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Abstract: Iron oxide nanoparticles and single domain antibodies from camelids (VHHs) have been
increasingly recognized for their potential uses for medical diagnosis and treatment. However, there
have been relatively few detailed characterizations of their pharmacokinetics (PK). The aim of this
study was to develop imaging methods and pharmacokinetic models to aid the future development
of a novel family of brain MRI molecular contrast agents. An efficient near-infrared (NIR) imaging
method was established to monitor VHH and VHH conjugated nanoparticle kinetics in mice using a
hybrid approach: kinetics in blood were assessed by direct sampling, and kinetics in kidney, liver,
and brain were assessed by serial in vivo NIR imaging. These studies were performed under “basal”
circumstances in which the VHH constructs and VHH-conjugated nanoparticles do not substantially
interact with targets nor cross the blood brain barrier. Using this approach, we constructed a five-
compartment PK model that fits the data well for single VHHs, engineered VHH trimers, and iron
oxide nanoparticles conjugated to VHH trimers. The establishment of the feasibility of these methods
lays a foundation for future PK studies of candidate brain MRI molecular contrast agents.

Keywords: VHH; nanoparticles; near-infrared imaging; biodistribution; pharmacokinetic modeling

1. Introduction

Neurological disorders affect millions of people worldwide, but at present our ability
to assess these disorders objectively and quantitatively is limited [1]. Improvements in the
assessment of neurological disorders would allow for disease progression monitoring and
provide direct assessment of candidate therapeutics [2–5]. The long-term goal of this project
is to develop MRI molecular contrast agents that will cross the blood brain barrier (BBB)
and label relevant extracellular and intracellular biomarkers in the brain parenchyma. In
the process of discovering and optimizing necessary components of these contrast agents,
we have synthesized nanoparticles that consist of an iron oxide nanoparticle (IONP) core
conjugated with Polyethylene glycol (PEG) plus single domain antibodies from camelids
(VHH) for specific targeting.

IONPs have been widely used for medical applications including cancer diagnosis
and treatment [6,7], treatment of iron deficiency anemia [6], enhanced blood pool and
tumor MRI imaging [8,9], MRI molecular imaging [10–13], and magnetic resonance angiog-
raphy (MRA) [14]. Sillerud et al. synthesized a novel MRI contrast agent by conjugating
superparamagnetic oxide nanoparticles (SPIONs) with anti-amyloid-beta precursor protein
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(AβPP) antibodies to specifically target amyloid-beta plaques [15]. Iron oxide nanoparticles
have also been functionalized with single-chain antibodies (scFv) against activated platelets
for T1 and T2-weighted MRI of thrombi [10]. IONPs are considered relatively safe and
do not induce cytotoxicity below 100 µg/mL in vitro [16]. MRI Molecular contrast agents
based on iron oxide nanoparticles have good biocompatibility, at least in part because
human blood and tissues are naturally rich in iron [17,18]. The FDA has approved an
IONP, Ferumoxytol, for treatment of iron-deficiency anemia in patients with chronic kidney
disease [19]. Ferumoxytol is also used off-label as a contrast agent for MR angiography
in patients with impaired renal function as well [20] and no major safety concerns have
been reported. In a widely cited publication, Kim et al. [9] demonstrated that homogenous
size iron oxide nanoparticle cores for MR imaging could be synthesized at large scales.
Their extremely small 3 nm iron oxide nanoparticles (ESIONs) were shown to have a high
r1 relaxivity of 4.78 mM−1s−1 at 3T and low r2/r1 ratio of 6.12, which maximizes the T1
contrast effect. ESIONs were tested using in vivo MRI. After tail vein injection of ESION
(2.5 mg Fe/kg), blood vessels were brightened on the T1-weighted MR images, confirming
that ESIONs can enhance T1 relaxation and be used as a T1 MRI contrast agent. The iron
oxide core of this prototype nanoparticle contrast agent was coated with PEG [21]. PEG
is a common coating material that is used to prevent nanoparticle fouling in blood by
reducing protein binding and to prolong circulation times by reducing clearance by the
reticuloendothelial system (RES) [22].

Camelids, which include llamas, alpacas, and camels, produce functional antibodies
devoid of light chains called heavy chain-only antibodies (HCAbs) [23,24]. The heavy
chain of this kind of antibody is folded into three domains: the N-terminal domain that
is variable in sequence, followed by a hinge region and two constant domains. HCAbs
recognize their cognate antigen by one single domain, the VHH. VHHs have a very
small size compared to other antibodies or functional antibody fragments. The molecular
weight of a VHH is approximately 15 kDa, which is around 1/10 of a conventional IgG’s
molecular weight, and about 50% of that of a single chain variable fragment (ScFv) [25,26].
VHHs have been used for in vivo imaging and therapeutics [25,26]. For example, Li et al.
labeled anti-Aβ42 and anti-Tau VHHs with Alexa488 fluorescent dye and visualized
extracellular Aβ and intracellular neurofibrillary tangles using 2-photon-microscopy [27].
Vandesquille et al. conjugated a VHH (R3VQ)-targeting Aß with gadolinium to allow
MRI detection of Aβ in post-mortem mouse brain [28]. Rincon et al. used VHHs to
lower Aβ levels with AAV-based delivery of anti-BACE1 VHH into the CNS of a cerebral
amyloidosis mouse model [29]. VHHs against SARS-CoV-2, which could bind spike
protein receptor binding domain, were recently developed as potential therapeutics for
coronavirus outbreaks [30–33]. A humanized divalent VHH targeting von Willebrand factor
(Caplacizumab) was recently approved by the FDA for treatment of acquired thrombotic
thrombocytopenic purpura [34,35]. Importantly, VHHs show low immunogenicity risk
profile before humanization [36]. For human therapeutic purposes, VHHs have been
humanized to further lower the risk of immunogenicity [37]. For example, the safety of
Caplacizumab has generally been good [38].

Pharmacokinetics (PK) is the study of drug absorption, distribution, metabolism,
and excretion [39]. Pharmacokinetic and biodistribution characteristics are important
parameters to consider when designing and testing novel nanoparticles to achieve an
appropriate level of nanoparticles in the target tissue site. Nanoparticles with either
extremely short or extremely long circulation time are generally considered non-optimal;
nanoparticles with extremely short circulation time may not have enough time to penetrate
target tissue sites, while nanoparticles with extremely long circulation time could cause
off-target tissue toxicity and reduce signal-to-noise ratio due to background signal [40–43].
Thus, it is helpful to measure PK characteristics at an early phase in the project development
so that this information can be used to optimize nanoparticle design.

Multiple approaches have been used to acquire PK and biodistribution data from
in vivo experiments. Plasma and tissue sampling followed by inductively coupled plasma
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mass spectrometry (ICP-MS) are often used for in vivo distribution and PK studies. In
prominent examples of this approach, Lankveld et al. assessed silver nanoparticles using
ICP-MS to determine the silver content in organs for their tissue distribution study [44].
Xue et al. also used ICP-MS to study the tissue distribution of iron oxide nanoparticles
in mice [45]. This approach, however, is invasive and requires sacrificing animals at
multiple time points, which introduces inter-animal variations in data. Instead, various
non-invasive imaging methods including PET, SPECT/CT, and MRI have been used to
help trace distribution and clearance patterns [46–48]. While MRI may be an imaging
modality of choice for diagnostic studies, it is expensive, requires lengthy anesthesia
times for animals, and has relatively poor time resolution for use in PK studies. PET
and SPECT are also relatively expensive imaging methods and raise radiation safety
concerns. Near infrared (NIR) imaging has been proposed as an alternative method to
study pharmacokinetics and tissue distribution to facilitate nanoparticle development [40].
Compared with the aforementioned methods, NIR is a less-expensive, faster, and safer
method, which can be used to investigate nanoparticles’ in vivo behavior in appropriate
small animal models [40]. PK models use a system of mathematical equations to describe
drug pharmacokinetics. In this study, the PK model was used to describe the distribution
and excretion of VHHs and nanoparticles in mice. We used a common type of PK modeling
called compartment modeling, which is based on the simplifying assumption that each
‘compartment’ (e.g., kidney, liver) is homogenous. Compartment models have been widely
used for oncology, disease diagnosis, and imaging studies [49,50]. This paper combined
near infrared imaging and multi-compartment model to study the pharmacokinetics of
VHHs and IONPs in vivo.

This study establishes a foundation to understand the PK of VHHs and IONPs. In this
study, IONPs conjugated to VHHs and labeled with a NIR fluorescent dye were injected
intravenously (IV) into mice. The PKs of VHHs alone and VHH-conjugated IONPs were
monitored using a high resolution NIR scanner. Fluorescence signal change in mouse brain,
kidney, and liver were imaged over a period of 2 days post injection to qualitatively and
quantitatively understand the PK of our nanoparticles. A five-compartment PK model
was constructed to describe the relationship between in vivo PK and hydrodynamic size
following single bolus IV injection. It was found that increasing VHH and nanoparticle size
results in a switch from kidney-dominant clearance to liver-dominant clearance, which is
consistent with past findings. The use of mathematical PK models provides a quantitative
method to study the relationship between PK parameters and nanoparticle/VHH sizes
and can be used to explore the in vivo pharmacokinetics and distribution of other VHHs
and nanoparticles for future studies. This PK model will be incorporated and modified for
describing novel VHH-IONP in vivo PK characteristics during the ongoing development
of future brain MRI molecular contrast agents.

2. Results
2.1. VHH and VHH-Conjugated Nanoparticle Characterization

VHH singlet and VHH triplet products had characteristics consistent with expectation.
Twenty-two 1 mL elution fractions were collected from a Superdex 75 size exclusion
chromatography column. Peak fractions of purified VHH singlet and VHH triplet were
collected for FNIR conjugation. VHH singlet peaked at fraction 11 and VHH triplet peaked
at fraction 9 (Figure S1a). Based on the protein size standards, VHH singlet and VHH
triplet eluted from the columns as expected based on their calculated sizes of 12.7 kDa and
36.1 kDa, respectively.

Based on the dynamic light scattering (DLS) data, the IONPPEG2000 particles had a
hydrodynamic radius of 6.4–6.7 nm before and 7.0–7.6 nm after conjugation with VHH
triplet (Figure S1c). The 9th and 10th fractions from a Superose 6 Increase SEC column
(optimized for larger particles) were used for IV injection and PK studies (Figure S1b). The
IONPPEG2000/750 VHH triplet constructs had hydrodynamic sizes of 8.3–9.1 nm (batch 1)
and 8.0–9.1 nm (batch 2) before, and 11.9–13.9 nm (batch 1) and 12.2–14.5 nm (batch 2) after
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conjugation with VHH triplet. The fifth, sixth, and seventh fractions from batch 1 and the
sixth and seventh fractions from batch 2 from the Superose 6 Increase column were used
for IV injection and PK studies (Figure S1b).

2.2. In Vivo Pharmacokinetic Study Using NIR

We optimized methods for NIR-based pharmacokinetic studies and then used these
methods to acquire consistent in vivo pharmacokinetic data in mice. The NIR fluorescence
images acquired using the Pearl system showed very low background fluorescence signal
at 800 nm, confirming that in the NIR, the intrinsic autofluorescence at this wavelength of
light in the animals was negligible. Autofluorescence at 700 nm was higher, so we focused
on 800 nm channel measurements for these experiments (Figure S2). It has been reported
that the use of different NIR dyes can affect biodistribution of NIR-labeled VHHs [51] and
monoclonal antibodies [52]. We tested IR-680RD dye (IRDye®, Licor, Lincoln, NE, USA),
IR-800CW dye (IRDye®, Licor, Lincoln, NE, USA), and FNIR dye-conjugated nanoparticles
and confirmed that the dyes can affect the apparent biodistribution (Figure S3). Mice
had lower background autofluorescence at 800 nm channel than the 700 nm channel, so
IR-800CW dye and FNIR dye were preferred over IR-680RD dye (Figure S3a). Comparing
the IR-800CW dye and the FNIR dye, the signal quality and consistency was higher for the
FNIR dye (Figure S3b,c). The stability of FNIR dye was tested by conjugating FNIR dye
with VHH singlet. FNIR dye presented very good NIR signal stability (Figure S4a) and the
VHH singlet-FNIR conjugate was stable in size over 14 days (Figure S4b).

NIR images of in vivo mice injected with four different FNIR dye conjugates (two
VHHs and two IONPs) showed that the conjugates had different biodistributions in brain,
kidney, and liver and were cleared from mice at different rates (Figure 1).
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Figure 1. Representative in vivo serial fluorescence images and region of interest (ROI) analysis of singlet domain antibodies
(VHH) singlet (a) and iron oxide nanoparticlePEG2000/750 (IONPPEG2000/750) VHH triplet (b). ROIs were drawn to track the
fluorescence signal change of major ROIs including kidney and brain (prone position), left front paw, and liver (supine
image) over time. Scale bar represents near-infrared (NIR) image intensity measured by Pearl. (a) In vivo serial fluorescence
prone and supine position images before and 2 min, 1 h, 2 h, 4 h, 8 h, 1 day, and 2 days after IV bolus injection of VHH
singlet. (b) In vivo serial fluorescence prone and supine position images before and 2 min, 1 h, 2 h, 4 h, 8 h, 1 day, and
2 days after IV bolus injection of IONPPEG2000/750 VHH triplet.
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Regions of interest (ROIs) of major organs including brain, kidney, and liver were
drawn on the images acquired before, 2 min, 1 h, 2 h, 4 h, 8 h, 1 day, and 2 days after IV
injection at both prone and supine positions of mice (Figure 1a for VHH singlet, Figure 1b
for IONPPEG2000/750 VHH triplet). The reliability of ROI drawing method was calculated
on five representative mice injected with VHH singlet (Figure S5). ROIs were drawn on
the images two times on 2 different days. The Pearson correlation of the results from
the two ROI drawings was very close to 1, indicating almost perfect reliability of the
ROI drawing method. The fluorescence intensities of each organ were measured for PK
analysis. Kidney intensities were multiplied by two to represent both kidneys. To analyze
the relative NIR signal changes across mice injected with different FNIR dye conjugates,
which had different absolute NIR intensities, the main ROI fluorescence signals were
normalized using left front paw signals at 2 min post injection as internal controls values.
We found this approach to be more reliable than using intrinsic fluorescence of the injected
material or local tail fluorescence values. For VHH singlet, the pharmacokinetic plots of
kidney and liver showed that kidneys and liver had similar uptake, but kidneys had much
slower fluorescence intensity decrease rate than liver, indicating that kidneys were the
major organ for VHH singlet clearance (Figure 2a). For VHH triplet, the pharmacokinetic
plots of kidney and liver showed that kidneys and liver had similar uptake and clearance
rates, indicating that kidneys and liver both contribute to the clearance (Figure 2b). For
IONPPEG2000 VHH triplet and IONPPEG2000/750 VHH triplet, the pharmacokinetic plots
of kidney and liver showed that liver had much larger uptake of nanoparticles than
kidneys, indicating that liver was the main organ for the IONP-VHH conjugate clearance
(Figure 2c,d). There were only modest differences in kinetics between the two different
PEG coatings that were used to make the IONPs water soluble and serve as linkers for
VHH conjugations. Particles coated with PEG2000 vs. particles coated with a 1:1 ratio
of PEG2000 to PEG750 had similar kinetics with predominant liver uptake and biphasic
clearance from the brain compartment.

The relationship between dose and kinetics was also explored using VHH triplet as
an example (Figure 3). In this experiment, a higher dose VHH triplet at a concentration of
24.23 µM was intravenously injected into six mice and NIR images were taken at the same
time points as in other experiments. Lower dose (4.75 µM) and higher dose (24.23 µM,
~5x lower dose) VHH triplet showed similar signal kinetics over all compartments. Higher
dose and lower dose VHH triplet had very similar calculated kidney ratios and liver ratios,
indicating dose-linearity of kinetics for VHH triplet.

All mice injected with VHH singlet, VHH triplet, IONPPEG2000VHH triplet, and
IONPPEG2000/750 VHH triplet appeared healthy. No overt behavioral abnormalities were
noted and veterinary intervention was not required.

2.3. Blood Clearance Measured by NIR

A limitation of the NIR fluorescence imaging approach was that we were unable to
consistently assess the PK in blood. We initially tested the assumption that PK in peripheral
tissues such as paw and tail would reflect PK in blood, but this turned out not to be correct;
clearance from blood was substantially faster than peripheral tissues such as paw. Signal
in ROIs containing heart and tongue muscle were too low to use for consistent model
fitting [47,48] (Figure 1). Therefore, we adopted a hybrid approach and measured PK in
blood by direct sampling of blood from separate groups of mice sacrificed at multiple time
points. Blood was sampled at 1 min, 5 min, 10 min, 15 min, 30 min, and 1 h after IV injection
and quantified using ROIs drawn on the NIR images of the ex vivo blood (Figure 4).

Then, the blood clearance curves were fitted using a single exponential equation
(Figure 5). The NIR fluorescence images of ex vivo blood indicated fast blood clearance
rate of VHHs and slower rate of VHH-IONP. Most of the materials were cleared out of the
blood within the first 1 h post injection. The fitted half-lives were 7.09 min, 2.86 min, and
1.94 min for IONPPEG2000 VHH triplet, VHH triplet, and VHH singlet respectively.
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Figure 5. Blood clearance data and single exponential fitting. The NIR signals of VHH singlet, VHH
triplet, and IONPPEG2000 VHH triplet in mouse blood after IV bolus injection. The NIR signals were
measured at 1 min, 5 min, 10 min, 15 min, 30 min, and 1 h post injection for VHH singlet and VHH
triplet. The NIR signals were measured at 1 min, 5 min, 15 min, 30 min, and 1 h post injection
for IONPPEG2000 VHH triplet. The NIR blood signals were normalized to signals at 1 min post IV
injection and fitted using the single exponential equation y = a ∗ e−

x
τ . The time constant τ best

fit values were 2.80 min, 4.13 min, and 10.24 min for VHH singlet, VHH triplet, and IONPPEG2000

VHH triplet.

2.4. Mathematical Modeling

This mathematical PK model described the in vivo PK of FNIR-VHHs and FNIR-IONP-
VHHs by segmenting the body into five main compartments and the five compartments
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were related through mass transfer (Figure 6). X1, X2, X3, X4, and X5 were the amounts
of conjugates in blood, kidney, liver, brain 1, and brain 2 compartments. k12, k21, k13,
k31, k14, and k41 were the forward and reverse first-order transfer rate constants for
the intercompartment change between blood compartment and kidney, liver, and brain
compartments. k45 and k54 were the forward and reverse first-order transfer rate constants
for intercompartment change between brain 1 and brain 2 compartments. K10 was the
first-order rate constant for clearance. The initial condition of blood compartment was used
to describe the bolus IV injection to the blood compartment and set to be the normalized
conjugate fluorescence intensity (normalized by left front paw signal intensity). The initial
conditions of kidney, liver, paw, and brain compartments were set to be 0, based on the
assumption that the nanoparticles/VHHs enter these organs only through the blood. The
five ordinary differential equations (ODEs) were established to describe the mass transfer
of VHHs/IONPs between the five compartments and their clearance.

dX1
dt

= −(k12 + k13 + k14 + k10)X1 + k21X2 + k31X3 + k41X4 (1)

dX2
dt

= −k21X2 + k12X1 (2)

dX3
dt

= −k31X3 + k13X1 (3)

dX4
dt

= −(k41 + k45)X4 + k14X1 + k54X5 (4)

dX5
dt

= −k54X5 + k45X4 (5)Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 6. Schematic graph for the five-compartment mathematical model. This schematic graph de-
scribes the in vivo kinetics of VHHs/IONPs, including uptake, clearance and intercompartment ex-
changes. This model is characterized by a system of five ordinary differential equations (ODEs). k12, 
k21, k13, k31, k14, and k41 are the forward and reverse first-order transfer rate constants for the 
intercompartment change between blood compartment and kidney, liver, and brain compartments. 
k45 and k54 are the forward and reverse first-order transfer rate constants for intercompartment 
change between brain 1 and brain 2 compartments. k10 is the first-order rate constant for clearance 
from blood. 

The normalized averaged PK data were fitted using the five-compartment model. 
Figure 7 and Table 1 show the optimal model fitting for the two VHH constructs and the 
two VHH conjugated IONPs. The fitting corresponded well with the normalized data. A 
four-compartment model with only one brain compartment was tested first (Figure S6). 
However, with only one brain compartment, the fitting did not match the trend of brain 
signal change as well (Figures S7, and S8). A second brain compartment was added to 
better fit the brain signal change (Figures 6 and 7). Small sample-corrected Akaike Infor-
mation criteria (AICc) values were −35.90, −16.85, −20.47, and −41.29 for four compartment 
fitting and −41.59, −22.62, −27.48, −39.09 for five-compartment model fitting of VHH sin-
glet, VHH triplet, IONPPEG2000 VHH triplet, and IONPPEG2000/750 VHH triplet respectively. 
Because models with lower AIC values are preferred, the five-compartment model was 
selected. No additional kidney or liver compartments were added because the benefit in 
terms of fitting was limited, and not justified based on the increased complexity of the 
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ing direct clearance from kidney (k20) or liver (k30) in terms of model fitting, and these 
rate constants could not be independently constrained by the acquired data. Therefore, 
these kinetic parameters were not included in the final models. For VHHs/nanoparticles 
that do not appreciably cross the BBB, PK of paw and brain compartments were similar 
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Figure 6. Schematic graph for the five-compartment mathematical model. This schematic graph describes the in vivo
kinetics of VHHs/IONPs, including uptake, clearance and intercompartment exchanges. This model is characterized
by a system of five ordinary differential equations (ODEs). k12, k21, k13, k31, k14, and k41 are the forward and reverse
first-order transfer rate constants for the intercompartment change between blood compartment and kidney, liver, and brain
compartments. k45 and k54 are the forward and reverse first-order transfer rate constants for intercompartment change
between brain 1 and brain 2 compartments. k10 is the first-order rate constant for clearance from blood.

The normalized averaged PK data were fitted using the five-compartment model.
Figure 7 and Table 1 show the optimal model fitting for the two VHH constructs and the
two VHH conjugated IONPs. The fitting corresponded well with the normalized data. A
four-compartment model with only one brain compartment was tested first (Figure S6).
However, with only one brain compartment, the fitting did not match the trend of brain
signal change as well (Figures S7, and S8). A second brain compartment was added to better
fit the brain signal change (Figures 6 and 7). Small sample-corrected Akaike Information
criteria (AICc) values were −35.90, −16.85, −20.47, and −41.29 for four compartment fitting
and −41.59, −22.62, −27.48, −39.09 for five-compartment model fitting of VHH singlet,
VHH triplet, IONPPEG2000 VHH triplet, and IONPPEG2000/750 VHH triplet respectively.
Because models with lower AIC values are preferred, the five-compartment model was
selected. No additional kidney or liver compartments were added because the benefit in
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terms of fitting was limited, and not justified based on the increased complexity of the
model. Similarly, there was no additional benefits of adding kinetic parameters representing
direct clearance from kidney (k20) or liver (k30) in terms of model fitting, and these rate
constants could not be independently constrained by the acquired data. Therefore, these
kinetic parameters were not included in the final models. For VHHs/nanoparticles that do
not appreciably cross the BBB, PK of paw and brain compartments were similar (Figure S9),
so the paw compartment was not included in the model separately. Table 1 shows the
optimal sets of fitting parameters for the two VHHs and the two IONPs. Table 2 shows the
r2 values and calculated kidney and liver uptake/clearance ratios, which were calculated
by Equations (6) and (7).

Kidney ratio =
k12

k21
(6)

Liver ratio =
k13

k31
(7)
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Table 1. Five-compartment model-fitted parameters for VHH singlet, VHH triplet, IONPPEG2000

VHH triplet, and IONPPEG2000/750 VHH triplet.

k12 k21 k13 k31 k14 k41 k45 k54 k10

VHH singlet 0.02060 0.0018 0.0317 0.0502 0.0302 0.0847 0.3678 0.9212 0.3000
VHH triplet 0.0173 0.0007 0.0225 0.0006 0.0232 0.0625 0.0027 0.0010 0.2000
IONPPEG2000
VHH triplet 0.0156 0.0019 0.0466 0.0019 0.0063 0.0058 7.51E-05 0.9870 0.0300

IONPPEG2000/750
VHH triplet 0.0155 0.0032 0.0836 0.0024 0.0072 0.0063 0.0011 0.0050 0.0150

Comparing the values of kidney ratio and liver ratio, the kidney intake/clearance
ratio was much larger than liver ratio for VHH singlet, the kidney and liver ratios were
similar for VHH triplet, and the liver ratio was much larger than kidney ratio for both
VHH-conjugated nanoparticles (Table 2). As expected, as the size increased from VHH
singlet to IONPPEG2000/750 VHH triplet, the fitted liver ratio increased compared with
the kidney ratio, replacing the kidney ratio’s dominant position. This is consistent with
previous findings that when molecular size is below the renal filtration, molecules are
mostly filtered out of the body through the kidneys. As molecular size increases and passes
the renal filtration cutoff, liver plays a more substantial role in clearance.

Table 2. Five-compartment model fitting r2 values of blood, kidney, liver, and brain ROIs. Kidney
and liver uptake/clearance ratios are also calculated for each molecule.

r2 Blood r2 Kidney r2 Liver r2 Brain Kidney Ratio Liver Ratio

VHH singlet 0.9888 0.9718 0.9802 0.9942 11.2928 0.6317
VHH triplet 0.9803 0.9829 0.7086 0.9975 25.7424 40.8006
IONPPEG2000
VHH triplet 0.9949 0.9918 0.9592 0.1556 8.38232 24.1638

IONPPEG2000/750
VHH triplet 0.9749 0.9831 0.9150 0.2268 4.8673 35.4626

2.5. Multidose Experiment and Model Fitting

As a test of the accuracy of the model, we used single dose-based kinetic parameters
to predict the kinetics after multiple doses. An experiment with both single-dose and
multidose IV injection was performed using VHH triplet. Single dose PK measurements
were performed by intravenously injecting 0.1 mL VHH triplet into three mice and an
additional group of five mice received three doses of the same 0.1 mL VHH triplet with
time intervals of 5 min between doses. The normalized averaged single dose mice data
was fitted using the five-compartment model. The five-compartment model fitted the
single dose data well, with r2 values of 0.9947, 0.9747, 0.5998, and 0.9995 for blood, kidney,
liver, and brain compartment, respectively. Then the predicted multidose kinetics were
calculated based on the model with no additional free parameters through superposition.
Finally, the single dose model-based predicted multidose kinetics were compared with the
measured multidose kinetics (Figure 8a). The model-based predicted multidose kinetics
closely followed the trend of the experimentally measured multidose kinetics (Figure 8b).
Thus, the multidose data was moderately well fit by the model based on PK parameters
derived from the single dose data, with r2 values of 0.5529, 0.4701, and 0.1855 for the kidney,
liver, and brain compartments.
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Figure 8. Prediction of multidose regimen using five-compartment model fitted using parameters from single-dose
experiment. (a) NIR signal change over time after single IV bolus injection (n = 3 mice, blue dot) and the fitting solution
(red line) calculated based on the five-compartment model. (b) Experimentally measured fluorescence signal (n = 5 mice,
blue dot) and prediction of multidose signal (red line) based on the five-compartment model single dose fit with no
free parameters. Three bolus IV injections with time intervals of 5 min between doses was performed for the multidose
experiment. Error bars represent standard deviations.

3. Discussion

In summary, we found that the kinetics of VHHs and VHH-conjugated iron oxide
nanoparticles were clearly related to their size. The smallest sized VHH singlets were
cleared mostly by the kidneys. As the size increased, the liver became progressively
more dominant in the uptake and clearance of VHHs/nanoparticles. These findings are
consistent with the hypothesis that the NIR imaging for PK study can provide information
about relative nanoparticle/VHH concentration changes in mouse tissues and are in line
with previous knowledge about renal filtration. It is known that the threshold of glomerular
filtration for macromolecules and nanoparticles is between 5 and 8 nm with progressively
decreasing filtration as molecular size increases [53–55]. The PK model constructed in
this study had five compartments: blood, kidney, liver, brain, and brain extracellular. For
model fitting, blood compartment kinetic data were needed. However, NIR signal from the
blood compartment could not be directly measured using the Pearl system in vivo. Ex vivo
experiments were therefore performed to understand the blood NIR signal change after
IV injection of VHHs and to help with the model fitting. Thus, this approach should be
considered a hybrid, with direct sampling of blood, and serial NIR imaging-based sampling
of other compartments.

This study found that the relative value of uptake/clearance of liver and kidney ratios
based on the fitted PK parameters can be used as reference to understand the relationship
between VHH/nanoparticle sizes and in vivo behavior. Because we are most interested
in nanoparticle/VHH’s kinetics in the brain for future nanoparticle/VHH brain targeting
experiments, a second brain compartment was added to the model. This model describes
the nanoparticle/VHH kinetics in the brain more accurately than a model with a single
brain compartment. We demonstrated the robustness of the fitted PK model by testing
linearity (Figure 3) and multidose conditions (Figure 8).

The VHHs and nanoparticles characterized in this study are prototypes for the design
of the final contrast agents. Because we have not yet achieved BBB crossing, the binding
of the VHHs and nanoparticles to their targets in the brain is not described in this paper.
Instead, to facilitate development of the final contrast agents with optimal delivery capac-
ity and biosafety, this study focused on understanding the relationship between in vivo
pharmacokinetic (PK) characteristics and size of these prototype VHHs and nanoparticles.
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It was found that in the NIR range of around 650 nm to 900 nm wavelength, biological
tissues have the lowest absorption coefficient and minimum tissue autofluorescence [56,57].
Fluorescence dyes with excitation/emission wavelength in the near-infrared range have
deeper penetration depth than visible light and provide higher signal to background ratio
with decreased background noise and modest autofluorescence [58–60]. The advantage of
our study is that it uses NIR to capture images from individual mice post IV injection over
time. The time-series images collected from individual mice reduce variations between
mice and improve data consistency. Also, the number of mice used was greatly reduced
compared with the conventional methods for PK data collection (e.g., ICP-MS measurement
of iron content). For a conventional ICP-MS-based PK study, multiple animals need to
be sacrificed to collect data at each time point [44,45]. In our NIR imaging-based PK
experiment, 20 mice were used to collect the main data: five mice for each of four VHH
or VHH-nanoparticle constructs. To get the same amount of data, a conventional PK
study would have required 140 mice (five mice × four constructs × seven time points) in
total. NIR imaging also has the advantages of fast imaging speed, low cost, and modest
regulatory oversight requirements compared to other imaging methods used for PK studies
such as PET, SPECT, and MRI. A limitation of NIR imaging approaches in the past has been
the quality of dyes available. Compared with commercially available dye IR-800CW, the
FNIR we used has advantages including reduced aggregation and dramatically increased
NIR emission brightness [61]. FNIR dyes have been used to label monoclonal antibodies to
visualize the biodistribution and clearance following IV injection in mice [52].

Modeling pharmacokinetics with mathematical models helps with decision mak-
ing in nanoparticle development. Pharmacokinetic modeling has been widely used to
guide drug and nanoparticle development [62,63]. Compartment models are designed
to simplify the complex processes related to drug distribution and elimination in the
body [64]. In compartment models, drug tissue concentration is assumed to be uniform
within a given hypothetical compartment. Tissues with similar PK characteristics are
lumped into one hypothetical compartment. Compartment models have been used to
understand drugs and nanoparticles in vivo PK [65–67]. Gadkar, K., et al. constructed a
two-compartment model to guide antibody selection for Aβ reduction [62]. Uno, Y., et al.
constructed a three-compartment model to estimate the interstitial concentration of ta-
laporfin sodium [66]. Sim, H., et al. established a two-compartment model to study the
relationship between tumor growth and drug uptake kinetics [68]. In this study, we estab-
lished a multi-compartment model based on NIR images, which describes the PK of VHHs
and nanoparticles in blood as well as other tissue compartments. This multi-compartment
model will be used to guide future nanoparticle development and the compartments can
be adjusted based on the study focus.

One limitation of this study is that the signal from NIR images does not reflect the
absolute concentrations in the compartments of interest. The presence of skin and soft
tissues reduces image quality by optical attenuation and scattering [59,60]. We propose
that fluorescence signals provide information about the relative concentration kinetics in
major ROIs, rather than exact concentration values. In addition, NIR methods are less
amenable to assessing smaller compartments such as spleen or bone marrow. Clearly,
NIR approaches are best suited for relatively short-term studies in small animals such as
mice with little intrinsic skin pigmentation; in larger animals there is too much attenuation
between the tissues of interest and the detectors. Longer term PK studies would be difficult
because of the challenges of maintaining hair removal for more than a few days without
compromising health.

Another substantial limitation is that we only characterized PK in relation to construct
size. There are many other properties of IONPs including hydrophobicity, surface charge,
and coating or conformation of nanoparticles/VHHs that could affect their PK and biodis-
tribution [6,8,22,45]. We found minimal differences between IONPs coated with PEG2000
vs. a 1:1 ratio of PEG2000 to PEG750. Thus, there does not seem to be a major effect of
the length of PEG coating in this case. Furthermore, the nanoparticles tested in this study
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are not our final product, and the binding properties of next generation nanoparticles will
certainly influence the in vivo PK and will require modification of the model.

We acknowledge that we have not performed blood measurements for both IONP-
VHH constructs; we collected blood data for the IONPPEG2000 VHH triplet but not the
IONPPEG2000/750 VHH triplet. Based on the findings that organ PK was essentially the
same for these two IONP-VHH constructs, we used the blood data from IONPPEG2000 VHH
triplet to constrain PK models for both constructs. This relies on the assumption that the
blood clearance of the two IONPs were similar. Both models fit well, so this assumption
seems reasonable.

There were several additional limitations. The precise stoichiometric relationships
of iron oxide: PEG: VHH conjugates were not determined. We plan to use thermogravi-
metric analysis (TGA) to assess the nanoparticle stoichiometry in the future [69]. Also,
opsonization/fouling of the nanoparticles in blood was not assessed in this study [70,71].
Our preliminary data (unpublished) indicate that similar PEG-coated IONPs remain stable
in size over 24 h at 37 ◦C in human plasma, suggesting minimal fouling. Furthermore,
we did not collect urine or feces, thus excretion was not directly measured. Finally, we
did not systematically assess toxicity. Toxicity of IONPs is concentration and exposure
time-dependent [72,73]. In general, iron oxide nanoparticles are considered very safe,
but potential risks of iron can be related to oxidative stress and potential risks of foreign
proteins can include immune responses [17,74]. Cationic iron can increase the production of
reactive oxygen species (ROS), which may react and damage cell membrane and DNA. The
cytotoxicity of our IONPs will be explicitly assessed in the future. We have not performed
multidose experiments with long enough intervals between doses to assess for potential
immune-related toxicity of the llama VHH proteins.

For future experiments, we will study the PK and distribution of the nanoparticles
with adjusted components including VHHs targeting specific brain proteins and BBB
components. PK and clearance of updated nanoparticle designs will be measured using
the NIR imaging method and will be fitted using the PK compartment model developed in
this paper. More complex, possibly nonlinear, models including information about binding
kinetics and binding capacities will also be developed. Such experiments will incorporate
genetically manipulated mice expressing human brain proteins and BBB components.
Thus, for experiments involving complex genetically manipulated animals, methods that
reduce the number of mice needed are especially relevant. Differences between genetically
manipulated mice and appropriately matched controls will help reveal whether there are
differences in in vivo kinetics and clearance, indicating target engagement of nanoparticles
with biomarkers in brain. The mathematical PK models will be used to design experiments
involving injecting the optimized nanoparticles into mice and imaging the signal change in
brain using MRI at time points after injection selected based on the PK modeling. Similarly,
the radiological-pathological correlations between in vivo imaging findings and ex vivo
histology results will be studied at time points selected based on the model results.

4. Materials and Methods
4.1. Synthesis of VHHs

For this study, we synthesized VHH monomers of a nanobody called NB3 that
did not bind any targets in wild-type mice using methods similar to those described
in Esparza. et al. [30]. In addition, we produced a single polypeptide VHH heterotrimer
that consisted of NB3, a (GGGS)3 linker; NB3, a (GGGS)3 linker; and another nanobody
called H1 synthesized by Esparza et al. that also does not bind any targets in wild-type
mice. The sequence and characteristics of these VHH constructs will be reported separately.
These constructs were termed “VHH singlet” and “VHH triplet.” Phagemid pHEN2 with
VHH triplet or VHH singlet were transferred into the BL21(DE3)-competent E. coli cells
(C2527I, New England BioLabs, Ipswich, MA, USA) (Figure S10). The competent cells
were grown in terrific broth medium at 37 ◦C. Isopropyl β-d-1-thiogalactopyranoside
(IPTG) at a final 1 mM concentration was added to induce VHH expression when the
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OD600 reached 0.6. Following overnight expression, cells were pelleted by centrifugation
and VHHs were extracted through periplasm extraction [30,75]. The 6x histidine-tagged
VHHs were purified by Fast Protein Liquid Chromatography (FPLC) using a HisTrap™ FF
Ni-NTA column (Cytiva, Marlborough, MA, USA). To further purify VHHs, they were size
fractionated using a Superdex™ 75 10/300 GL column (Cytiva, Marlborough, MA, USA)
with Phosphate Buffered Saline (PBS), pH 7.4, at a flow rate of 1 mL/min.

4.2. Conjugation of FNIR Dye to VHH Constructs

The NIR dye FNIR-Tag-NHS was provided by the Schnermann group [61]. Lysine
groups on VHHs were labeled with FNIR dye through standard NHS conjugation. For
conjugation of FNIR dye to VHH, a 1:1.5 molar ratio of VHH and FNIR dye were incubated
together at room temperature for 2 h. Following conjugation, the VHH-dye conjugate
was purified from unincorporated label using a 5 mL HiTrap® desalting column (Cytiva,
Marlborough, MA, USA) with PBS. Total protein concentration was measured using the
Epoch microplate spectrophotometer (BioTek, Winooski, VT, USA) by measuring absorp-
tion at wavelength 280 nm and corrected using the theoretical extinction coefficient.

4.3. Production of IONPs, Ligand Exchange, and Conjugation of VHH Constructs

IONPs were generated by the thermal decomposition and ligand-exchanged methods
described by Kim, et al. [9] (Supplementary methods). Two different approaches to lig-
and exchange were used, involving (1) PEG-Azide-2k, MW 2000 Da (Nanosoft Polymers,
Winston-Salem, NC, USA) and (2) a 1:1 ratio of PEG-Azide-2k and PEG methyl ether,
MW 750 Da (Sigma Aldrich, St. Louis, MO, USA). We developed two types of NPs. The
first one was IONPPEG2000, which contained only PEG-Azide (MW 2000 Da) on the surface
while the second type IONPPEG2000/750 comprised of both PEG-Azide (MW 2000 Da) and
methoxy-PEG-ether (MW 750 Da). Solid state IONPPEG2000 and IONPPEG2000/750 were dis-
solved in 0.9% saline + 0.05% tween 80 solution and sonicated for 15 min followed by filtra-
tion through a 0.22 µm syringe filter. Then, a Superose™ 6 Increase 10/300 column (Cytiva,
Marlborough, MA, USA) was used for size exclusion chromatography (SEC). Fractions cor-
responding to the eluted peak were collected. Hydrodynamic size of IONP was measured
using the Dynapro® Nanostar® cuvette-based DLS instrument (Santa Barbara, CA, USA).
FNIR dye and Dibenzocyclooctyne-amine (DBCO) were conjugated to VHH triplets at
1:1.5 molar ratio through standard NHS conjugation as described in Section 4.2. Peak
fractions of IONPs were concentrated and conjugated with FNIR dye and DBCO-labelled
VHH triplets via copper-free click chemistry for 24 h at room temperature [76,77].

The click chemistry allowed the reaction of DBCO-conjugated VHH triplets to the
azide groups at the terminus of the PEG2000, yielding covalent attachment of VHH triplet-
DBCO to PEG-Azide-2k ligand-coated IONPs (Figure S11d). After 24 h incubation, the
click-reaction was resolved through a Superose 6 Increase column with 0.9% saline + 0.05%
tween 80 solution for size exclusion separation of unreacted constituents. Fractions at the
peak of size exclusion were collected and their size was measured using DLS. The peak
fractions corresponding to VHH-conjugated IONP were used for in vivo pharmacokinetic
studies (Figure S1).

4.4. Animals

All animal experiments were conducted under protocols approved by the National
Institute of Neurological Disorders and Stroke (NINDS)/National Institute on Deafness
and Other Communication Disorders (NIDCD) Animal Care and Use Committee in the
National Institutes of Health (NIH) Clinical Center. C57BL/6J female mice were purchased
from Jackson labs at 6–12-weeks of age and used at 7–12 weeks of age. Twenty mice
were randomized into four groups with four to six mice in each group. Anesthetized
mice were injected via tail vein with VHH singlet (five mice), VHH triplet (four mice),
IONPPEG2000 VHH triplet (five mice), or IONPPEG2000/750 VHH triplet (six mice) for PK
studies. Experiments were performed at the same time each day. The dark color fur coat of
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the strain of mouse used impedes the penetration of NIR light; therefore, the fur overlaying
the regions of interest was removed by applying a topical depilatory cream above the brain,
on the ventral and dorsal torso and tail of the mice 1 day prior to IV injection. Delayed skin
hyperpigmentation was observed starting 4 days after hair removal.

4.5. Injection of Nanoparticles

Mice were anesthetized with 60% oxygen/40% medical air gas mixture containing
5% isoflurane in an induction box. After a stable anesthesia plane was established, mice
were maintained at 1.5–2% isoflurane level. Artificial tears ointment was applied to prevent
eye injury due to drying. Mice were placed on an electrical heating pad to maintain body
temperature. Nanoparticle conjugates (in 0.9% saline + 0.05% tween 80 solution) and VHHs
(in PBS) with different sizes (12 µM VHH singlet, 4.75 µM VHH triplet, IONPPEG2000 VHH
triplet, IONPPEG2000/750 VHH triplet) were injected intravenously through single bolus
injection at 0.1 mL volume into mice through the tail vein using 30 Gauge needles. Mice
were maintained under anesthesia for approximately 3 min. Following the procedure, the
mice were allowed to recover on a heating pad until fully ambulatory and then returned to
their home cage with immediate access to food and water.

4.6. Multidose Experiment

VHH triplet was used for the multidose experiment. Five mice were injected, as
described above, with 0.1 mL VHH triplet three times with 5 min intervals between each
dose. Mice were maintained under anesthesia for approximately 3 min during intravenous
injection and imaging and allowed to recover between injections.

4.7. NIR Imaging Methods

Mice were anesthetized with 60% oxygen/40% medical air gas mixture with
5% isoflurane for induction of anesthesia and 1.5% isoflurane level for maintenance. Mice
were imaged using the Pearl Trilogy Near-Infrared Fluorescent and Bioluminescent small
animal imaging system (Licor, Lincoln, NE, USA). The specific parameters for NIR imaging
were resolution = 170 um, fluorescence channel at 800 nm (excitation at 785 nm and emission
at 820 nm) for FNIR dye. NIR images were collected before and at time 2 min, 1 h, 2 h, 4 h,
8 h, 1 day, and 2 days post IV injection (Figure 9) using Pearl. After end-point imaging, mice
were euthanized by transcardial perfusion using 1X PBS with heparin under 5% isoflurane.
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were taken before injection, then NIR images were taken at 2 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h
after injection. Mice were sacrificed after imaging at 48 h post injection.

4.8. Image and Data Processing

Equally sized ROIs were manually drawn using the software Image Studio (version 5.2,
Licor, Lincoln, NE, USA) from Li-Cor. Examples of ROIs are shown in Figure 1. Brain and
right kidney ROIs were drawn from the prone view images while liver and front left paw
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ROIs were drawn from the supine view images. The average fluorescence intensity of each
ROI was calculated and generated by Image Studio (version 5.2, Licor, Lincoln, NE, USA).

4.9. Blood Clearance Measurement

Twelve mice (six for each VHH) were injected with VHHs (VHH singlet, VHH triplet)
and five mice were injected with nanoparticle IONPPEG2000 VHH triplet as described in
the Section 4.5. After intravenous injection, mice were sacrificed at 1 min, 5 min, 10 min,
15 min, 30 min, and 1 h for mice injected with VHHs and at 1 min, 5 min, 15 min, 30 min,
and 1 h for mice injected with IONPPEG2000 VHH triplet. An amount of 0.1–0.2 mL blood
was collected from the right atrium into heparin-coated 1.5 mL microcentrifuge tubes. The
microcentrifuge tubes with blood were imaged using the Pearl system and ROIs were
drawn using the Image Studio software (Figure 4).

4.10. Mathematical Modeling

Mathematical models were built using MATLAB (The Mathworks, Inc., Natick, MA, USA)
to predict distribution and pharmacokinetics based on nanoparticle size. The mathematical
models were built based on kinetic data from VHH singlet, VHH triplet, IONPPEG2000 VHH
triplet, and IONPPEG2000/750 VHH triplet data. Model fitting was done by minimization of the
residual sum of squares across all five compartments and the blood clearance rate using the
particle swarm algorithm [78,79]. r2 values were calculated to evaluate the goodness of fit. This
model consists of five compartments: compartment 1 is the blood compartment, with a single
bolus input and exchange of nanoparticles/VHHs with compartment 2 (kidney compartment),
compartment 3 (liver compartment), and compartment 4 (brain 1 compartment). Compartment
4 also exchanges with compartment 5 (brain 2 compartment). In this model, the two main
paths for clearance are the kidney and liver compartments. The kidneys and liver are the two
main organs that are responsible for nanoparticle elimination [64]. The intake and clearance
of nanoparticles from blood to kidneys/liver are the main characteristics that differentiate
the in vivo kinetics of different nanoparticles and VHHs. The signal from spleen was not
analyzed because of low signal strength. This five-compartment model was modified based
on a four-compartment model with blood, liver, and kidney compartment as well but only
one brain compartment. Based on AICc value [80] and model fitting, the five-compartment
model was selected over the four-compartment model. Two compartments were used to better
describe the nanoparticles/VHHs in vivo distribution and kinetics in the brain to guide the
timing of future brain MRI studies.

5. Conclusions

This study investigated the PK of two VHHs and two VHH-conjugated iron oxide
nanoparticles for their in vivo biodistribution and clearance in mice. A near-infrared
method was established to monitor and record VHHs and VHH-IONPs kinetics in vivo.
These results build a foundation for efficient understanding of VHHs and VHH-IONPs
biodistribution and pharmacokinetics using near-infrared imaging.
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