
method. The datasets used in DeepDTI [21], which was extracted based on DrugBank,
is used for external validation. At the same time, the independent dataset extracted
from the Drug Mechanism of ChEMBL, retaining the inhibitors and Homo sapiens, is
tested [39]. After removing the same drugs of the gold standard dataset in the model
training, two external datasets were tested with random negative samples. In Table 5,
“DeepDTI” denotes the results in their original paper, “proposed-DeepDTI” and “proposed-
ChEMBL”, which represent the results on the two external validation datasets based on the
proposed method. The results in Table 5 shows the effectiveness of our proposed method,
and TPR and TNR represent the True Positive Rate (TP/(TP + FN)) and True Negative
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Rate (TN/(TN + FP)), respectively. In addition, two predicted drug–target pairs were
demonstrated as interactions (Lysine (DB00194) interacts with SLC7A4 (O43246) [40,41],
and Micafungin (DB01141) interacts with FKSA (A2QLK4)) [42,43].

Table 5. Predictions on external validation datasets.

TPR (%) TNR (%) Accuracy (%) AUC (%)

DeepDTI 82.27 89.53 85.88 91.58
proposed-DeepDTI 86.23 88.65 91.69 93.01
proposed-ChEMBL 90.09 93.18 90.57 92.78

5. Conclusions

In this work, an algorithm based on the Ensemble models of Multiple Feature Pairs
(Ensemble-MFP) is proposed for drug–target interaction predictions. Three models are
obtained through three feature pairs, and the weights of the models are optimized on
the validation set and applied on the test set. In order to make the model more general,
the negative samples in the validation set/test set are collected randomly from three
negative sets, which are extracted based on the Euclidean distance of three feature pairs. It
is shown that, compared with the individual model of the single feature pair on the test
set in the algorithm, the prediction effects of the Ensemble-MFP are better, which proves
the effectiveness of the method. In addition, according to the external validation and
demonstration results of the predicted DT pairs, the proposed method has a significance
contribution on the drug design.

The algorithm can be further extended based on the details of more feature pairs.
For the sake of simplicity, only three feature pairs are studies in this work. In addition,
more feature pairs can be added to the algorithm. At the same time, according to the
drug–target pairs predicted, we believe that our algorithm will supply more potential
DT-pairs for wet-lab people, and motivate more researchers to study DTI in depth. Finally,
the binary classification method restricts the further development of DTI to a certain extent,
which will be the development direction in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

DTI drug–target Interaction
Ensemble-MFP Fusion of Multiple Feature Pairs
AUC Area Under the Curve for ROC
ROC Receiver Operating Characteristics
PU Positive-Unlabeled problems
GPCR G Protein-Coupled Receptors
SVM Support Vector Machines
RBF Radial Basis Function

Appendix A. Predictions for New Targets

Similar prediction results are obtained when the target proteins do not appear re-
peatedly in training set, validation set and test set, which proves the effectiveness on
new target protein prediction of the Ensemble-MFP. The prediction results are shown in
Figure A1, and Ensemble represents the results of proposed method, Fea-1, Fea-2, Fea-3
denote the predictions based on the model of feature pair 1, feature pair 2 and feature pair
3 respectively.

Figure A1. The predictions for new targets. The experiments are based on different targets of training
set, validation set and test set.

Appendix B. Comparison between Simple Connection of Feature Pairs
and Ensemble-MFP

The prediction effect of three feature pairs on simple combination is worse than that
of different models trained by three features. The difference between the two methods lies
in the construction of negative samples. The simple connection of multiple feature pairs
is similar to the result of a single feature pair, and cannot predict more general negative
samples. In contrast, the method proposed in this work, on the one hand, simulates more
general negative samples to a certain extent by combining and randomly selecting three

https://github.com/Wangcheng0788/Ensemble-MFP
https://github.com/Wangcheng0788/Ensemble-MFP
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groups of negative samples; on the other hand, by optimizing the weights, the model
can get better prediction in general samples. We test and demonstrate several different
experimental situations, including: (1) the case of simple feature connection, we test the
negative samples based on Euclidean distance screening (Sim); (2) the case of simple feature
connection, the more general negative samples designed in this work are tested (Gener-
Sim); (3) the proposed results (Proposed). For the sake of fairness, in case (2), we also
optimize the weights of each simply connected features. It can be seen from the Figure A2
that although the result of negative samples based on single feature extraction is very
good (Sim), it is difficult to achieve good prediction for more general negative samples
(Gener-Sim) with longer feature forms. In contrast, the weighted method mentioned in this
work is better.

Figure A2. Comparison between simple connection of feature pairs and Ensemble-MFP.

Appendix C. Predicted Drug–Target Pairs

The top ten predicted drug–target pairs in GPCR are listed in Table A1. We use the
proposed algorithm to predict the drug–target pairs in the test set and rank them according
to the decision values. After several times of algorithm prediction, 10 groups of drug–target
pairs with high decision scores were selected, and the information was input into the
drug database (DrugBank) for query. Through the query, we found that the two groups of
predicted drug–target pairs recorded as unlabeled drug–target pairs in 2008 had interaction
records in the database. In addition, Trimipramine (D00394) interacts with HTR1A and
HTR1B, so there may be interaction between D00394 and HTR1F (hsa3355) [44–47]. In the
Table A1, 8 out of 10 pairs of predicted drug targets can be further demonstrated by wet-lab
people. The results show that this method can effectively predict new drugs and is of great
significance for drug development.
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Table A1. Top ten drug–target pairs predicted in GPCR.

GPCR Drug Drug Name Target Gene Name Record of Database Score

1 D00394 Trimipramine hsa3355 HTR1F - 1.0973
2 D00563 Mirtazapine hsa3355 HTR1F - 1.0623
3 D00394 Trimipramine hsa154 ADRB2 - 1.0365
4 D02566 Maprotiline hsa3355 HTR1F - 1.0350
5 D00563 Mirtazapine hsa154 ADRB2 - 0.9933
6 D00483 Propranolol hsa3355 HTR1F - 0.9854
7 D00394 Trimipramine hsa147 ADRA1B DrugBank 0.9768
8 D00394 Trimipramine hsa1128 CHRM1 - 0.9765
9 D00563 Mirtazapine hsa147 ADRA1B - 0.9696

10 D00394 Trimipramine hsa3350 HTR1A DrugBank 0.9666
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