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Abstract: Carotenoids and phenylpropanoids play a dual role of limiting and countering photoox-
idative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to
summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a
field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological
and biochemical analyses in spring and summer. We also investigated the functional role of the
major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought
stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense
photooxidative stress, particularly during the central hours of the day. In parallel, a significant
daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the
morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain
non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed
substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives,
mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, counter-
ing the drought-induced photooxidative stress. We concluded that seasonal and daily changes in
photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible
photodamage and to cope successfully with the Mediterranean harsh climate.

Keywords: carotenoids; dihydroxy B-ring-substituted flavonoids; drought stress; epidermal and
mesophyll flavonoids; hydroxycinnamates; photoprotection; zeaxanthin

1. Introduction

The ability of plants to cope successfully with a range of environmental stressors
depends on a suite of integrated and modular adjustments involving morphoanatomical,
physiological and biochemical traits [1–3]. These adjustments are particularly significant for
the survival, rather than for the profitable growth, of plants inhabiting highly unfavorable
ecosystems, such as the Southern Mediterranean basin [4–6]. This concept is consistent
with the fact that species evolved in adverse Mediterranean regions, particularly the
sclerophyllous evergreens, invest a large portion of the fixed carbon for leaf construction
and for the biosynthesis of carbon-based secondary compounds, rather than sustaining
new growth [7–9]. Mediterranean evergreen species display low CO2 assimilation rates (on
a leaf area basis), even under the most favorable environmental conditions [4]. Hence, they

Int. J. Mol. Sci. 2021, 22, 8303. https://doi.org/10.3390/ijms22158303 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7304-7526
https://orcid.org/0000-0002-8531-6076
https://orcid.org/0000-0002-1827-1672
https://orcid.org/0000-0003-4759-9033
https://orcid.org/0000-0002-2472-720X
https://orcid.org/0000-0003-2222-0437
https://orcid.org/0000-0002-3739-1397
https://orcid.org/0000-0002-9713-689X
https://orcid.org/0000-0001-5434-8860
https://doi.org/10.3390/ijms22158303
https://doi.org/10.3390/ijms22158303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22158303
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22158303?type=check_update&version=3


Int. J. Mol. Sci. 2021, 22, 8303 2 of 18

are daily exposed to an excess of solar irradiance and to the consequent photooxidative
stress [10,11].

Excessive light stress may become particularly severe during the central hours of
the day, especially in summer, when the scarcity of water availability together with the
high temperatures substantially limit the leaf’s ability to use the radiant energy for pho-
tosynthesis [4,12,13]. The necessity of coping with an excess of solar irradiance conforms
to evergreen sclerophyllous shrubs displaying constitutive morphoanatomical features
that are well suited to limiting the deeper penetration of additional photons in the more
sensitive leaf tissues [8,14]. Some of these features include leaves that grow at a steep angle,
usually with a thick cuticle and mesophyll (at full developmental stages), and covered
by a dense indumentum of light-reflecting and absorbing structures (i.e., a wide array of
glandular and non-glandular trichomes) [7–9].

Additionally, effective photoprotection might be provided by specialized secondary
metabolites, which may serve the dual function of “avoiding” (limiting) and/or “counter-
ing” photooxidative damage [15–18]. This is the case of xanthophylls, whose biosynthesis
is strongly modulated by light [19,20]. For example, violaxanthin cycle pigments (VAZ) are
involved in the thermal dissipation of excessive energy through non-photochemical quench-
ing (NPQ), as well as in reducing the oxidative load inside the chloroplasts [15,21–23].
Indeed, there is evidence that zeaxanthin may behave as an antioxidant in chloroplasts
of leaves exposed for a long time to full sunlight [16,24,25], when the pool of VAZ may
saturate the binding sites of the light-harvesting chlorophyll–protein complexes [26,27].
Zeaxanthin may increase the rigidity of the thylakoid membranes, thus reducing perox-
idative damage [21,28–30]. In addition, it can quench the singlet oxygen produced at
considerable rates under drought stress-induced severe excesses of light [22]. In fact, the
biosynthesis of zeaxanthin occurs not only through de-epoxidation of violaxanthin but also
through hydroxylation of ß-carotene under severe drought stress [25,31–33].

Pigments biosynthesized through the phenylpropanoid pathway (which is under
strict light control [17,34–36]), particularly the vast class of flavonoids, may also constitute
effective shields against the most energetic solar wavelengths. Additionally, they can act
as scavengers of a wide range of reactive oxygen species (ROS), especially when the light
stress becomes severe [37–40]. Indeed, flavonoids are found in very high concentrations in
the epidermal cells (due to the small volume in which they are “dissolved”), but they also
accumulate to great extent in the mesophyll of leaves adapted or long acclimated to high
solar irradiance [14,18,37,41,42]. There is compelling proof that flavonoids located in the
vacuoles, chloroplasts and nuclei of mesophyll cells may effectively scavenge the ROS pro-
duced during severe light excess [39,40,42]. This dual role of flavonoids in photoprotection
(shields and ROS scavengers) is supported by the observation that high solar irradiance,
even in the absence of UV radiation, leads to an enhanced biosynthesis of dihydroxy B-
ring-substituted flavonoids, whereas it barely affects the biosynthesis of the monohydroxy
B-ring-substituted forms (for review articles, see [18,40,42]). Indeed, dihydroxy flavonoids
have considerably greater ability to scavenge ROS but very similar UV-absorbing capacity
if compared with monohydroxy flavonoids [42].

Mechanisms of photoprotection are activated on a daily basis, as has long been re-
ported for diurnal variations in the concentration and composition of VAZ pigments,
thereby sustaining thermal dissipation of excessive radiant energy through NPQ [43–45].
Less is known about the seasonal variations in the carotenoid concentration and compo-
sition of Mediterranean plants. However, in a range of plant species, evidence of both
winter-to-summer and spring-to-summer decreases in the concentration of these molecules
(on a leaf mass basis) have been reported [46–51]. Much less is known about seasonal
and daily variations in phenylpropanoid contents [50–55]. Nonetheless, recent findings
of significant dawn-to-midday changes in UV-A transmittance, particularly in species
growing in warm areas [56,57], suggest that flavonoids other than carotenoids may have
diurnal plasticity [58]. Although the extent to which phytochemicals, particularly phenyl-
propanoids, vary on a daily basis is strongly species-dependent [59], Barnes et al. [56]
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have provided evidence that diurnal adjustment in ultraviolet sunscreen protection is
widespread among higher plants.

Considering this scenario, we hypothesize that both carotenoids and phenylpropanoids
may serve a dual role in avoiding and in countering photooxidative stress, and that
the relative significance of these two functions is dependent on the severity of drought-
induced light excess. For this purpose, we conducted a observational field study on
Phillyrea latifolia, a Mediterranean evergreen sclerophyllous shrub that displays a strict
anisohydric (and water spending) behavior to cope with drought [3]. P. latifolia represents
an interesting species to elucidate the putative dual photoprotective function of phenyl-
propanoids, since it possesses a wide array of structures, comprising monohydroxy- and
dihydroxy-B-ring-substituted flavones and flavonols [9,14,60]. To test our hypothesis,
we carried out both physiological analyses and quantification of individual photosyn-
thetic and non-photosynthetic pigments during spring and summer and at different hours
of the day. We also quantified, for the first time, the accumulation of major individual
phenylpropanoids, namely caffeic acid and flavonoid derivatives [14,41,42], in different
leaf tissue layers.

2. Results
2.1. Effects of Season and Hour of the Day on Water Relations and Gas Exchange

The physiological traits examined in our study varied considerably on a daily and
particularly on a seasonal basis (Table 1, Figure 1). Leaf water potential (Ψw) significantly
changed between seasons, with steep spring-to-summer reductions (−85%), irrespective
of the hour of the day (Figure 1a). Leaf Ψw also changed during the day, with substantial
morning-to-midday declines (−58%on average), irrespective of the season. Relative water
content (RWC) significantly declined from spring to summer (−20%), and daily variations
in RWC were more noticeable in summer leaves (Figure 1b). Net photosynthesis (AN)
decreased (−32%) from spring to summer, irrespective of the hour of the day. In addition,
in both seasons, AN declined from early morning to midday (on average −23%), especially
in summer (−30%), and fully recovered in the early afternoon (Figure 1c). Overall, summer
leaves displayed a lower (on average −35%) capacity to use radiant energy for photosyn-
thesis (iRUE, instantaneous radiation use efficiency, sensu Penuelas et al. [61]) compared
with spring leaves (Figure 1d). Greater morning-to-midday reductions in iRUE were also
observed in summer leaves (−65% versus −45% of spring leaves).

2.2. Effects of Season and Hour of the Day on Photosynthetic and Non-Photosynthetic Pigments

The content of the photosynthetic pigments varied on a seasonal but also on a daily
basis (Table 1, Figure 2). The concentration of chlorophyll (Chltot) decreased (−11%)
from spring to summer, and from early morning to midday hours, especially in spring
leaves (−10%; Figure 2a). However, the ratio of Chla to Chlb (Chla/Chlb) was higher
in summer leaves than in spring ones, with a greater increase from morning to midday
(Figure 2b). Similar to Chltot, carotenoids (Cartot) decreased from spring to summer (−15%)
and declined from morning to midday, especially in spring (Figure 2c).
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Table 1. Summary of the two-way analysis of variance (ANOVA; season and time of day as fixed factors, with their
interaction factors) for the set of physiological (total degrees of freedom = 63) and biochemical (total degrees of freedom = 47)
traits of Phillyrea latifolia leaves. In situ measurements and sampling were conducted in two seasons: spring (11–12 and
25–26 May) and summer (4–5 and 22–23 July) in 2019; at four different times of day (08:00–09:00; 12:00–13:00; 14:30–15:30 and
17:30–18:30 h). Ψw, leaf water potential; RWC, relative water content; AN, net photosynthesis; iRUE, instantaneous radiation
use efficiency; Chltot, total chlorophyll content; Chla/Chlb, ratio of Chla to Chlb; Cartot, total carotenoid content; VAZ
Chltot

−1, violaxanthin cycle pigments relative to total chlorophyll concentration; DES, de-epoxidation state of violaxanthin
cycle pigments, calculated as (0.5A + Z) (VAZ)−1; HCAtot, total hydroxycinnamic (mostly caffeic acid) derivatives; Flavtot,
total flavonoids; Que, quercetin; Lut, luteolin; Kae, Kampferol; Api, apigenin. **** p < 0.0001; *** p < 0.001; ** p < 0.01;
* p < 0.05; n.s., not significant.

Parameter Fseason Fday time Fseason × hour

Ψw (-MPa) 2958.0 **** 385.1 **** 34.9 ****
RWC (%) 1324.5 **** 325.6 **** 147.1 ****

AN (µmol CO2 m−2 s−1) 240.8 **** 23.9 **** 6.5 *
iRUE (µmol CO2 mmol−1 quanta) 458.6 **** 425.1 **** 2.0 n.s.

Chltot (µmol g−1 DW) 41.1 **** 55.1 **** 27.8 ****
Chla/Chlb 212.6 **** 154.2 **** 78.9 ****

Cartot (µmol g−1 DW) 54.1 **** 13.2 *** 8.6 **
Neoxanthin (mmol mol−1 Chltot) 1.8 n.s. 2.4 n.s. 0.9 n.s.

Violaxanthin (V, mmol mol−1 Chltot) 6.2 * 256.8 **** 9.3 **
Antheraxanthin (A, mmol mol−1 Chltot) 76.9 **** 285.4 **** 14.8 ***

Zeaxanthin (Z, mmol mol−1 Chltot) 455.6 **** 956.0 **** 64.7 ****
Lutein (mmol mol−1 Chltot) 9.1 ** 5.4 * 2.6 n.s.

ß-carotene (mmol mol−1 Chltot) 2.9 n.s. 16.3 ** 4.3 *
VAZ Chltot

−1(mmol mol−1) 165.4 **** 38.2 **** 1.5 n.s.
DES 292.6 **** 335.1 **** 25.4 ****

HCAtot (µmol g−1 DW) 435.6 **** 84.7 **** 11.5 **
Flavtot (µmol g−1 DW) 3953.1 **** 199.7 **** 64.2 ****

Que 3-O-der (µmol g−1 DW) 3176.3 *** 175.4 **** 89.1 ****
Lut 7-O-der (µmol g−1 DW) 1412.6 **** 58.6 **** 12.7 **
Lut 4′-O-der (µmol g−1 DW) 19.3 *** 12.1 ** 2.4 n.s.
Kae 3-O-der (µmol g−1 DW) 6.8 * 1.4 n.s. 1.1 n.s.
Api 7-O-der (µmol g−1 DW) 5.2 * 1.1 n.s. 0.8 n.s.

Neoxanthin (data not shown), lutein and ß-carotene changed slightly on both a sea-
sonal and a daily basis (Table 1), although ß-carotene showed significant reductions from
early morning to afternoon (12 and 15 h) both in spring and summer leaves (Figure 3a,b).
Conversely, violaxanthin cycle pigment relative to the total chlorophyll concentration
(VAZ Chltot

−1) greatly changed depending both on the season and the hour of the day
(Figure 3c,d, purple lines). The daily changes in both VAZ Chltot

−1 and the de-epoxidation
state (DES) of VAZ showed different trends in spring and summer leaves, with the values
of both parameters being higher in summer (Figure 3c,d). When individually evaluated, it
was observed that the concentration of violaxanthin (V) did not change much, whereas an-
theraxanthin (A) and particularly zeaxanthin (Z) concentrations increased markedly from
spring to summer, especially in the afternoon (Figure 3e,f). Violaxanthin and zeaxanthin
displayed a reverse daily trend in spring leaves (Figure 3e). In particular, the Z content
increased from early morning to noon, followed by a decline in the early and late afternoon.
However, in summer, the sharp morning-to-midday increase in Z was not completely
matched by a parallel decrease in V content (Figure 3e,f). In addition, Z did not decline
from midday to early afternoon (Figure 3f).
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latifolia leaves. Measurements were conducted at 08:00–09:00 (8 h in the graphs), 12:00–13:00 (12 
h), 14:30–15:30 (15 h) and 17:30–18:30 (18 h) hours at two dates in spring (May 11–12 and 25–26, 
blue lines) and summer (July 4–5 and 22–23, red dashed lines) on clear days. Data are reported as 
means ± SD (n = 8). 
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Figure 2. Seasonal and daily variations in total chlorophyll (Chltot, a), the ratio of Chla to Chlb (Chla/Chlb, b) and total 
carotenoids (Cartot, c) in the leaves of P. latifolia. Leaves were sampled at 08:00–09:00 (8 h in the graphs), 12:00–13:00 (12 
h), 14:30–15:30 (15 h) and 17:30–18:30 (18 h) hours at two dates in spring (May 11–12 and 25–26, blue lines) and summer 
(July 4–5 and 22–23, red dashed lines) on clear days. Data are reported as means ± SD (n= 6). 

Figure 1. Seasonal and daily variations in leaf water potential (ψW, (a)), relative water content (RWC,
(b)), net CO2 assimilation rate (AN, (c)) and instantaneous radiation use efficiency (iRUE, (d)) in
P. latifolia leaves. Measurements were conducted at 08:00–09:00 (8 h in the graphs), 12:00–13:00 (12 h),
14:30–15:30 (15 h) and 17:30–18:30 (18 h) hours at two dates in spring (11–12 and 25–26 May, blue lines)
and summer (4–5 and 22–23 July, red dashed lines) on clear days. Data are reported as means ± SD
(n = 8).

Figure 2. Seasonal and daily variations in total chlorophyll (Chltot, (a)), the ratio of Chla to Chlb (Chla/Chlb, (b)) and total
carotenoids (Cartot, (c)) in the leaves of P. latifolia. Leaves were sampled at 08:00–09:00 (8 h in the graphs), 12:00–13:00 (12 h),
14:30–15:30 (15 h) and 17:30–18:30 (18 h) hours at two dates in spring (11–12 and 25–26 May, blue lines) and summer (4–5
and 22–23 July, red dashed lines) on clear days. Data are reported as means ± SD (n = 6).
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Figure 3. Daily variations in the content of individual carotenoids (mmol mol−1Chltot) in spring
((a,c,e)—left) and summer ((b,d,f)—right) leaves of P. latifolia. (a,b) Content of ß-carotene and
lutein; (c,d) ratio of violaxanthin cycle pigments (VAZ) relative to total chlorophyll concentration
(VAZ Chltot

−1) and the de-epoxidation state of VAZ (DES = ((0.5A + V) (VAZ) −1). (e,f) Content of
violaxanthin cycle pigments (violaxanthin, anteraxanthin and zeaxanthin). Leaves were sampled at
08:00–09:00 (8 h in the graphs), 12:00–13:00 (12 h), 14:30–15:30 (15 h) and 17:30–18:30 (18 h) hours
ontwo dates in spring (11–12 and 25–26 May) and summer (4–5 and 22–23 July) on clear days. Data
are reported as means ± SD (n = 6).

The variation in the content of hydroxycinnamic acid derivatives (HCAtot, mostly
consisting of echinacoside and verbascoside) and flavonoids (Flavtot) was remarkable on
botha seasonal and a daily basis (Figure 4a,b, Table 1). The spring-to-summer increase in the
flavonoid content (+189%) was mostly due to the increment in quercetin-3-O- (+415%) and
luteolin-7-O-derivatives (+218%), and to the increase in luteolin-4′-O-derivatives (+61%), to
a minor extent (Figure 4c–f, Table 1). The content of kaempferol and apigenin derivatives,
which correspond to approx. 1.0% of the Flavtot, slightly varied both seasonally and
daily (Table 1, Figure 4c,d, pink lines). Interestingly, the quercetin-3-O- and luteolin-7-O-
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derivatives contents showed large morning-to-midday increases (Table 1, Figure 4c,d, black
lines; Figure 4e,f, light blue lines). As also observed for Z, the contents of quercetin-3-O
and luteolin-7-O-derivatives did not decline from midday to early afternoon in summer
leaves (Figure 4d,f), whereas they significantly declined over the same time interval in
spring leaves (Figure 4c,e).

Figure 4. Daily variations in the content (µmol g−1 DW) of phenylpropanoids in spring ((a,c,e)—left)
and summer ((b,d,f)—right) leaves of P. latifolia. (a,b) Content of hydroxycinnamates (HCAtot) and
flavonoids (Flavtot); (c,d) content of quercetin-3-O-glycosides and kaempferol + apigenin deriva-
tives; (e,f) content of luteolin-7-O- and luteolin-4′-O-glycosides. Measurements were conducted at
08:00–09:00 (8 h in graph), 12:00–13:00 (12 h), 14:30–15:30 (15 h) and 17:30–18:30 (18 h) hoursontwo
dates in spring (11–12 and 25–26 May) and summer (4–5 and 22–23 July) on clear days. Data are
reported as means ± SD (n = 6).

2.3. Tissue Distribution of Hydroxycinnamic Acid Derivatives and Flavonoids in Spring and
Summer Leaves

The HPLC-DAD analysis showed that the general phenylpropanoid profile was simi-
lar among the different leaf tissues (adaxial and abaxial epidermis, and the adaxial, inner
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and abaxial mesophyll), with 13 peaks being detected and identified as follows: 1, quercetin
derivative; 2, luteolin-7-O-Glc derivative; 3, quercetin derivative; 4, luteolin-7-O-Glc deriva-
tive; 5, hydroxycinnamic acid derivative; 6, kaempferol derivative; 7, apigenin derivative;
8, hydroxycinnamic acid derivative; 9, hydroxycinnamic acid derivative; 10, apigenin
derivative; 11, apigenin derivative; 12, luteolin-4′-O-Glc derivative; 13, luteolin-7-O-Glc
derivative (Figure 5). However, despite being similar in composition, the concentrations
of these phenylpropanoids proved to be different in each leaf tissue (Figures 5 and 6). In
addition, the content of these compounds greatly differed between seasons, being higher
in summer (Figure 6).

Figure 5. Representative chromatograms (at 310 nm) showing the phenylpropanoid profile of
individual tissues (adaxial epidermis—green; adaxial mesophyll—black; inner mesophyll—purple;
abaxial mesophyll—red; abaxial epidermis—yellow) of P. latifolia leaves sampled during the central
hours of the day in summer (22–23 July). Cross-sections were preliminarily observed under light to
determine the thickness of the adaxial epidermis, the mesophyll parenchyma (palisade and spongy)
and the abaxial epidermis. The analyses were conducted on longitudinal 25 mm2 leaf sections,
obtained by cryostat sectioning from two replicate specimens, each one consisting of 4–5 leaves.
Different leaftissue layers were obtained by cutting pieces at 40 µm depth from the upper surface
(adaxial epidermis), then down in three 120 µm steps, to obtain the adaxial, inner and abaxial
mesophyll, respectively. The remaining tissue consisted almost exclusively of the abaxial epidermis.

Epidermal flavonoids corresponded to 30% and 20% of the whole-leaf flavonoid
content in spring and summer leaves, respectively (Figure 6a,e). This is consistent with the
observation that the mesophyll flavonoids increased to greater extent (+138%, Figure 6b–d)
compared with the epidermal ones (+55%, Figure 6a,e) from spring to summer. While the
different flavonoids accumulated in the adaxial epidermis almost uniformly, irrespective of
the season (Figure 6a), quercetin-3-O- and luteolin-7-O-derivatives (gray and orange bars,
respectively) mostly accumulated in the mesophyll cells (contributing an average of 63% of
the whole-leaf flavonoid pool), particularly in summer leaves (69%, right panels). Luteolin-
4′-O-derivatives (yellow bars) contributed more substantially to the total flavonoids in the
adaxial epidermis (23%, Figure 6a), but much less in other leaf tissues (15% of Flavtot of
the mesophyll (Figure 6b–d) and 12% of the abaxial epidermis (Figure 6e). Kaempferol
and apigenin derivatives (pink bars) mostly occurred in the adaxial epidermis (20% of
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whole-leaf Flavtot, Figure 6a), also with a large content (14%) in abaxial epidermal cells
(Figure 6e). These compounds were present at very low concentrations in the mesophyll
tissues (5% of whole-leaf Flavtot, Figure 6b–d). Finally, caffeic acid derivatives (HCA,
blue bars) accumulated poorly in adaxial tissues (Figure 6a,b), whereas they were the
predominant phenylpropanoids detected in the abaxial epidermis in comparison with the
other phenylpropanoids (Figure 6e).

Figure 6. Content of phenylpropanoids (µmol tissue−1) in different tissues (different colored rect-
angles: (a), adaxial epidermis; (b), adaxial mesophyll; (c), inner mesophyll; (d), abaxial mesophyll;
(e), abaxial epidermis) of spring (left-hand bars) and summer (right-hand bars) leaves of P. latifolia.
Leaves were sampled during the central hours of the day (12:00–14:00 h) in spring (10–11 and
25–26 May) and summer (4–5 and 22–23 July). Analyses were conducted on two replicates for each
sampling date, each replicate consisting of 4–5 leaves. The concentration of metabolites (µmol g−1

DW) was multiplied by the DW of each tissue layer to calculate the tissue phenylpropanoid content
(µmol tissue−1). Data are reported as means ± SD (n = 4).

3. Discussion

The data of our study show that P. latifolia suffered from water stress not only sea-
sonally but also on a daily basis. Declines in both leaf Ψw and RWC from early morning
to midday resulted in significant reductions in net assimilation rates and, consequently,
in even greater declines in instantaneous radiation use efficiency. This was particularly
evident during summer, when plants suffered from the combined action of soil water
deficit and high temperatures. In other words, P. latifolia leaves suffered from excess light
stress during the central hours of the day, and the severity of this increased from spring
to summer. Here, we reason how seasonal and daily changes in the concentration and
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composition of photosynthetic and non-photosynthetic pigments may allow P. latifolia
leaves to avoid irreversible photodamage and hence to cope successfully with multiple
environmental pressures associated with the Mediterranean climate.

Firstly, we observed that chlorophylls declined from spring to summer and from
early morning to midday, thereby reducing the light absorption centers. This may have an
adaptive value for plants facing high solar radiation under warm and dry climates. [62].
In addition, the higher (+29%) Chla/Chlb ratios observed in summer leaves, particularly
during the central hours of the day (+37%), may also have an adaptive value under high
light stress conditions on both short- and long-term bases. In fact, higher Chla/Chlb ratios
increased the proportion of reaction to light-absorbing centers [16,63,64].

Secondly, the data of our study pointed out the key photoprotective role of carotenoids
not only on a daily but also on a seasonal basis. In detail, our findings strongly suggested
an antioxidant role of carotenoids in leaves suffering from the most severe drought stress.
In particular, we observed that VAZ Chltot

−1 exceeded 50 mmol mol−1. These values
are consistent with those of plants growing under full sunlight over the entire growing
season observed in previous studies [16,25,26,51,65,66]. This implies that a fraction of
VAZ was probably not bound to the light-harvesting chlorophyll–protein complexes and
hence was residing in other parts of the thylakoids [25–29]. This unbound pool of VAZ
increased greatly during the central hours of the day in summer leaves, mostly due to
the enhanced biosynthesis of zeaxanthin (Z). Summer leaves suffered from the severe
reduction in iRUE induced by drought stress, being exposed to severe photooxidative
stress during the central hours of the day. In addition, the morning-to-midday increase
in Z concentration (25 mmmol mol−1 Chltot on average) was not matched by a parallel
decrease (6 mmol mol−1Chltoton average) in violaxanthin (V) concentration but it was
parallel to the decrease in ß-carotene content. We argue that a fraction of the Z synthesized
from morning to midday was likely through the hydroxylation of ß-carotene [31–33], and
hence it was not involved in non-photochemical quenching. However, we cannot exclude
that the decrease in ß-carotene contents may have partially resulted from its oxidation by
singlet oxygen [22]. Zeaxanthin behaves as a chloroplast antioxidant (sensu Halliwell and
Gutteridge [67] and Havaux and Garcia-Plazaola [68]), primarily due to its ability to confer
rigidity to the thylakoid membranes [68–70] but also due to its capacity to quench singlet
oxygen [71,72]. In our study, this may have well limited lipid membrane peroxidation and
preserved chloroplasts from irreversible photooxidative damage in summer leaves, when
drought stress became particularly severe.

Finally, our study offers novel evidence of the daily and seasonal changes in the
biosynthesis of individual flavonoids, as well as of their tissue-specific distribution. The
large plasticity in flavonoid biosynthesis observed in both the short- and long-term, as well
as in the different leaf tissues, poses new questions that need attention, as outlined below.

The finding of the enhanced biosynthesis of flavonoids from spring to summer, when
drought stress increased because of reduced precipitation, is consistent with previous
studies [38,51,52,73,74] and is possibly related to the evergreen habit of P. latifolia [75].
Indeed, the high flavonoid content in summer may equip the severely drought-stressed
evergreen leaves with an effective photoprotective arsenal to cope with the excess light.
In fact, our study offers novel evidence that the spring-to-summer increment in flavonoid
content (~32 µmol g−1 DW) almost exclusively involved 3-O-quercetin (18.5 µmol g−1

DW) and 7-O-luteolin (11.5 µmol g−1 DW) derivatives. This led us to hypothesize that
these flavonoids, besides having limited the entry of shortwave solar radiation, might
also have scavenged the ROS generated by the decreased use of photosynthetic active
radiation for photosynthesis due to the severe drought [38,40,76,77]. The finding that the
spring-to-summer increases in the content of quercetin and luteolin glycosides mostly
regarded the mesophyll tissues adds further support to our idea. Indeed, there is relatively
old evidence that dihydroxy B-ring-substituted flavonoids are located not only in the
vacuole but also in the chloroplasts of the mesophyll cells in P. latifolia adapted to full
solar irradiance. Therefore, these compounds would be capable of scavenging H2O2 and
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singlet oxygen [14,38,41,78]. In agreement with our findings, Csepregi et al. [58] recently
observed a smaller ratio of epidermal flavonoids to those located in the rest of the leaf of
Vitis vinifera plants growing under non-irrigated field conditions. They suggest that these
phenolics, especially quercetin derivatives, acted mostly as ROS scavengers rather than as
UV attenuators [58].

The large fluctuation in the content of dihydroxy B-ring-substituted flavonoids on a
diurnal basis is intriguing but, at the same time, poses questions that merit deep attention.
Dawn-to-midday enhancements in flavonoid amounts, particularly in Que-3-O-glucoside,
have been previously observed by Barnes et al. [57]. However, in our study, these morning-
to-midday increases in the whole-leaf flavonoid content were strong, especially during
the summer period. We surmise that this was the result of the concomitant action of
multiple environmental stressors during this season and in the daytime, such as high
light irradiance, elevated air temperatures and water deficit. All these stressors could
enhance the biosynthesis of flavonoids, likely through ROS/redox modulation of the
transcription factors involved in regulating flavonoid biosynthesis [79–82]. Indeed, as
reported above, leaves suffered from severe light excess during the central hours of the day
(on average, iRUE decreased by 65%), particularly in summer (−70%), and the consequent
transient increase in ROS generation may have triggered the biosynthesis of flavonoids
with an effective antioxidant capacity [83,84]. In fact, H2O2, one of the major species of
ROS, has been proposed as a conductor of the daily changes in leaf antioxidant defense,
acting as a messenger molecule [58]. Thus, the sharp enhancement in quercetin and
luteolin derivatives from the early morning to the central hours of the day may have
functional antioxidant significance, especially considering that the activities of the key
antioxidant enzymes might have substantially declined with the severity of drought, as
already reported in a range of species [85,86]. In our study, summer leaves were severely
dehydrated at midday (RWC was 68% on average). As such, the leaf temperature (T) may
have greatly exceeded that of the air (32.4 ◦C on average) because of stomatal constraints.
This, in turn, may have led to enzyme inactivation [87–89], as already reported for the
diurnal variations in antioxidant enzyme activity in drought-stressed Platanus× acerifolia
and Fagus sylvatica plants [25,88]. Therefore, the mesophyll-located flavonoids, especially
quercetin-3-O- and luteolin-7-O-glucosides, may have complemented the activity of the
antioxidant enzymes to avoid irreversible photodamage during the hottest hours of the
day [25,90].

Additionally, it is interesting to note that despite having a luteolin aglycone, the
luteolin-4′-O-derivatives showed a completely distinct diurnal and seasonal pattern, as
well as a peculiar localization, when compared with those with the same aglycone but
with -7-O-glycolization. Lut-4′-O-gly showed low diurnal and even seasonal variations
(the opposite of Lut-7-O-gly derivatives) and contributed more substantially to the total
flavonoids in the adaxial epidermis. These results support our hypothesis, since due
to its substitution pattern with the sugar being linked to one of the catechol hydroxyls,
this flavonoid should contribute less as an antioxidant in the mesophyll cells during the
stress period.

The high daily turnover of quercetin and luteolin derivatives observed here poses the
question whether the flavonoids have been degraded because of the combined action of
high light and elevated leaf T [91] or have instead been oxidized by the excess of ROS (or
through electron donation to vacuolar peroxidase)and not fully recycled to their reduced
forms [77,92,93]. Addressing this complex issue requires further investigations aimed
at exploring changes in both the sub-cellular distribution of ascorbate (and glutathione
as well) [94,95] and the activity of mono-dehydroascorbate [93] in leaves facing severe
drought stress.

The photoprotective roles of monohydroxy B-ring-substituted flavones and flavonols,
and of caffeic acid derivatives (HCA), are apparently of minor significance. As noted
by Gould [96] and by Agati and Tattini [17], monohydroxy B-ring-substituted flavonoids
may be constitutive effective shields against UV radiation, whereas HCAs are mostly
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devoted to absorbing wavelengths over the UV-B portion. This is of high adaptive value
against severe solar radiation. The preferential accumulation of HCA in the inner and
abaxial mesophyll and in the abaxial epidermis is not surprising. The location of these
compounds is consistent with the notion of strong competition between the early and late
branch pathways of the general phenylpropanoid metabolism [97,98], with the flavonoid
metabolism being favored under the most severe photooxidative stress conditions [90]. We
surmise that the preferential accumulation of flavonoids, especially on the adaxial side,
might be also related to the adaxial localization of the palisade parenchyma on dorsiventral
leaves, which has a denser occurrence of chloroplasts, structures which are greatly exposed
to the imbalance of ROS production and ROS scavenging [99].

Finally, we are aware that our analysis of phenylpropanoids targeted to just caf-
feic acid and flavonoid derivatives might have underestimated the functional roles of
other minor phenolics in the responses of P. latifolia to drought stress of increasing sever-
ity. On the other hand, it has long been known that under the severe light excess im-
posed by the combined action of high solar irradiance and water deficit, carbon skele-
tons and energy are almost exclusively devoted to the biosynthesis of flavonoids, par-
ticularly flavonols [9,14,17,37,41,42,97]. Nonetheless, a complete analysis of the huge
number of phenolics present in leaf tissues merits future investigation using untargeted
metabolomic tools.

In conclusion, our investigation offered compelling evidence of the prominent role of
photosynthetic and non-photosynthetic pigments in protecting P. latifolia leaves against
photodamage at both the diurnal and seasonal timescales, thus helping this plant to cope
successfully with the environmental pressures associated with the Mediterranean climate.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

The study was conducted on plants growing on seashore dunes at Grosseto (Tuscany,
Italy), with in situ measurements and sampling conducted in 2 seasons: spring (11–12
and 25–26 May) and summer (4–5 and 22–23 July) in 2019. Physiological measurements
and collection of biochemical samples were carried out at 4different hours of the day: at
08:00–09:00 (named here as 8 h), 12:00–13:00 (named here as 12 h), 14:30–15:30 (named here
as 15 h) and 17:30–18:30 (named here as 18 h) hours. Meteorological data were recorded at
the weather station of the Institute of Biometeorology of the National Research Council of
Italy, located 15 km away from the experimental site. Average min/max air temperatures
(T) in May were 10.7/21.9 ◦C and the cumulative precipitation was 100 mm; the average
min/max temperatures of 14.5/28.8 ◦C were recorded in June with no precipitation; in July,
the average min/max temperatures were 17.7/ 32.4 ◦C, also with no prior precipitation
measurements. Daily global irradiance was, on average, 24.2 MJ m−2 in May, 29.7 MJ m−2

in June and 31.7 MJ m−2 in July. All measurements and sampling were conducted on
clear days.

4.2. Water Relations and Gas Exchange Measurements

Relative water content (RWC) and leaf water potential (Ψw) were measured on fully
developed leaves (details of the sample size and the experimental plan are reported in
Section 4.4). In particular, for RWC determination, leaves were wrapped in parafilm and
transferred to the laboratory in a fridge bag to measure leaf fresh weight (FW). They were
then hydrated until saturation for 48 h in darkness to determine the turgid weight (TW).
The dry weight (DW) of the leaves was obtained after drying them for 48 h at 80 ◦C. RWC
was calculated as follows (Equation (1)):

RWC (%) = (FW − DW)/(TW − DW) (1)

Leaf water potential (Ψw) was measured using a Scholander-type pressure chamber
(PMS Instruments, Corvallis, OR, USA). Gas exchange measurements were acquired using
a LI-6400 portable photosynthesis system (Li-Cor, Lincoln, NE, USA) equipped with a
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cuvette of 2 cm2, operating under ambient CO2 and environmental photosynthetic photon
flux density. Photosynthesis (AN) and instantaneous radiation use efficiency (iRUE) were
calculated using the LI-6400 software.

4.3. Analysis of Photosynthetic Pigments and Phenylpropanoids

Individual carotenoids and chlorophylls were analyzed by extraction from fresh leaf
material (approx. 400 mg) with 2 × 4 mL of pure acetone (added to 0.8 g L−1 calcium
carbonate). Aliquots (15 µL) were injected into a Perkin Elmer Flexar liquid chromato-
graph equipped with a quaternary 200Q/410 pump and an LC 200 photodiode array
detector (DAD) (all from Perkin Elmer, Bradford, CT, USA). The pigments were separated
using a 250 × 4.6 mm Zorbax SB-C18 (5 µm) column (Agilent Italia, Milan, Italy), kept
at 28 ◦C. The column was eluted for 20 min with a linear gradient solvent system at a
flow rate of 1.2 mL min−1, from 100% CH3CN/MeOH (95/5 v/v, with the addition of
0.05% triethylamine) to 100% MeOH/ethyl acetate (68/32 v/v). Individual pigments were
identified through a comparison of their retention times and UVspectral features with
those of authentic standards. Individual carotenoids and chlorophylls were quantified
using the calibration curves of authenticated standards from Extrasynthese (Lyon-Nord,
Genay, France) and Sigma Aldrich (Milan, Italy).

The whole-leaf concentration of the major phenylpropanoids was analyzed by extrac-
tion from fresh leaves (250 mg) with 4 × 4 mL 75% EtOH (pH 2.5, achieved by HCOOH
addition). The supernatant was partitioned with 4 × 4 mL of n-hexane and reduced to
dryness, and the residue was resuspended in 1 mL MeOH/H2O (90/10 v/v). Aliquots
(10 µL) were injected in the same HPLC-DAD equipment as reported above. Individual
metabolites were separated using a 150 × 4.6 mm (5 µm particle size) Sun Fire column
(Waters Italia, Milan, Italy), operating at 30 ◦C, at a flow rate of 1 mL min−1. The mobile
phases were: (A) Milli-Q H2O (pH 2.5, acidified by H3PO4 addition)/CH3CN (90/10 v/v)
and (B) Milli-Q H2O (pH 2.5, acidified by H3PO4 addition)/CH3CN (10/90 v/v), eluted
in a linear gradient program from 100% A to 100% B during a 45 min run. The major
phenylpropanoids were identified using the retention times and UV spectral characteristics
of authentic standards (all from Extrasynthese, Lyon-Nord, Genay, France). Our analysis
identified two derivatives of caffeic acids (echinacoside and verbascoside in the molar ratio
of 15–20/80–85, irrespective of the season and hour of the day, referred as to HCA), and the
glycosides of five flavonoid aglycones (quercetin, luteolin 7-O, luteolin 4′-O, kaempferol
and apigenin). The content of the different phenylpropanoids is reported in µmol g−1 DW.

Qualitative and quantitative analyses of caffeic acid and flavonoid derivativeswere
also conducted in different tissues of leaves sampled during the central hours of the day
(12.00–14:00 h) in both (25–26) May and (22–23) July, using the method of Alenius et al. [100].
Cross-sections were preliminarily observed under a light microscope (Zeiss Axio-Phot,
Carl Zeiss, Jena, Germany) to determine the thickness of the adaxial epidermis, the meso-
phyll parenchyma (palisade and spongy) and the abaxial epidermis. The analyses were
conducted on longitudinal 25 mm2 leaf sections, obtained by cryostatsectioning (Leica Cry-
ocut 1800, Leica, Wetzlar, Germany, set at −25 ◦C) from two replicate specimens for each
sampling date, each one consisting of 4–5 leaves. Different leaf tissue layers were obtained
by cutting pieces at 40 µm depth from the upper surface (adaxial epidermis), then down in
three 120 µm steps to obtain the adaxial, inner and abaxial mesophyll, respectively (more
details can be observed in Figure 6). The remaining tissue consisted almost exclusively of
abaxial epidermis. The samples were immediately placed in a centrifuge tube containing
5 mL of 75% EtOH/H2O adjusted to pH 2.5 with HCOOH (the phenylpropanoid extrac-
tion solution) and stored at 4 ◦C until the HPLC-DAD analysis, which was performed
as reported above for the whole-leaf phenylpropanoids. The concentration of individual
metabolites (in µmol g−1 DW) was finally multiplied by the DW of each tissue layer to
calculate the tissue’s phenylpropanoid content (in µmol tissue−1).
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4.4. Experimental Design and Statistical Analysis

The experimental design was completely random, performed on eight individuals of
P. latifolia selected from a group of 30 plants distributed over a 300 m2 area, 200 m away
from the sea. Each plant was tagged, and fully developed leaves (from the fiftht or sixth
nodes, counting from the shoot apex) were sampled for both physiological measurements
and biochemical analyses. In particular, for each hour of the day, water relations and gas
exchange were measured on two leaves per plant and combined to make an individual
replicate (n = 8), whereas, for biochemical analyses, four leaves were pooled together
from six different plants (n = 6). The content of individual phenylpropanoids in different
leaf tissues was measured on four plants (n = 4), using the same leaves collected for the
biochemical analyses at midday. Data were analyzed using a two-way ANOVA (SPSS
v.20; IBM, Chicago, IL, USA), with season and hour of the day as factors, and consid-
ering their interaction (differences were considered significant at p ≤ 0.05). The graphs
were constructed using SigmaPlot Systatsoftware (v.12.5, SystatSoftware, Inc., San Jose,
CA, USA).
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