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Abstract: The dynamic nature of the nuclear envelope (NE) is often underestimated. The NE
protects, regulates, and organizes the eukaryote genome and adapts to epigenetic changes and to its
environment. The NE morphology is characterized by a wide range of diversity and abnormality such
as invagination and blebbing, and it is a diagnostic factor for pathologies such as cancer. Recently, the
micronuclei, a small nucleus that contains a full chromosome or a fragment thereof, has gained much
attention. The NE of micronuclei is prone to collapse, leading to DNA release into the cytoplasm with
consequences ranging from the activation of the cGAS/STING pathway, an innate immune response,
to the creation of chromosomal instability. The discovery of those mechanisms has revolutionized
the understanding of some inflammation-related diseases and the origin of complex chromosomal
rearrangements, as observed during the initiation of tumorigenesis. Herein, we will highlight the
complexity of the NE biology and discuss the clinical symptoms observed in NE-related diseases.
The interplay between innate immunity, genomic instability, and nuclear envelope leakage could
be a major focus in future years to explain a wide range of diseases and could lead to new classes
of therapeutics.

Keywords: nuclear envelope; nuclear envelope disruption; inflammation; cGAS/STING; chromoso-
mal instability; envelopathy; cancer; lipodystrophy; neuropathy

1. Nuclear Envelope Biology

The main role of the nuclear envelope (NE) is to compartmentalize and protect the
unfolded genomic DNA from the cytoplasm in eukaryote cells. It is composed of a lipid
bilayer reinforced in its inner side with a sheet-like structure of proteins called the nuclear
lamina. The outer nuclear membrane (ONM) shares a common border with the endoplas-
mic reticulum (ER). The nuclear envelope has also many nuclear pores that facilitate the
transport of molecules between the cytosol and the nucleus (Figure 1A). The NE is a dy-
namic organelle that expends, disrupts and reconstitutes during mitosis. In the interphase,
it constantly remodels to adapt to nuclear growth.

1.1. Nuclear Lamina

The lamina conveys strength, flexibility, and rigidity as a function of its variable
composition and ratio among the various lamins [1,2]. In addition to providing mechanical
support and being an anchorage platform, the nuclear lamina regulates important cellular
events such as DNA replication [3] and cell division [4]. The lamina is primordial for
gene regulation [5,6] through the repression of genes in the Lamin-Associated Domain
(LAD, Figure C), DNA repair [7], organization of the nucleolus [8], as well as chromosomal
positioning [9]. The Lamina contributes to the organization of the genome into its different
compartments: (i) the heterochromatin, characterized by repressed DNA that is tethered
into the LAD, (ii) the euchromatin, the active compartment with a loose chromatin structure
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that is active for transcription, and (iii) the nucleolus, the site of ribosome production and
assembly (Figure 1A).
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Figure 1. Nuclear envelope composition and organization. (A). The nucleus is surrounded by the nuclear envelope (NE). 

The Outer Nuclear Membrane (ONM) is continuous with the endoplasmic reticulum. The nuclear pore complex (NPC) 
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ments: euchromatin, heterochromatin, and nucleolus. (B). Structure of lamin layers in the Inner Nuclear Membrane (INM). 

(C). The NE is composed of a lipid bilayer anchored by several proteins forming the lamin-associated protein, the LINC 

complex, and by the lamins. The NE proteins regulate gene organization with the Lamin-Associated Domain (LAD). 
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Figure 1. Nuclear envelope composition and organization. (A). The nucleus is surrounded by the nuclear envelope (NE).
The Outer Nuclear Membrane (ONM) is continuous with the endoplasmic reticulum. The nuclear pore complex (NPC)
regulates the export and import between the nucleus and the cytoplasm. The genome is organized in different compartments:
euchromatin, heterochromatin, and nucleolus. (B). Structure of lamin layers in the Inner Nuclear Membrane (INM). (C). The
NE is composed of a lipid bilayer anchored by several proteins forming the lamin-associated protein, the LINC complex,
and by the lamins. The NE proteins regulate gene organization with the Lamin-Associated Domain (LAD).

The lamina also possesses mechano-responsivity in order to adapt to the cell’s environ-
ment. Lamin levels are dynamic, regulated by cell differentiation, and depend on the tissue
stiffness [2,10]. Lamins are interconnected to the cytoskeleton by intermediate proteins
such as the Linker of the Nucleoskeleton and Cytoskeleton (LINC) complex composed
by SUN1/2 and Nesprins proteins (Figure 1C), which allow sensing and rapid cellular
response via the complex post-translational control of its proteins [2,11]. The NE can also
adapt in response to stiffness [2] or to function. For example, migrasive and invasive cells
need to acquire nuclear elasticity and can decrease nuclear envelope proteins in order to
compress through narrow space [1,10,12].

The nuclear lamina is composed of lamins and nuclear lamin-associated membrane
proteins (Figure 1B,C). Lamins are type V intermediate filaments fibrous proteins that
are divided into two major categories, the A and B type. The gene LMNA can be spliced
in two predominant isoforms, the longer version encoding the protein Lamin A and the
shorter isoform generating the Lamin C protein. The type B lamins are expressed by two
different genes: LMNB1 and LMNB2, encoding Lamin B1 and B2, respectively. While
Lamin A is expressed in differentiated cells, type B lamins are ubiquitously expressed
in all cells. Similar to other intermediate filament proteins, lamins self-assemble into
complex structures. Lamins are highly dynamic and regulated proteins that assemble
and disassemble pending stimuli [13]. They are organized into distinct networks at the
nuclear periphery [14] (Figure 1B). Lamin B1 forms an outer concentric ring, and its
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localization is curvature-dependent. This suggests a role of Lamin B1 in stabilizing nuclear
shape by restraining outward protrusions of the Lamin A/C network [15]. Lamins are
subject to numerous post-translational modifications, most prominently phosphorylation,
such as Lamin A that harbors more than 70 identified unique phosphorylation sites. Such
phosphorylation regulates/coordinates the different structural state of lamins. For example,
during interphase, Lamin A phosphorylation on Serine S22 and S390 promotes lamin
degradation and nuclear softening in response to low cytoskeleton tension [16,17]. Other
post-translational modifications include farnesylation, sumoylation, and acetylation [18].
Of particular interest is the farnesylation of the carboxyl terminal end cysteine (CaaX)
that anchors lamins into the lipid layers. Type B lamins are permanently farnesylated
(Figure 1B), while type A lamins are only transiently farnesylated before the carboxy-
terminal peptide is released by the cleavage of prelamin A by ZMPSTE24 to form the
mature Lamin A protein. Lamin C proteins are not farnesylated due to their lack of the
CaaX motif. Interestingly, the majority of premature aging diseases such as the Hutchinson–
Gilford progeria syndrome aka progeria ensue from single point mutations within the
LMNA gene that give rise to a permanently farnesylated mutant Lamin A protein, which is
termed progerin.

Other important constituents of the lamina are the lamin-associated proteins that
mediate the attachment of lamins to the nuclear envelope. Their role is to assist lamins
in regulating the chromatin, as exemplified by Lamin B Receptor (LBR) that interacts
with several histone modifiers [19], as well as facilitating mechanotransduction as for
Emerin [20] and regulating signaling pathways such as TGFβ by MAN1 [21] (Figure 1C).
The diversity of lamin-associated proteins justifies the various roles and functions played
by the nuclear lamina.

1.2. Nuclear Pore Complex

The nuclear pore complex (NPC) is one of the largest macromolecular assemblies in
cells [22] composed of approximately 1000 protein subunits, which are named nucleoporins
(NUP). The main function of the NPC is to control the trafficking in and out of the nucleus
by allowing the passage through the lipid layers (Figure 1A,C). Moreover, NPC is known
to have important functions in chromosomal organization and gene regulation, as it can
interact with the genomic region enhancers and super enhancers [23].

1.3. Nuclear Lipid Bilayer

The nuclear envelope (NE) is composed of two phospholipid bilayers organized in
an inner nuclear membrane (INM) and outer nuclear membrane (ONM) separated by a
lumenal space (Figure 1B,C). The layers are composed of several kind of lipids with different
physical properties such as cylindrical lipids (phosphatidylcholine, PC) and conical lipids
(phosphatidylethanolamine, PE, diacylglycerol, DAG). Eukaryotic cells maintain their
membrane lipid composition within narrow limits with phosphatidylcholine (PC) being
the most abundant phospholipid in their nuclear envelope [24]. Despite this relative stable
composition, studies in yeasts have shown that pending the environment, de novo specific
lipid synthesis can take place in order to relieve the curvation elastic stress on the nuclear
membrane protecting the nucleus from breakdown [24]. Interestingly, PCYT1A, the rate-
limiting enzyme of PC synthesis involved in this curvation compliance, is localized at the
INM in mammalian cells, suggesting a similar adaptability in response to stress and cellular
needs in higher organisms [24]. Interestingly, it has also been shown that yeast cells keep
lipid droplets at the INM, highlighting that INM has its own lipid metabolism and striking
metabolic adaptability [25]. The formation of those lipid droplets through nucleation is
influenced by membrane proteins, lipids, and mechanical properties [26]. Thus, multiple
adaptability mechanisms may exist to selectively enrich and regulate specific lipid species
at the INM in eukaryote cells [27].
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2. Nuclear Envelope Diversity and Abnormalities

Nuclear morphology is a common marker for cell determination and classifica-
tion [28,29]. The nucleus can transpire defects depending of its cell state, aging, or upon
mutations. Instead of the typical circular shape, the nucleus can be enlarged, loose cir-
cularity, displaying invaginations and a macronucleolus. It can also suffer from altered
heterochromatin and irregular nuclear margins as well as a loss of proper compartmental-
ization involving NE collapse or leakage (Figure 2).
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Figure 2. Different nuclear abnormalities. (A) Classical cells have one single round nucleus that contains a diploid genome
(2N). (B) Cells such as neutrophils possess multi-lobar nucleus. (C,D) Polyploid cells (>4N) can either have two or more
separated nuclei or one enlarged nucleus. (E) Some cells can have a smaller nucleus, which is called a micronucleus, in their
cytoplasm. Micronuclei contain a full chromosome or a piece thereof. (F) Nuclei can also display blebbing characterized
by an outward extension of the nuclear envelope (NE). (G). In addition, cancer cells can show abnormalities such as NE
invagination, loosen heterochromatin as a consequence in changes in DNA compaction as well as a single and bigger
nucleolus, which is called a macronucleolus.

2.1. Multi-Lobular Nucleus, Micronuclei, Macronucleoli, and Invagination

Most cells contain a single circular nucleus with one copy of the genome (Figure 2A).
However, depending on the nuclear envelope flexibility and abnormalities, the nuclear
shape can vary. Some cells have a multi-lobular nucleus such as the neutrophils that
required special flexibility needs due to their invasion properties (Figure 2B). Other cells can
be polyploid due to an extra copy of the genome sequestered either in a separated nucleus,
as in the case of binucleated cells, or contained within the same nucleus, generating an
enlarged nucleus (Figure 2C,D). These polyploid cells can arise by a variety of mechanisms,
including mitotic slippage, cytokinesis failure, endoreplication, and viral-induced cell
fusion [30,31]. Polyploid cells can be found in the pancreas, placenta, muscle, lactating
breast, liver, or heart tissues to either improve cell function or support tissue repair and
regeneration [31]. Such normal polyploid cells are strictly controlled and not proliferative
and are likely senescent. However, it was described in the case of liver that senescence could
be reversible and hectaploid hepatocytes may re-enter mitosis, giving rise to tetraploid and
diploid cells, which is a dynamic process referred to as a ‘ploidy conveyor’, highlighting
the mitosis plasticity of such cells [31,32].

Other nuclear abnormalities include the formation of small nuclei in close proximity
to the nucleus (Figure 2E). These small nuclei, referred to as micronuclei (MN), contain
either an intact chromosome or pieces thereof and stem from inappropriate chromosome
segregation during the anaphase. This DNA, which is excluded from the main nucleus,
will attract NE components to form an MN. These extra nuclei bodies have in recent years
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come into the limelight, as they are a source of substantial DNA damage and can generate
diverse complex chromosome rearrangements that are observed in several diseases such as
cancer [33].

Nuclear morphology can also be severely altered as a result of impaired nuclear rigid-
ity precipitated by either disruption of the lamina content and chromatin compaction [34]
or to increased cytoskeleton forces during attraction and invasion [10,35,36] causing NE
blebbing (Figure 2F). This lack of NE strength can also lead to the formation of invagina-
tions, which can affect both the inner and outer nuclear membrane [37]. Invaginations
can enclose cytoskeletal elements, both actin and cytokeratin intermediate filaments [38]
(Figure 2G). In view of the intimate connection between epigenetic modifiers and the
lamina, it is not surprising that both blebbing and MN provoke alterations in the epigenetic
landscape [17].

2.2. Apoptosis, Senescence, and Aging

The nuclear envelope integrity can also be jeopardized by various cellular processes.
During apoptosis, the lamina and nuclear pore complex are targeted by the apoptotic
machinery, disturbing the permeability and subsequent breakdown of the NE resulting in
destruction of the nucleus [39] and cell death. A peculiar mode of apoptosis is NETosis
in which neutrophils voluntarily disrupt their nuclear envelope and plasmatic membrane
in response to an infection to release DNA that forms an extracellular mesh with the goal
to trap pathogens such as bacteria and signal the immune system to activate the innate
immune response [40].

Aging and senescence also cause a broad range of abnormalities in the nuclear mor-
phology that include enlarged nuclei, loss of circularity, appearance of a multi-lobular
nucleus, presence of nuclear envelope invaginations, changes in nucleolus, and relaxed
heterochromatin [41]. Such abnormalities induced during senescence have been linked to
a decrease of Lamin B levels through enhanced autophagy and decrease in RNA stabil-
ity [42–44], compromising NE rigidity. In contrast, aging cells exhibit changes in Lamin
A/C localization, with decreased expression in the nucleoplasm and a concomitant accumu-
lation at the nuclear rim, leading to a reduction in heterochromatin-specific tri-methylation
of Lys9 on histone H3 (Tri-Me-K9H3) [45]. These changes in heterochromatin might com-
promise the homeostasis forces applied to the NE and therefore disrupt the normal shape.
The NPC is also affected in aging cells resulting in compromised nuclear permeability
barrier and an accumulation of cytoplasmic tubulin, which is a finding consistent with
‘leakiness’: a loss of nucleo-cytoplasmic compartmentalization [46]. Lamins are also im-
portant regulators for telomere maintenance, and telomere shortening during aging could
affect lamin organization and composition [47].

2.3. Cancer

Morphological irregularities of the nucleus are not only a characteristic of aging
and senescent cells but also a diagnostic factor for tumor cells (Figure 3A) [37]. Nuclear
morphology allows the classification of cell states by pathologists [28,29], such as in the
case of cervical cancer and the examination of cervical cells using the Papanicolaou smear
test. In this test, progression toward cancer due to the infection with the Papilloma virus
is characterized by a strident and folded nuclear envelope as well as the presence of
micronuclei and multi-lobular nuclei [28,48]. Another example is the pancreatic ductal
adenocarcinoma where during progression toward cancer, the nuclear membrane acquires
an irregular shape, resulting in an enlarged nucleus and increased nucleus/cytoplasm ratio
as well as the presence of macronucleoli [49,50].
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Figure 3. Example of cells with abnormal nuclear envelope. (A). MDA-MB-231 and SKBR3 breast
cancer cells presenting invaginations, twisted nuclei, and micronuclei (white arrow). (B). The breast
epithelial cell line MCF10A enters in Epithelial to Mesenchymal Transition upon treatment with
TGFß. Upon transformation, cells present nuclear invagination, the presence of micronuclei (white
arrow), or donut-shaped nuclei. (C). Confocal image of TGFß-treated MCF10A cells highlight nuclear
blebbing (red arrow) with a rupture in the Lamin B1 network. Cells are stained for Lamin B1
(LMNB1-green) and DNA (dapi-blue). Adapted from Comaills et al. [10].

Tumors cells can display a myriad of nuclear aberrations such as a loosened NE,
twisted nuclei, and invagination, as observed in breast tumor MDA-MB-231 and SKBR3
cells (Figure 3A). Such NE abnormalities can stem from an increase in DNA content,
gain in chromosomes and/or ploidy, changes in epigenetic state, and modification in the
compaction of chromatin, all increasing the nucleus size. Genetic instability is one of the
hallmarks of cancer and is frequently associated with the presence of micronuclei. In some
instances, cancer cells may express higher levels of progerin, the immature and farnesylated
form of Lamin A, favoring NE defects [51].

2.4. Cellular Plasticity and Its Effect on Nuclear Envelope

Cells are known to be subject to cellular plasticity in response to the microenvironment
signaling upon injuries and inflammation [52,53]. Those transient changes in cellular
identity can have a profound effect. Cellular plasticity entails rapid epigenetic changes
with remodeling of the chromatin, as a consequence of repression and/or activation of
genomic regions through the modulation of the Lamin-Associated Domains (LAD) among
other regions. One outstanding question is whether such alterations modifies the NE
composition to adapt to this new cellular state.

One of the most studied cellular plasticity is the transient and reversible epigenetic
reprogramming of Epithelial-to-Mesenchymal Transition (EMT) that allows cells to gain
migration and invasiveness properties. EMT drives important aspects of embryologic de-
velopment such as gastrulation, neural crest, and mesectoderm or heart development [54].
Furthermore, EMT seems to be a major player during the metastasis process [54,55] to
allow primary tumor cells to invade new environments. EMT can be induced by TGFß,
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a cytokine detected under an inflamed microenvironment, or release by platelets in the
bloodstream. The EMT induces a rapid opening of the chromatin to increase the accessi-
bility of repressed genomic regions as well as enhancers [56]. Interestingly, a study using
breast epithelial cell lines revealed that activation of the EMT program decreased protein
levels, but not those of RNA, of several nuclear envelope proteins such as lamins, NPC, and
nucleolus proteins [10]. An induction of EMT by either TGFß treatment or overexpression
of the transcription factor SNAIL prompts profound alterations in the NE morphology that
includes blebbing, twisting, invagination, and donut shape nuclei, which is a phenotype
associated with decreased farnesylation of Lamin B1 [57] (Figure 3B).

Importantly, a decrease in nuclear envelope proteins leads to failed mitosis and the
formation of lagging chromosomes during the anaphase, resulting in the formation of
either MN or binucleation in up to 10% of cells [10]. Correlation between the presence of
MN and binucleated cells and mesenchymal state was also observed in circulating tumor
cells isolated from estrogen receptor-positive breast cancer patients [10,58].

2.5. Envelopathies

Envelopathies are rare diseases stemming from mutations in nuclear envelope encod-
ing genes including lamin (i.e., laminopathies), proteins from the inner nuclear membrane,
such as emerin or SUN proteins, outer nuclear membranes, such as nesprins and pro-
teins involved in the regulation of NE proteins such as ZMPSTE24 [59]. Envelopathies
display a large variety of clinical symptoms including metabolic syndrome, muscular
dystrophy, lipodystrophy, neuropathy, and progeria (premature aging), among many oth-
ers. Lipodystrophies result in an array of metabolic complications as insulin resistance,
type 2 diabetes, hypertriglyceridemia, and hepatic steatosis [59–63]. Interestingly, patients
with metabolic syndrome also exhibit an unusual high prevalence of laminopathies [64].
To date, nearly 500 mutations have been identified in LMNA, which cause a plethora of
diseases such as Emery–Dreifuss Muscular Dystrophy (EDMD), dilated cardiomyopathy
(DCM), Hutchinson–Gilford Progeria Syndrome (HGPS), Lipodystrophy syndrome, and
peripheral neuropathy. The latter highlights the complex genotype–phenotype associations
and clinical heterogeneity. Thus, the same variant can lead to different phenotypes, and a
similar phenotype can arise from different variants.

Envelopathies clinical heterogeneity is also expressed in overlapping syndromes such
as lipodystrophy with myopathy, neuropathy, and/or premature aging stigmata, giving
rise to the concept of a multisystem dystrophy syndrome [65].

Similar to the heterogeneity of clinical phenotypes, mutations in different NE protein
can also differentially impact NE integrity. For example, cells bearing mutations within the
Lamin A gene that leads to premature aging HGPS, display an armada of nuclear alterations
such as nuclear blebbing, micronuclei, and a honeycomb pattern [66], as well weakened
adaptability to external mechanical stress [67]. Importantly, mutations in the LMNA gene
can result in the loss of proper compartmentalization, leading to transient nuclear envelope
disruption (NED) during interphase [68].

3. Nuclear Envelope Disruption

The fundamental role of the nuclear envelope is to protect the genome from the dam-
aging effects of the cytoplasm. However, when challenged by either nuclear envelope
abnormality or variations in the mechanical force homeostasis, the NE can collapse, impair-
ing proper compartmentalization and exposure to the cytoplasm. Such an event, especially
during interphase, when the genome is unfolded and unprotected, can have profound and
long-term effects on the genome, including massive genomic instability and the induction
of a pro-inflammatory immune response.

3.1. Nuclear Envelope Disruption and Repair

The development of high-resolution microscopy tools for the observation of living
cells has allowed the detection of NED events during interphase. Using time lapse imag-
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ing in cells with a stable expression of fluorescent markers linked to a nuclear localiza-
tion signal (NLS), it has been possible to observe the proper nuclear compartmentaliza-
tion [10,35,36,69–71] (Figure 4) as well as to quantify the time of NED rupture and repair.
The collapse of NE can vary from seconds up to several hours [10,69,72] (Figure 4A,B). Re-
sealing of the nuclear envelope is driven by the Endosomal Sorting Complexes Required for
Transport III (ESCRT III) machinery [35,36]. Upon NE rupture, CHMP7–LEMD2 complexes
accumulate to the site of rupture and recruit the soluble monomeric ESCRT-III subunits
that will polymerize into filaments at the site of rupture to drive membrane sealing [73].
However, in the case of micronuclei, the repair of the NE is impaired [73], and the rupture
is sustained until the next mitosis cycle [71].
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Figure 4. Visualization and quantification of nuclear envelope disruption (NED). (A). Time lapse imaging of migrating
MCF10A cells treated with TGFß and stably expressing the fluorescent markers YFP linked to the Nuclear Localization
Signal (YFP-NLS) [74]. Confocal imaging in YFP channel and bright field allows the visualization of sudden leakage of
YFP-NLs into the cytoplasm, showing a loss of proper compartmentalization of the nucleus during 8.30 mn and the loss
of compartmentalization of the micronuclei at 12.10 mn of time. (B). Graph shows nuclear fluorescence intensity changes
upon time in 10 cells with events of interphase NED/nuclear envelope repair observed in TGFß-treated MCF10A cells. Bold
colored lines highlight repetitive NED events from the same cell. Adapted from Comaills et al. [10].

3.2. Causes of Nuclear Envelope Disruption

The NE homeostasis is achieved through a balance between different mechanical forces
from within and from outside the nuclei (Figure 5A). From within, forces are determined
by the chromatin rigidity that vary upon the chromatin state and compaction of the
heterochromatin. Drastic changes in heterochromatin density can occur during cellular
plasticity such as during EMT [56,75] or during aging [45]. Interestingly, the chromatin
is also mechanoresponsive, and chromatin can alter its own mechanical state to maintain
genome integrity in response to deformation [76].
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Figure 5. Nuclear envelope (NE) equilibrium and cases of nuclear envelope disruption (NED). (A). NE homeostasis between
the chromatin rigidity forces (black arrow), cytoskeleton forces (green arrow), and the effect of the environment stiffness
(blue arrow). Mechanosensitivity of the NE is done through the connection of the cytoskeleton by the LINC complex (blue
ovals). (B). Example of nucleus with several NE abnormalities leading to extreme NE curvature at invagination, blebbing,
or on the NE of the micronuclei that might be involved in NE fragility (highlighted in red). (C). Cells under migration have
strong cytoskeleton attraction that can lead to local tension and the formation of nuclear envelope disruption. (D). Cells
in migration through tiny constrictions also endure new stiffness forces and will deform NE locally to ensure the nuclear
passage and create new NE tension and extreme NE bending, leading to NED. (E). Two daughter cells experiencing telomere
fusion have their nucleus connected by a chromatin bridge and sharing the same NE. The need of extra NE to cover the
extended NE surface leads to NE weakness and break.

From the outside, the nucleus possesses mechanosensitive properties via its connection
with the cytoskeleton. As a result, gene regulation can drastically change depending
on the stiffness of the environment and can result in cellular differentiation [2]. The
Linker of Nucleoskeleton and Cytoskeleton (LINC) complex bridges the nucleus to the
cytoskeleton (Figures 1C and 5A) and is the major force-transmitting sensor. LINC serves as
a mechanosensor, translating mechanical cues, which include physical forces compression
of the actin cap [77], shear stress, and alterations in extracellular matrix stiffness, into
biochemical signals, thus allowing cells to adapt to their physical environment [78]. Cells
also monitor their own shape and develop an active contractile response when the nucleus
deformed below a specific threshold. Transition in the mechanical state of the NE induces
calcium release, activating the calcium-dependent phospholipase cPLA2 and downstream
myosin II, causing cells to move with the goal to rescue nuclei from a constraint area [79].

Maintenance of the NE equilibrium is conveyed by a balance between the various
forces imposed upon it, which can be disrupted under certain conditions leading to tran-
sient NED. For example, cancer leads to improper NE regulation characterized by NE
blebbing, micronuclei, and invagination. Such formation involves an extreme bending of
the NE where the mechanical properties of the membranes may be important, weakening
the integrity of the NE and leading to the plausible cause of NE collapse (Figure 5B).

3.2.1. Alterations in Expression of Lamins

NED can be provoked as a result of decreased lamin expression as observed dur-
ing epigenetic reconversion of EMT where all the lamins are downregulated [10], or by
experimentally targeting type B lamins using shRNA constructs [69,72]. Alterations in
lamin expression affect the rigidity and flexibility of the nucleus and disrupt the NE force
equilibrium that can end up in transient collapse. As such, in laminopathy, cells with
mutations in the LMNA gene have a weaker nuclear envelope and are more susceptible to
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ruptures [80]. Indeed, 29% of fibroblasts derived from progeria patients display nuclear
envelope collapse [68].

3.2.2. Migration and Invasion

During migration, the cytoskeleton imposes considerable traction forces, resulting
in strenuous nucleus deformation. The swift reorganization of the cytoskeleton in re-
sponse to cues may surpass the capacity of the NE to adapt, resulting in the formation of
blebbing that can ultimately lead to NED, as observed both in vitro and in vivo during
migration [10,35,36] (Figure 5C). Passage through restrained spaces such as during ex-
travasation and passage through capillary increases the local environmental stiffness force,
leading to nucleus compression and to extreme NE deformation and curvation that may
result in NED [35,36,81]. The ratio of Lamin A/B determines NE flexibility and rigidity,
and thus, its capacity to proceed, or not, through restrained spaces [1]. For example, NE
blebbing is characterized by reduced Lamin B1 levels, suggesting that Lamin B filaments
are overly stiff and unable to bend on high-curvature nuclear membranes, which is a
phenomenon that can be explained by Lamin B high affinity for the NE lipid layer due to
their farnesylation and attachment to Lamin B Receptor [81] (Figure 3C).

3.2.3. Micronuclei: NE Extreme Curvation and Improper NE Composition

MN are small nuclei containing either a full chromosome that lagged during mitosis
or a fragment thereof missing a proper centromere. Several studies have shown that
the NE of MN are susceptible to rupture without repair capability [71] (Figure 4A). MN
disruption could be due to issues in assembly and composition, as essential NE proteins
are lacking [71,82], and 40% of MNs fail to import NLS tagged protein [82]. Interestingly,
MN are characterized by lower levels of Lamin B, and the presence of functional Lamin B
partly correlates with micronuclei size, suggesting that the right assembly of NE might be
sensitive to membrane curvature [83]. A recent study [73] also shows that MN lacks the
capacity to repair the NE after a collapse due to the lack in restricting CHMP7–LEMD2
complexes to the site of rupture, resulting in an unrestrained activation of ESCRT-III across
the surface of their inner membrane. Rather than repairing the ruptured micronuclei, the
hyperaccumulation of ESCRT-III drives dramatic membrane distortion and causes DNA
torsional stress, the formation of single-stranded DNA, and chromosome damage [73].

3.2.4. Telomere Fusion

Telomere fusion is characterized by the fusion of two telomeric ends between two
chromosomes, called end-to-end fusion, which is a phenomenon often observed in cancer
and aging [84]. This telomere crisis leads to dicentric chromosomes that invariably persist
through mitosis and form long chromatin bridges that connect daughter cells well into
the next G1 phase [85] (Figure 5E and Figure 7). These chromatin bridges are surrounded
by a contiguous nuclear envelope that increase the overall NE surface. Stretching of the
NE is often associated with rupture of the nuclear envelope of the connected nuclei [70]
(Figure 5E). This NED is transient and last around 2 min [70]. Interestingly, the NE protein
composition in this chromatin bridge appears to have the same defects than some MN that
were trapped in the spindle during the NE formation. By being trapped in the middle
of the spindle, the assembly of the NE seems compromised and appears to lack several
essential NE proteins such as NPC, affecting the NE maintenance [82].

3.2.5. ATR, RB, and P53 Loss

The modulation of proteins levels involved in genomic stability can lead to NE defor-
mation and rupture. ATR is a serine/threonine protein kinase that activates checkpoint
signaling upon genotoxic or replication stresses, thereby acting as a DNA damage sensor.
Activated ATR performs multiple cellular functions to maintain genomic integrity and the
prevention of replication and mitotic catastrophe [86]. However, ATR is also known to
have other functions such as maintaining NE integrity in response to mechanical stress [87].
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Mutations in the ATR gene as well as shRNA-mediated silencing compromise NE integrity
and are associated with NE blebbing [87] and invaginations as well as transient NED [88].
The NE lipid composition is altered in ATR-silenced cells [87], substantiating the roles
of ATR in the NE adaptability and regulation, as well as in heterochromatin compaction,
affecting the nuclear stiffness. In vitro studies have also shown that cells depleted for either
retinoblastoma protein (Rb) or the tumor suppressor P53 exhibit increased incidence of NE
rupture [89]. Such a phenotype is not associated with greater mobility nor changes in NE
protein composition, but it seems to be linked with genome reorganization and increased
nuclei size [89]. These examples demonstrate the complex relationship between genome
organization, genome maintenance, and NE integrity.

3.2.6. Heterochromatin Modulation

Chromatin compaction profoundly affects nucleus stiffness (Figure 5A). Certain cellu-
lar states or transient epigenetic transformation can induce a complete chromatin landscape
reorganization such as during EMT [56,75] or during aging [45]. These changes modify
homeostasis, which can weaken the NE and develop NED [10]. Another evidence of the
role of chromatin compaction on NE homeostasis is the modulation of the nucleosome
binding protein HMGN5. Study in vitro and in vivo have shown that the overexpression
of HMGN5 leads to enlarged nuclei and NED [90]. The effect of HMGM5 overexpression
in the NE integrity was more obvious in contractile tissues due to extensive cytoskeleton
forces. This study confirms that heterochromatin provides mechanical stability to the
nucleus. Then cellular plasticity might have more profound effects than expected and
could drive NE fragility, deformation and eventual collapse.

3.2.7. Virus Infection

Many DNA as well as several RNA viruses hijack the host replicative system in
order to propagate and as such have developed various mechanisms to shuttle in and
out of the nucleus, either by usurping cellular transport pathways through the nuclear
pore complex or translocating directly through the NE [91,92]. Interestingly, some viruses
use non-invasive mechanisms in order to secure proper and efficiency replication of the
particle while escaping the activation of cytoplasmic DNA sensor pathways. In contrast,
other viruses induce the nuclear and membrane breakdown later in infection in order
to release mature viral particles, as in the case of adenoviruses, papillomaviruses, and
polyomaviruses [91]. As a result of their smaller size, non-enveloped viruses can provoke
transient NED as observed during early infection of the mouse parvovirus minute virus
(MVM) [92–94]. The early infection of human papillomavirus type 16 requires breakdown
of the NE to access the nucleus, and it is believed they enter during the mitotic NED.
However, it is possible they use other mechanisms such as transient NED. It is also im-
portant to note that many viruses destabilize the cell cycle [95], causing mitotic defect
that can result indirectly in NED. For example, Hepatitis B virus X protein affects S phase
progression, leading to chromosome segregation defects [96]. Lagging chromosomes will
generate MN and subsequently give rise to NED and ultimately genomic instability and
cancer development. Such a process could potentially be implicated in the early stages of
liver cancer.

4. Cytoplasmic DNA Induces Inflammation by cGAS/STING Pathway

Any DNA within the cytoplasmic compartment is sensed as foreign DNA, mimicking
a viral or bacterial infection, resulting in the activation of DNA recognition pathways by the
cell in order to neutralize the invader. In mammalian cells, the three major DNA-sensing
receptors that drive immune responses to foreign DNA are the Toll-like receptor 9 (TLR9),
the absent in melanoma 2 (AIM2), and the cyclic GMP–AMP synthase (cGAS) [97]. These
DNA-sensing receptors are mostly expressed in blood and immune cells with the exception
of the cGAS pathway that can be induced in several cell types. cGAS is an intracellular
enzyme that binds to double-stranded DNA (dsDNA) and initiates a tightly regulated
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signaling cascade to induce the expression of inflammatory genes. The classical role of
cGAS is to detect DNA from pathogens, such as bacteria and virus, and to activate the
innate immune pathway (Figure 6A). However, the origin of DNA in the cytoplasm can be
diverse, and cGAS can be activated by DNA from its own cell. The outcome of genomic
instability is ultimately linked to the release of DNA in the cytoplasm such as during DNA
damage or NED from MN and nucleus. Mitochondria can also release part of the genome
during mitochondrial stress or during apoptosis [98]. DNA produced during the resolution
of replication stress or retroelements such as retrotransposons are also a source of aberrant
cytoplasmic DNA (Figure 6A). This DNA is usually degraded by the TREX1 protein, which
is a DNA exonuclease that clears normal endogenous cytosolic DNA to prevent aberrant
stimulation of the cGAS pathway [99].
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Figure 6. The cGAS–cGAMP–STING signaling pathway: a universal sensor for double-strand DNA (dsDNA). (A). cGAS
function is to sense DNA from the cytoplasm as result of infection, genomic, or mitochondrial instability. cGAS activation
through the generation of cGAMP will drive the activation of the innate immune response and leads to the secretion
of Interferon type 1 as well as a cocktail of cytokines. (B). Molecular mechanism of cGAS/STING pathway. cGAMP
is the ligand for the STING receptor (shown in pink) and results in the activation of the transcription regulator factors
NF-κβ and IRF-3 that drive the secretion of several pro-inflammatory molecules (Adapted from Ablasser et al. [100] and
Motwani et al. [97]).

Mechanistically, cGAS activation by cytosolic DNA leads to the generation of cyclic
GMP–AMP (cGAMP), which binds to the receptor STImulator of INterferon Genes (STING).
Activation of STING results in the activation of TANK-binding kinase 1 (TBK1) and in the
dimerization and nuclear translocation of the interferon regulatory transcription factor
3 (IRF3), resulting in the transcription of genes encoding type I interferons (reviewed
in [100,101]) (Figure 6B). DNA sensing through the cGAS–STING pathway also results in
the activation of the nuclear factor NF-κB through IKK and leads to the transcription of pro-
inflammatory cytokines such as IL-6 and tumor necrosis factor (TNF) [102]. This cocktail of
signal attracts, alerts, and activates the immune system of a potential danger. Then, the
cGAS pathway is involved in several functions such as host defense in response to bacterial
or viral infection. It supports the natural antitumor activity by facilitating the recognition of
cellular damage and in promoting cellular senescence [100,103,104] (Figure 6A). However,
the cGAS/STING pathway plays also a crucial role in many inflammation-related diseases
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such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease,
metabolic syndrome such as diabetes, fibrosis, lupus, arthritis, and psoriasis [100,105,106]
(Figure 6A).

5. Chromosomal Instability Associated to NED

Nuclear envelope disruption destroys the barrier between cytoplasmic components
and the genomic DNA, which may have devastating consequences on the genome pending
time of NE repair. In extreme cases, mitochondria have been trapped within the nucleus
during transient NED [69]. Several studies have demonstrated that nuclear envelope
collapse can have a major role on tumor evolution and in the creation of genomic diver-
sity. NED can lead to massive DNA damage as well as diverse complex chromosomal
rearrangements, such as chromothripsis [107] or common deletion/insertion events [108].

5.1. Diverse Spectrum of Chromosomal Rearrangements Derived from MN Studies

The MN shelters either an intact chromosome or a fragment thereof as a result of aber-
rant mitosis. MN formation can be induced in vitro using either mitotic spindle inhibitors
(e.g., Nocodazole release) [71,107,109] or by impairing the kinetochore attachment on the
Y chromosome [108], thus allowing the study of chromosome instability. Indeed, MN
are a site of intensive DNA damage as observed with the DNA damage marker gamma
H2AX [71,109,110]. As the nuclear envelope of MN tends to disrupt and is unable to re-
pair [71], this process can lead to massive DNA damage, ultimately producing chromosome
fragmentation and pulverization [71,107,110,111] (Figure 7). Deficiency of MN nuclear
envelope composition [82] can also be responsible for defective replication in both intact
and disrupted MN [109,110]. The lack of proper replication leads to a desynchronization
during the mitosis, resulting in massive DNA breaks during metaphase [109,110] and
leading to chromosome pulverization. Pieces of pulverized chromosome can randomly
reassemble, leading to chromothripsis, which is characterized by up to one hundred chro-
mosomal rearrangements that occur all at once (Figure 7). MN generates chromothripsis at
remarkably high rates [83,107,112–114]. It is also important to note that chromothripsis is
associated with segmental deletion and the production of circular extrachromosomal DNA
(ecDNA) amplification (also known as double minutes) [108,115]. ecDNAs are found in
nearly half of cancers and contribute to oncogene amplification as well as to tumor genetic
heterogeneity [116]. MNs can also result in other types of chromosomal rearrangements
such as deletion, insertion, or translocation events as well as kataegis, which is a pattern of
localized hypermutations [108].

5.2. Telomere Fusion and Chromosomal Bridge

Recent studies using the model of telomere fusion have revealed massive DNA damage
and reorganization on the fused chromosomes as a result of NED [70,117] (Figures 5E and 8).
The sequencing of clones derived from telomere fusion has shown events of chromothripsis,
as well as kataegis and displayed clusters of genomic rearrangements affecting one or more
chromosomes (Figure 8). These rearrangements exhibited the hallmarks of chromothripsis,
including spatial clustering, randomness of fragment orientation, and oscillating copy num-
ber states [70]. Mechanistic studies have highlighted TREX1 as an important contributor
of DNA breaks and chromothripsis [70,117]. TREX1 is a powerful DNA exonuclease that
degrades both double- and single-strand DNA from the 3′-terminus and that is required
for clearing cytosolic DNA to prevent aberrant inflammation and autoimmunity [99]. In
addition, APOBEC3 is likely involved in the generation of the hyper mutated pattern
kataegis observed in this model [117] (Figure 8). APOBEC3 functions as DNA mutator
participating in the innate immune system. It is a DNA deaminase that acts as an inhibitor
of retrovirus replication and retrotransposon mobility and target cytoplasmic DNA. During
nuclear envelope collapse, APOBEC and genomic DNA come into contact, inducing aber-
rant APOBEC-mediated mutagenesis. The primary biochemical reaction induced by the
APOBEC family of proteins is cytosine to uracil (C-to-U) deamination. However, cytosine
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to guanine (C-to-G) and cytosine to thymine (C-to-T) transitions, and other mutations can
be induced by these enzymes [118].
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of micronuclei in the next mitosis, increasing considerably the genomic instability (Adapted from Umbreit et al. [110] and
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A recent study demonstrates that mechanical force provoked by the accumulation
of contractile myosin II can also trigger chromosome bridge breakage rather than the
effect of TREX1 [110] and NED. Both events might appear to be non-mutually exclusive
and complementary. Furthermore, the study elegantly demonstrates the presence of
defective DNA replication of bridge DNA, which can generate complex rearrangements
such as “Tandem Short Template (TST) jumps” [110]. Moreover, the under-replicated
bridge chromosomes mis-segregate with high frequency and form micronuclei in the
following cell cycle, which can generate additional cycles of bridging, micronucleation,
and chromothripsis [110,119].

5.3. DNA Damage Arising from NED of the Nucleus

DNA damage from NED was primarily studied in the case of micronuclei [71,109]
where the NE rupture is permanent, leaving the chromosomal contents therein completely
exposed to the surrounding environment and leading to massive DNA damage. In the case
of chromatin bridge, NED is transient, lasting less than 2 min and potentially recurrent. As
such, it is difficult to assess the contribution of these transient NED on genomic instabil-
ity [70,110,117]. In contrast, NED observed under certain diseases such as envelopathies
or during migration and invasion can last up to 1 h (Figure 4B). DNA marker γH2AX or
53BP1 foci show important DNA breaks in the constricted nuclei during migration through
restrained areas [35,36,120], confirming the generation of DNA double-strand breaks in the
genome during transient NE collapse. The incorporation of organelle such as mitochondria
has also been observed after NE repair, questioning the fate and consequence of such an
intruder on nuclear dynamics [69]. Interestingly, 1% of rat cardiomyocytes, a cell type
that endures persistent mechanostress, present mitochondria in their nucleus, giving more
importance to this phenomenon [121].

Both NED and NE blebbing involve a transient chromatin delocalization from DNA
leaking to the cytoplasm during the rupture, which is rapidly reintegrated in the nucleus
during repair. Whether this reintegration is faithful to the original chromosomal territory
remains to be assessed. In the situation of double-strand DNA breaks, the broken ends
may no longer be in close proximity. The repair and ligation of two ends can result in
chromosomal translocation events. Importantly, a recent study using the CRISPR–Cas9
genome editing revealed that a single double-strand DNA break causes up to a 20-fold
increase in the formation of micronuclei and/or chromosome bridges [114]. As such, the
damage cause by NED can be amplified into far more extensive genetic alterations in
subsequent mitosis.

The relationship between DNA damage response and NE is complex, and it is known
that several NE proteins play important functions during DNA damage repair, such as the
proteins from the LINC complex [122,123] or the Lamin-Associated Protein 1 (LAP1) [124].
Then, the disruption of NE integrity also compromises the proper DNA repair.

6. Clinical Consequences of Nuclear Envelope Rupture

The release of genomic DNA into the cytoplasm leads to major consequences with
diverse clinical outcomes: the creation of chromosomal instability and the induction of
pro-inflammatory pathways. Recent technological advances in sequencing tools as well as
imaging have shifted interest in the role of NE fragility as the origin of some congenital
diseases, in the creation of cancer, and to certain inflammatory syndromes. The role of
NED and activation of the innate immune response through cGAS could be in fact linked
to much more diseases than expected.

6.1. Envelopathies and Inflammation

Nuclear envelope abnormalities due to mutation in NE proteins are well described
and are associated to a myriad of clinical phenotypes, ranging from cardiac and skeletal
myopathies to partial lipodystrophy, peripheral neuropathy, and premature aging [125].
The recent discovery of NED during interphase observed with the use of time lapse
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imaging has allowed a better understanding of the role of certain mutations on NE integrity,
highlighting the implication of NED, genomic instability and activation of the innate
immune response in the establishment of tissue degeneration. Most of envelopathies are
tissue-specific, affecting the skeletal muscle, heart, peripheral nerves, bone, or adipose
tissue, and they are caused by mutations in ubiquitously expressed proteins, as are the
proteins from the NE. Then, the disruption of their function may be limited by epigenetic
and specific chromatin compaction, or in response to specific stiffness of their environment,
such muscle cells that are constantly confronted to mechanostress. However, the link
between NED and local inflammation could explain the diversity of pathology, and the role
of cGAS/STING pathway activity during NED could be in fact largely underestimated.

6.1.1. Emery–Dreifuss Muscular Dystrophy: Cell Death Due to Increase DNA Damage

The Emery–Dreifuss muscular dystrophy (EDMD) is a rare disease caused by muta-
tions in nuclear envelope proteins such as Lamin A, Emerin, or Nesprin 1 and 2. The clinical
symptoms are skeletal muscle wasting, joint contractures, cardiomyopathy, and congenital
muscular dystrophy. Using several mice models and patients’ samples with mutated Lamin
A [80] or in SYNE-1 [126] (coding for the Nesprin 1 protein) genes, researchers observed
the presence of NED during muscular contraction. Muscle cells bearing one of the EDMD
mutations display increased DNA damage and increased apoptosis. Importantly, NED
also led to activation of the cGAS pathway [80], which might play a major role in the
development of the disease.

6.1.2. Progeria: DNA Damage, NED, and cGAS Activation

Hutchinson–Gilford progeria (HGPS) arises from single point mutations within the
Lamin A gene, leading to its permanent farnesylation, also called progerin, and it leads to
premature aging, among other symptoms. Patients die from complications of atheroscle-
rosis, such as heart attack or stroke in their early teens. Atherosclerosis is a chronic
inflammatory disease of the vessel wall that is largely driven by an innate immune re-
sponse [127], and it seems to be driven by the cGAS/STING pathway [128]. A study of
cells from progeria patients has shown NE fragility that tends to disrupt [68]. In addition,
progerin expression renders smooth muscle cells more susceptible to cell death in response
to mechanical stress, which is likely due to nuclear envelope disruption [129]. Other studies
have shown that progerin expression activates the cGAS/STING/IFN pathway [130–132]
and suggest that this activation is due to either replication stress or to oxidative stress.
However, the role of NED in this pathway activation cannot be excluded.

6.1.3. Metabolic Syndrome: A Common Symptom in Envelopathies

Some common clinical symptoms of envelopathies patients are the lipodystrophy
and lipoatrophic diabetes (Table 1). However, the link between metabolic syndrome and
nuclear envelope dysfunction is not yet understood. Lipodystrophies are characterized by
near-total loss of body fat. In view to compensate for the lack of adipocyte tissues, the fat
is stocked in ectopic fat stores, particularly certain subcutaneous depots but also within
and around the skeletal muscle, heart, liver, pancreas, and kidneys, leading to deregulation
in metabolic homeostasis [133]. The syndrome can result in an array of metabolic com-
plications such as insulin resistance, type 2 diabetes, hypertriglyceridemia, and hepatic
steatosis. Interestingly, lipodystrophy is often associated with autoimmune disorders in-
cluding lupus, dermatomyositis, Celiac disease, pernicious anemia, and vasculitis [133,134],
highlighting the role of immunity in this disease. Whether NED-mediated cGAS activation
is a major factor in the development of this clinical symptom is an open question.
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Table 1. Syndromes associated with lipodystrophy, which is a common pathology in envelopathy patients. Online
Mendelian Inheritance in Man (OMIM) ID is given to refer to the catalogue of genetic disorder.

Mutated Gene Name Syndrome Clinical Pathology OMIM ID

Lamin B2 Barraquer–Simons syndrome (APL) Lipodystrophy 608709

Lamin A/C FPLD2, LDHCP, MADA, HGPS,
WRN

Lipoatrophic
diabetes/Lipodystrophy

151660, 608056, 248370,
176670, 277700

ZMPSTE24 MADB Lipodystrophy 608612

AGPAT2 or BSCL2 Berardinelli–Seip congenital
lipodystrophy type 2 Lipodystrophy/Insulin resistance 603100, 269700, 615924

In favor of such a premise, mutations in lamin and lamin-associated genes are known
to induce seven syndromes associated with lipodystrophy and lipoatrophic diabetes
(Table 1). Lamins are known to regulate gene expression at the epigenetic level through
their Lamina-Associated Domains (LADs). Consequently, mutations in lamin genes may
impact the regulation of metabolic genes in a tissue-specific manner as each tissue possesses
a distinct epigenetic statue. Nonetheless, a general hallmark of dystrophy is the degen-
eration and death of tissues, suggesting that additional and more mechanisms are also
involved. The link between NED, cGAS activation, and lipodystrophy is not yet known,
but in the case of some Lamin A mutations such as HGPS and EDMD, it was demonstrated
that the NE can collapse [68,80], highlighting a probable role of NE fragility and plausible
NED and cGAS activation in the development of such clinical outcomes. Interestingly,
laminopathies seem to be under-diagnosed, as a study analyzing metabolic syndrome
reported that 10% of patients presented abnormal nuclear envelope and 3.6% possessed a
mutation in the Lamin A (LMNA) gene [64].

Interestingly, BSCL2 and AGPAT2 gene mutations induce Berardinelli–Seip congenital
lipodystrophy type 2, which is the most severe form of human lipodystrophy. BSCL2 is a
reticulum endoplasmic protein involved in the regulation of lipid droplets by facilitating
continuous triglyceride transfer [135]. BSCL2 is also a key factor for nuclear lipid droplet
generation and lipid homeostasis [136]. Indeed, BSCL2 connects the lipid layer from the
inner NE and the nuclear lipid droplet, and it might affect the inner nuclear membrane
maintenance [136]. AGPAT2 converts lysophosphatidic acid to phosphatidic acid (PA),
which is the second step in de novo phospholipid biosynthesis. Nevertheless, PA are
substrates for enzymes producing lipids that are involved in fission or fusion, contributing
to membrane rearrangements by generating negative membrane curvature [137]. Then,
both proteins are important players in the maintenance of the lipid bilayer that might be
involved in NE adaptability to external forces and could present NE fragility in certain
context as in adipocytes.

6.1.4. Neuropathies, Nuclear Envelope, and Inflammation

Mutation in lamin genes can also cause neuropathies [138–141]. Other genetic diseases
that causes neurological lesion are the tauopathies, which are neurodegenerative disorders
characterized by the deposition of abnormal tau protein in the brain. Tau is a microtubule-
associated protein expressed in neurons that are involved in neurodegenerative diseases,
including Alzheimer disease (AD), frontotemporal dementia with parkinsonism-17, Pick
disease, progressive supranuclear palsy, and corticobasal degeneration [142]. These dis-
eases indirectly involve the NE dysfunction, as the abnormal localization of Tau generates
the production of nuclear envelope invaginations and is associated with lamin dysfunc-
tion [143]. Whether such NE deformations are linked with NED is still not fully known,
but it was recently described that the nucleocytoplasmic transport that is compromised is a
model of frontotemporal dementia that could be in fact the result of NED [144].

Impairment of nucleocytoplasmic transport has also recently emerged as a central dis-
ease mechanism in amyotrophic lateral sclerosis and frontotemporal dementia due to hex-
anucleotide expansions in the C9ORF72 gene [145] and in Huntington’s disease [146,147].
Expression of those repeats leads to morphological abnormalities in the architecture of the
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nuclear envelope. It is not clear if the impairment of nucleocytoplasmic transport is due to
disruption of nuclear import or due to NE collapse.

Interestingly, chronic activation of an innate immune response in the central nervous
system is frequently associated with neuronal damage [148]. Recently, cGAS/STING
activation [149–151] was discovered to be involved in neurological diseases as multiple
sclerosis [152] or Huntington’s disease [153]. The release of genomic DNA into the cyto-
plasm due to NE weakness and subsequent activation of the cGAS/STING pathway could
be then a major driver in the development of neuroinflammation, leading to degeneration
of neurons.

6.1.5. Congenital Disease Due to Complex Chromosomal Rearrangement

Most human embryos are aneuploid and do not develop to term, making aneuploidy
in embryos a leading cause of miscarriages and infertility [154]. Aneuploidy frequently
arises during the early mitotic divisions of the embryo. During the fecundation, the parental
genomes fuse and cluster to form the embryo. However, clustering often fails, leading
to chromosome segregation errors and micronuclei, which are incompatible with healthy
embryo development [155]. Recent advances in sequencing methodology have allowed
the detection and the description of complex structural variations inside the genome of
patients with developmental disease, as well as in phenotypically normal individuals [156].
Complex chromosomal rearrangements as chromothripsis are detected in developmentally
delayed children but also in mothers suffering spontaneous abortions [156,157]. Carriers
of chromosomes with chromosomal complex structural reorganization as chromothripsis
cannot pair their chromosome with their partners, leading to infertility. The MN formed
during the failed clustering of parental genome during the fecundation is hypothetically
the origin of those atopic genome.

6.1.6. Cancer: Origin, Evolution, and Survival

The genomic instability linked with NED can have profound effects on cell evolution.
These genomic insults not only increase the pool of genetic diverse cells but also events that
can progress into cancers. Recent advances in sequencing have allowed the observation
that chromothripsis and other complex chromosomal rearrangements are early events
leading to tumorigenesis in pancreatic adenocarcinoma [158], multiple myeloma [159], or
breast cancers [160], among many others [161,162]. Genetic insults associated with NED
contribute to all steps in cancer, from the origin to the progression and establishment of
drug resistance. They are indispensable in the generation of genomic heterogeneity.

Chromothripsis accounts for a substantial proportion of human cancers, with a general
prevalence of 49% and up to 80% in breast cancers [162]. Forty percent of tumors with
chromothripsis harbor only one chromosome but might have more complex patterns with
at least five chromosomes affected in 61% of osteosarcomas [161]. Importantly, polyploidy
tumors have 1.5 times more probability to generate an event of chromothripsis [161], which
is in line with the genetic instability of whole genome doubled cells and increase of MN
formation. Circular extrachromosomal DNA or ecDNA, associated with events of chro-
mothripsis, are found in 40% of cancer cells [116] and are primordial in tumor evolution.

The activation of the cGAS/STING pathway in response to NED is an important
anti-tumorigenic mechanism via activating the immune surveillance to mediate tumor
clearance (Figure 6). It is likely that during the first step of tumorigenesis, the cGAS
pathway plays a primordial role in inducing an immune attack or by promoting intrinsic
senescence [163]. Nevertheless, mounting evidence suggests that depending on the context,
the cGAS/STING pathway can have tumor and metastasis-promoting functions [163]. It
was shown recently that metastatic cells harboring high chromosome instability could
engage the STING-dependent non-canonical NF-κB pathway as well as suppress anti-viral
type 1 IFN production, thereby activating inflammatory responses that favor invasion
and metastasis [164]. Metastatic cells can also communicate with their microenvironment
through cGAMP signaling. In metastatic human breast tumors, brain metastatic cancer
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cells converse with adjacent astrocytes through cGAMP generated by the tumor. cGAMP is
exported to astrocytes via gap junctions, which in turn activate the STING pathway and
initiate the release of inflammatory cytokines, favoring the brain metastases survival [165].
Moreover, STING chronic activation could induce paradoxically an immune-suppressive
environment [163]. Cancer cells treated with STING agonist markedly increased PD-L1
expression and pro-inflammatory cytokines [166]. Cancer cells expressing PD-L1 support
the evasion of T cell immune surveillance by blocking T cell killing [163]. Although the
precise mechanism remains to be elucidated, it is tempting to speculate that RelA/NF-κB
signaling stabilizing the PD-L1 protein could be involved in this paradox [167].

7. Concluding Remarks

Over the past 10 years, the research on NE biology has revealed unexpected con-
sequences of its deregulation. The discovery of NED and its role in activation of the
cGAS/STING pathway as well as its role in creating chromosomal instability has stirred
this field. The NE composition is highly malleable and adapts according to epigenetic
changes and mechano-stress. However, under certain conditions and due to some genetic
predispositions, the NE can collapse. Naked DNA is sensed as a danger by intra-cellular
DNA recognition pathways, and in particular, the cGAS/STING pathway as well as by
TREX1 or APOBEC. Cells activate the immune response and attack their own DNA, creat-
ing massive DNA damage that could generate complex chromosomal rearrangement as
chromothripsis, ecDNA, or Kataegis, leading to tumorigenesis. This defense mechanism
has major impact leading to tissue degeneration, as in the case of some laminopathy and
in neurodegenerative diseases as well as to induce local inflammation that can drive to
autoimmune disease. The role of cGAS/STING signaling in immune and autoimmune
diseases seems to be a major driver, and there is an increased interest in targeting this
pathway. Several molecules and strategies to disrupt this pathway are being delineated
and evaluated in preclinical models [105,168] and will soon enter clinical trials. Such
discoveries could be translated to several NE associated disease such as laminopathy and
also be used in the cancer field in an attempt to block the growth of metastasis.

The genomic instability driven by NED leads to considerable diverse and complex
genetic variability. The use of sophisticated sequencing tools has revealed a more important
penetrance of complex chromosomic architecture in disease than initially expected. Those
sequencing tools might help to diagnose and to understand some rare and orphan genetic
syndrome. In the case of cancer, not only those complex chromosomic rearrangement events
can promote tumorigenesis, as it was shown to be an early driver event in the establishment
of tumors, but it is also an important factor in the establishment of genetic heterogeneity,
supporting the creation of drug-resistant clones. To conclude, the understanding of NE
dynamic is indispensable in order to understand a myriad of diseases with a broad range
of clinical symptoms. The interplay between inflammation, genomic instability, and NE
fragility is fascinating, and harnessing its secrets may open new avenues in the development
of innovative therapeutic strategies.
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