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Abstract: Apart from protein-coding Ribonucleic acids (RNAs), there exists a variety of non-coding
RNAs (ncRNAs) which regulate complex cellular and molecular processes. High-throughput se-
quencing technologies and bioinformatics approaches have largely promoted the exploration of
ncRNAs which revealed their crucial roles in gene regulation, miRNA binding, protein interactions,
and splicing. Furthermore, ncRNAs are involved in the development of complicated diseases like can-
cer. Categorization of ncRNAs is essential to understand the mechanisms of diseases and to develop
effective treatments. Sub-cellular localization information of ncRNAs demystifies diverse function-
alities of ncRNAs. To date, several computational methodologies have been proposed to precisely
identify the class as well as sub-cellular localization patterns of RNAs). This paper discusses different
types of ncRNAs, reviews computational approaches proposed in the last 10 years to distinguish
coding-RNA from ncRNA, to identify sub-types of ncRNAs such as piwi-associated RNA, micro
RNA, long ncRNA, and circular RNA, and to determine sub-cellular localization of distinct ncRNAs
and RNAs. Furthermore, it summarizes diverse ncRNA classification and sub-cellular localization
determination datasets along with benchmark performance to aid the development and evaluation of
novel computational methodologies. It identifies research gaps, heterogeneity, and challenges in the
development of computational approaches for RNA sequence analysis. We consider that our expert
analysis will assist Artificial Intelligence researchers with knowing state-of-the-art performance,
model selection for various tasks on one platform, dominantly used sequence descriptors, neural
architectures, and interpreting inter-species and intra-species performance deviation.

Keywords: non-coding RNA classification; RNA sub-cellular localization; long non-coding RNA;
small non-coding RNA; NCRNA, machine learning; deep learning; computational sequence analysis;
benchmark performance, benchmark sequence analysis datasets

1. Introduction

As messenger ribonucleic acids (mRNAs) provide template for protein synthesis,
mRNAs have been a major focus of Genomics research for a long period of time [1–3],
whereas non-coding RNAs were widely considered the by-products of large transcrip-
tion with very little biological importance [4]. Since the detection of transfer RNA and
ribosomal RNA around 1950, a variety of RNA species have quite gradually emerged
which exposed an unprecedented world of non-coding RNAs (ncRNAs) [5–8]. Large scale
sequencing technologies as well as rich computational analysis have largely assisted with
understanding the RNA world [9,10]. In the beginning of the 21st century, sequencing
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and computational analysis of the mouse [11] and human [12] genome indicated that 98%
of junk DNA was possible to transcribed. However, it was not until the development
of the Encyclopedia of DNA Elements (ENCODE) and Human Genome projects [13] in
2005 that revealed that almost 80% of human genome can be transcribed into various
ncRNAs [14–16]. These projects have deeply explored ncRNAs in terms of identifying the
sub-type of distinct ncRNAs and finding their biological roles. This progress has paved the
way for the large scale identification of different ncRNAs such as long ncRNAs in different
species (e.g., mammals) [17,18]. Afterwards, widespread application of deep advanced
sequencing technologies enabled even more correct profiling of different ncRNAs [19,20].

Most recent literature reveals that ncRNAs act as key players in several biological,
developmental, and physiological processes [21] as well as development and progression of
complex diseases [21]. ncRNAs are also involved in gene expression regulation [22], RNA
maturation [23], dosage compensation, genomic imprinting, and cell differentiation [8].
Contribution of ncRNAs in vital oncogenic processes such as differentiation, proliferation,
migration, angiogenesis and apoptosis have gained much attention as potential diagnostic
and prognostic biomarkers in leukemia [24]. Furthermore, ncRNAs were discovered to be
tumor suppressors, oncogenic drivers in different cancer types [25], and strongly linked to
the development of Alzheimer’s and cardiovascular diseases [26,27]. For plants, ncRNAs
are considered as important regulatory molecules responsible for stress responses [28].

Based on cellular functionality, variation in sequence length, unique structure, and
physical and chemical properties [29], ncRNAs can be segregated into different sub-classes,
a taxonomy of which is depicted in Figure 1. Accurate discrimination of ncRNAs from
coding RNAs and identification of their sub-types can lay the foundation for demystifying
the core function and biological roles of ncRNAs, their involvement in suppressing the
mechanism [30] underlying complex human diseases [31,32] or developing effective treat-
ments and optimizing therapeutics [33,34]. Core functionality of biomolecules primarily
relies on their distribution in various cellular compartments. The cellular role of particular
RNA molecule can be studied using its localization information. Sub-cellular location
information can decode the mechanisms of guiding post-transcriptional gene expression
regulation ranging from epigenetic reprogramming all the way to post-transcriptional
regulation [35,36] and directing RNA modification [37–39].
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Figure 1. Hierarchical representation of RNA classes.

Due to the crucial roles of ncRNA in diverse cellular processes, disease development,
and the potential to act as biomarkers, several experimental approaches have been devel-
oped to accurately identify ncRNA sub-type and sub-cellular localization. Among many
experimental approaches, chemical and enzymatic RNA sequencing, effective parallel
cloning to distinct ncRNAs using dedicated microarray analysis, genomic SELEX, and
cDNA libraries are the most renowned ones [40]. Classification and sub-cellular location
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prediction of ncRNAs though experimental techniques is a costly and time-consuming
approach. The influx of experimental data has given rise to comprehensive biological
databases such as NONCODE [41], Rfam [42], circBase [43], miRbase [44], RNALocate [45],
and the Ensembl database [46]. For instance, only the RNALocate meta-thesaurus has
more than 190,000 entries for RNA sub-cellular localization along with experimental proofs
such as 65 organisms (e.g., Mucus musculus, Homo sapiens, and Saccharomyces cerevisiae),
44 sub-cellular localizations (Endoplasmic reticulum, Nucleus, Cytoplasm, and Ribosome),
and 9 RNA classes (e.g., miRNA, mRNA, and lncRNA) [45]. In addition, this database
provides a large amount of annotated sequences for various classes of ncRNAs. Public
availability of humongous data related to different sub-classes of ncRNA and their sub-
cellular distribution has paved the way for the development of machine and deep learning
approaches. Taking advantage of public databases, to date, several machine and deep learn-
ing based methodologies have been proposed to discriminate ncRNA from protein-coding
transcripts, identify its sub-type, and predict their sub-cellular localization.

A variety of sequence and structure related features have been used by diverse
uniquely designed computational predictors to accurately segregate ncRNAs from protein-
coding transcripts, identify ncRNA sub-type, and infer their sub-cellular localization
patterns using datasets of multiple species. The focus of this study is to shed light on
distinct kinds of ncRNAs, discuss their biological importance, review machine and deep
learning approaches proposed over the time to identify the sub-type of ncRNAs, and to
predict their sub-cellular localization. It facilitates an interactive summary of benchmark
datasets developed to evaluate the integrity of computational approaches for various tasks.
We consider the facilitation of important elements in one platform such as benchmark
performance of various genomic tasks, utilization trend with respect to sequence encod-
ing, feature selection, and neural architectures, key research gaps, current challenges to
effectively handle heterogeneity of different ncRNAs (e.g., sequence length, compositional
variation), factors responsible for creating a bias towards residue distribution and high false
positive rate will open a new horizon for the development of more robust computational
approaches for diverse tasks. The contributions of this study can be summarized as:

1. A bird’s eye view on biological significance of diverse ncRNA species, their involve-
ment in a wide range of cellular processes, disease development, and potential to act
as biomarkers;

2. Taking heterogeneity of ncRNAs in terms of sequence length, structure, physical, and
chemical characteristics into account, discussing the importance of distinguishing
ncRNAs from protein-coding transcripts as well as identifying its sub-type;

3. Shedding lights on the significance of ncRNA sub-cellular localization information
in regard to understand the core functionality of ncRNAs and their involvement in
different biological processes;

4. Reviewing the progress of Artificial Intelligence for distinct ncRNA sequence analysis
tasks including distinguishing ncRNAs from protein-coding transcripts, identifying
the sub-type of ncRNAs, and sub-cellular localization;

5. Performing a critical analysis of diverse computational approaches proposed for dif-
ferent ncRNA sequence analysis tasks at different levels such as feature representation,
feature selection, classification, and cross-species evaluation;

6. An interactive yet in-depth descriptive analysis of benchmark datasets developed
using public database for diverse ncRNA sequence analysis tasks.

2. RNA Classification

Ribonucleic acid (RNA), a compound molecule, is considered indispensable for a
variety of biological tasks in regulation, expression, coding, and decoding of genes https:
//www.umassmed.edu/rti/biology/role-of-rna-in-biology/ (accessed on 1 April 2021).
Generally, RNA is categorized into coding or non-coding (ncRNAs) [47]. ncRNAs have
been recognized in a broad variety of distinct classes or families, which vary in function, and
provide insights into biological regulatory mechanisms in diseases that play an increasingly
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important role in searching for new drug targets by utilizing the information contained
in genomics [47]. Since, in the identification of drug targeting, the regulatory circuits of
ncRNA depend on knowing its family, the interest in developing sophisticated methods
for ncRNA classification has dramatically increased over this period of time [48].

Here, we briefly describe state-of-the-art machine and deep learning approaches
proposed to distinguish non-coding RNAs from coding RNAs and to identify sub-type
of ncRNAs.

2.1. Distinguishing Long Non-Coding RNA from Protein Coding RNA

Long non-coding RNA transcripts (greater than 200 bp) are quite similar to protein-
coding transcripts in terms of structure, transcriptional, as well as post-transcriptional behav-
ior, indicating the difficulty in distinguishing lncRNAs from protein coding RNAs. Consider-
ing that the low expression level of lncRNAs largely hampers their identification using gene
expression analysis technologies, several computational predictive methodologies have been
developed by acquiring important biological features from sequences [49–64].

Stadler et al. [53] proposed a classification methodology, namely RNAz, which uti-
lized support vector machine (SVM) to classify RNA sequences into coding and ncRNA
(lncRNA) class. At pre-processing stage, the authors performed an alignment of sequences
and developed a set of discriminative features using valuable information about thermo-
dynamic stability as well as the secondary structure of sequences. RNAfold was used to
acquire a secondary structure of sequences [65]. They evaluated the integrity of RNAz
on a ncRNA dataset containing the sequences of five different species including human,
mouse, Fugu, rat, and zebrafish taken from the Rfam database, where RNAz achieved
an accuracy of 75%. A similar ncRNA classification methodology, namely “CONC”, was
proposed by Liu et al. [54]. CONC used a combination of different features including
peptide length, amino acid composition, compositional entropy, and number of homologs
from database searches, and predicted the percentage of exposed residues, alignment
entropy, and secondary structure to feed the SVM classifier. CONC achieved the specificity
of 95% on the Eukaryotic species dataset for the task of distinguishing lncRNAs from
protein-coding transcripts.

Kong et al. [57] presented a support vector machine based approach, namely the
Coding Potential Calculator (CPC). CPC [57] measured the protein coding capability
of a transcript by leveraging six biological sequence features including open reading
frame score, coverage, integrity, number of hits, frame score, and number of high-scoring
segment pairs. Experimental results revealed that CPC successfully discriminated lncRNA
transcripts from coding transcripts with great accuracy of 98.6%. In addition, it was quite
efficient compared to existing approaches CONC [54]. CPC can be accessed as a web
service http://cpc.cbi.pku.edu.cn (accessed on 1 April 2021) where sequence features’
details and transcript annotations were facilitated to end users. However, the CPC web
server requires a tremendous amount of time to process given sequences, which makes it
non-effective for large scale sequence analysis. Furthermore, as CPC is an alignment based
approach, its performance significantly fluctuates on the account of sequences taken from
different reference databases. Building on these downfalls, later, authors upgraded CPC to
CPC2 [58] by extracting four intrinsic sequence features: open reading frame (ORF) length,
integrity, isoelectric point, and Fickett score to feed the SVM model. Using more training
data, CPC2 [58] achieved better accuracy and speed as compared to CPC [57]. CPC2 can be
accessed as a web service at http://cpc2.gao-lab.org/ (accessed on 1 April 2021) where
sequence features details and transcript annotations services are facilitated to end users.

In order to provide an accurate method for the categorization of short genome regions in
terms of coding or lncRNA, Lin et al. [66] presented PhyloCSF [66]. PhyloCSF [66] performed
a deep analysis of nucleotide sequence arrangement belonging to multiple species in order
to decide whether it was more likely to depict a conserved coding region. The authors
illustrated that PhyloCSF [66] categorization performance over Drosophila 12-species genome
alignments superseded the performance of existing approaches. Sun et al. [51] developed an

http://cpc.cbi.pku.edu.cn
http://cpc2.gao-lab.org/
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“iSeeRNA” tool to discriminate lncRNAs from protein-coding RNAs. iSeeRNA [51] utilized
three different features (conservation, sequence nucleotide composition, and open reading
frame) to encode RNA sequences which were later passed to an SVM classifier to predict
RNA family. Performance of iSeeRNA [51] was evaluated on Human and Mouse species
datasets taken from RefSeq metathesaurus [67]. Over two different species datasets (Human
and Mouse), iSeeRNA [51] achieved the accuracy of 96%, 95% for long intergentic ncRNA
(lincRNA) identification, 94%, and 93% for the identification of protein-coding transcripts
(PCTs). Performance comparison with two existing computational predictors indicated
that iSeeRNA [51] outperformed PhyloCSF [66] by 13% for lincRNAs identification, 3% for
PCTs identification, and CPC [57] by 10% for PCT identification. Sun et al. [55] proposed
a robust signature tool, namely Coding-Non-Coding Index (CNCI), for the categorization
of coding and non-coding transcripts. CNCI [55] utilized nucleotide triplets adjoined to
each other to discriminate coding and lncRNA sequences regardless of known annotations.
CNCI [55] was effective in classifying non-complete transcripts along with sense–antisense
base pairs. To assess the effectiveness of CNCI [55] in comparison with existing computational
predictors, authors compared the performance of CNCI [55] with CPC [57] and PhyloCSF [66].
Performance assessment revealed that CNCI [55] attained the accuracy of 97% for Human
and Mouse datasets, which outperformed other predictor performance by 10%. Furthermore,
CNCI [55] effectiveness for sense—antisense pairs revealed that CNCI [55] achieved the mean
accuracy of 98% for non-coding-and-coding pairs, 97% for non-coding non-coding pairs, and
87% for coding–coding pairs which was better than other predictors’ performance by 3% for
non-coding-coding pairs and 5% for coding–coding pairs. As CNCI utilized a sliding window
to extract adjacent nucleotide triplets, selecting optimal residue context is not a straightforward
task for different species because a window of a small size may lose important information,
whereas a large window would take a huge amount of time to process given sequences.

Another alignment free tool was presented by Zhang et al. [56] who called it a pre-
dictor of long non-coding RNAs and messenger RNAs using an enhanced k-mer scheme
(PLEK). The PLEK utilized a support vector machine along with an enhanced k-mer scheme
specifically to discriminate lncRNA transcripts from messenger RNAs. Performance evalu-
ation of PLEK over lncRNA and mRNA transcripts proved that PLEK achieved promising
accuracy. In addition, PLEK was found to be suitable for great-scale transcriptomic data.
PLEK evaluation over Human and Mouse datasets revealed that PLEK managed to achieve
the accuracy of 96% for the Human dataset and over 90% on most cross-species test sets.
Just like CNCI [55], PLEK also fails to handle the difference of nucleotides composition
across different species and as a resut lacks the achievement of stable performance. Fur-
thermore, Raghava et al. [50] presented SVM based methodology “LncRScan-SVM” to
segregate lncRNAs from protein-coding RNAs. Using benchmark datasets of human and
mouse species taken from the GENCODE database [68], LncRScan-SVM combined the
features extracted from transcript sequence, gene structure, codon sequence as well as
conservation to achieve the performance of 92% using an SVM classifier for the task of
distinguishing lncRNAs from mRNAs.

Likewise, Schneider et al. [49] developed a “Longdist” approach which utilized open
reading frame absolute length, relative length, and occurrences of K-mers selected using
principal component analysis. To evaluate the effectiveness of the proposed approach, they
utilized mouse, human and zebrafish datasets. Empirical evaluation indicated that the
proposed approach obtained the top accuracy of 98% on the benchmark dataset, revealing
the suitability of use for closely related species. Tong et al. [59] presented the coding
potential prediction “CPPred” tool which utilized multiple sequence features including
open reading frame length, integrity, coverage, hexamer score, Fickett score, pI, instability,
gravy, and composition–transition–distribution features. Using the SVM classifier, they
discriminated lncRNAs from protein-coding transcripts of five different species where top
testing accuracy of 96% indicated the suitability of CCPred [59] for small sized transcripts.
Wang et al. [52] developed another SVM based methodology “LGC” to identify lncRNAs
belonging to a broad range of species. LGC [52] utilized a universal relationship that
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exists between open reading frame (ORF) length and guanine–cytosine (GC) content such
that ORF length rises with GC content for those sequences which are rich in adenine and
thymine, whereas it decreases for those sequences which are rich in guanine and cytosine.
Due to unique paradigm, LGC [52] managed to identify lncRNAs with an accuracy of
around 95% in cross-species setting using only one classification model.

Instead of SVM, few researchers utilized LR to accurately identify lncRNAs. For
instance, Wang et al. [60] proposed an alignment free Coding Potential Assessment Tool
(CPAT) to quickly discover coding and lncRNA transcripts from a huge collection of
candidates using four sequence features. CPAT achieved top accuracy of 96% on the
benchmark dataset which outshined baseline alignment based classification approaches
by a significant margin. In addition, it was four times faster than CPC [57], and Phylo
Codon Substitution Frequencies (PhyloCSF [66]) which enabled the users to process a
huge collection of transcripts in no time. A minor downfall of CPAT is the selection
of cutoff threshold which differs across different species; therefore, users have to find
optimal cutoff for sequences of certain species in order to effectively identify lncRNA
transcripts. Zhang et al. [61] developed another LR based methodology “LncScore” based
on 11 different features including hexamer score, open reading frame length, coverage,
hexamer score distance, maximum coding subsequences, and Fickett score belonging to
three different feature groups. Using Human, Mouse, and other cross species datasets (fly,
zebrafish, Caenorhabditis elegans, sheep, and rat), LncScore [61] achieved better performance
as compared to existing predictors CPAT [60], PLEK [56], and CNCI [55]. LncScore achieved
the top accuracy of 89% on partial length Human and Mouse testing datasets, 95% and 96%
on full length Human and Mouse species datasets, outperforming existing predictors by
5% and 10% over aforementioned species, respectively.

Turning towards the methodologies based on decision tree, Achawanantakun et al. [62]
developed “LncRNA-ID” methodology which extracted important features from three
different segments including open reading frame, protein conservation, and ribosome inter-
action. To develop meta-classifiers based on multiple random forest, down-sampling was
used to construct bootstrap samples. Using majority voting, LncRNA-ID [62] discriminated
lncRNAs from protein-coding transcripts with the top accuracy of 96% on the benchmark
dataset. Pian et al. [69] proposed another random forest based predictive methodology
“LncRNApred” for accurate differentiation of lncRNAs from protein-coding transcripts. To
evaluate the integrity of LncRNApred [69], they constructed the coding and non-coding
transcripts dataset using UCSC [70] and NONCODE [41] databases. LncRNApred [69]
used the self organizing feature map approach to learn rich representation of sequences
which was passed to the meta-classifier for final prediction. Experimental results indicated
that LncRNApred attained the accuracy of 93% on the benchmark dataset.

Hu et al. [63] developed coding potential calculation methodology, namely “COME”,
which discriminated lncRNAs from protein coding transcripts using multiple sequence fea-
tures and random forest classifier. To prove the integrity of COME [63], authors compared
the performance of COME with CNCI [55], CPAT [60], and PhyloCSF [66] methodologies
using two test sets of human species. They additionally evaluated COME on cross-species
datasets as well including M. musculus, Arabidopsis thaliana, D. melanogaster, and C. elegans.
Empirical evaluation revealed that, on human data, COME attained AU-ROC score of 99%
which outperformed other predictor performance by 1%. Furthermore, it achieved the
accuracy of 95%, 95%, 99%, 98%, and 99% on Mouse, Worm, Fly, and Plant species test sets,
which overall proved better than other computational predictors. Despite the emergence
of several tools, the task to identify various classes of RNAs among a collection of fully
reconstructed transcripts was considered a tough task. In this regard, Valentin et al. [64]
proposed an alignment free tool called flexible extraction of lncRNA (FEELnc) that cor-
rectly annotated lncRNA using a random forest classifier trained with generalized features
including open reading frame and k-mer frequencies. Performance comparison with five
state-of-the-art tools proved that FEELnc either managed to surpass or at least marked
similar classification performance over datasets extracted from NONCODE [41] and GEN-
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CODE [68] databases. FEELnc also facilitated a special fine-tuning module through which
users formalized lncRNAs annotations and identified lncRNAs despite the absence of
training instances of lncRNAs.

Several researchers have reaped the advantages of multiple models through ensemble
learning to achieve better performance in diverse bioinformatics tasks [71–74]. Building
on the wide success, a number of ensemble learning approaches have been developed to
identify coding and non-coding RNAs.

Predominantly, ncRNA identification approaches utilize only sequence derived fea-
tures that hinder the achievement of stable performance across different species due to a
large fluctuation of sequence characteristics. Han et al. [75] combined sequence intrinsic
features, physicochemical property based features, and secondary structure features to
develop an “LncFinder” predictive framework. LncFinder [75] developed a meta-classifier
using five different classifiers including Logistic Regression, Support Vector Machine,
Random Forest, Extreme Learning Machine, and Traditional Neural Network. Authors
compared the performance of LncFinder with CPC [57], CPAT [60], CNCI [55], PLEK [56],
and CPC2 [58] over human (Homo sapiens), wheat (Triticum aestivum), mouse (Mus mus-
culus), chicken (Gallus gallus), and zebrafish (Danio rerio) datasets. Empirical evaluation
indicated that LncFinder achieved top accuracy of 97, 94, 93, and 88 on human, chicken,
mouse, and zebrafish datasets, outperforming previous best performance by 1%, 2%, 1%,
and 2% on four different species datasets.

Xu et al. [76] proposed an iterative ensemble learning paradigm namely “LncPred-IEL”
based on transcript and sequence derived features. Authors segregated open reading frame
length, coverage, integrity, Fickett score, hexamer score, gravy, instability, composition–
transition–distribution, spectrum, mismatch, reverse compliment K-mer, pseudo nucleotide
composition, and auto-cross variance features into six distinct groups. They also utilized a
feature selection approach to optimize each group where they applied analysis of variance
followed by minimal redundancy maximal relevance approach to discard redundant
features and retain only the most discriminative features. They constructed independent
base predictors (Random forest) using a specific set of features and utilized an iterative
supervised paradigm to combine the best performing models. Authors compared the
performance of LncPred-IEL [76] with existing computational predictors using datasets
of four different species including Human, Mouse, Fruitfly, and Zebrafish. In addition,
they evaluated LncPred-IEL [76] on two newly developed Human and Mouse species
datasets. On four benchmark datasets, they compared the performance of LncPred-IEL [76]
with four other predictors including CPAT [60], CPC2 [58], CPPred [59], and LongDist,
proposed the LncPred-IEL [76] approach that achieved the accuracy of 90%, on the Human
dataset and 92% on the Mouse dataset, outperforming the previous best performance
by 2%, whereas, training the model on a full newly developed human dataset, LncPred-
IEL [76] marked the performance of 90% and 85% when tested on the fruitfly and zebrafish
testing datasets, respectively. Similarly, training the model on a full newly developed
Mouse dataset, LncPred-IEL [76] achieved the performance of 96% for fruitfly and 91% for
zebrafish, respectively.

Liu et al. [77] developed a stacked ensemble-learning methodology “PredLnc-GFStack”
to discriminate ncRNAs from protein-coding transcripts. Unlike existing approaches,
PredLnc-GFStack [77] utilized a novel feature selection algorithm where sequence derived
features of six different categories were passed to a genetic algorithm which extracted
optimal features using an area under receiver operating characteristic score produced by a
random forest classifier. Optimal features were passed to a multiple random forest model
which operated on a different subset of features. For final prediction, multiple random
forest models were stacked on top of each other to identify ncRNAs. Authors evaluated the
performance of PredLnc-GFStack [77] on two newly developed Human and Mouse species
datasets where PredLnc-GFStack achieved accuracy of 90% and 91%. They also performed
cross-species evaluation using benchmark test sets. Training fully on a newly developed
Human dataset and testing on five species datasets, PredLnc-GFStack [77] marked the
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accuracy of 97% on Human, 94% on Mouse, 90% Zebrafish, 94% on Fruitfly, and 96%
on S. cerevisiae datasets. Likewise, training fully on Mouse datasets and testing on five
species test sets, PredLnc-GFStack [77] achieved the accuracy of 88%, 94%, 84%, 92%, and
94%, respectively.

In order to increase the poor performance of RNNs while dealing with small sized
open reading frames (sORF), Chen et al. [78] developed coding potential estimation“CPE-
SLDI” methodology. Taking the deficiency of coding RNA sequences having small sized
open reading frames into account, authors utilized an over-sampling technique to aug-
ment protein-coding transcripts and integrated diverse features including open reading
frame length, coverage, integrity, Fickett score, hexamer score, gravy, instability, and
composition–transition–distribution to feed an extreme gradient boosting meta-classifier.
They compared the performance of CPE-SLDI [78] with multiple baseline data augmen-
tation approaches and machine learning classifiers. To prove the integrity of proposed
CPE-SLDI [78], they compared the performance with six existing computational predictors
( CNCI [55], CPC2 [58], PLEK [56], CPPred [59], and CPAT [60]) using four datasets Human,
Mouse, Human-sORF, and Mouse-sORF. CPE-SLDI achieved the accuracy of 97%, 84%,
97%, and 75% on Human, Human-sORF, Mouse, and Mouse-sORF datasets, outperforming
previous best performance by the figure of 3%, 3%, 1%, and 1%, respectively.

Considering the wide success of deep learning in extracting long range hidden re-
lationships of residues [79], multiple deep learning approaches based on Convolutional
Neural Networks (CNNs), Deep Stacking Networks (DSNs), Recurrent Neural Networks
(RNNs), and Deep Belief Network (DBNs) have been proposed to distinguish ncRNA from
protein coding transcripts.

Fan et al. [80] developed “LncRNA-MFDL" methodology which integrated multiple
features including open reading frame, secondary structure, the most like coding domain
transcript, and K-mer to feed a deep neural network for the accurate identification of ncR-
NAs. Empirical evaluation on Human genome dataset revealed that LncRNA-MFDL [80]
attained the performance of 97%, which outperformed CPC [57] by 6%, CNCI [55] by
4%, and the LncRScan-SVM [50] approach by 3%. In cross-species evaluation, LncRNA-
MFDL [80] achieved the performance of 96%, 91%, 96%, 93%, 96%, 87%, 89%, 90%, 97%,
and 90% for testing datasets of Anole lizard, Zebrafish, Chicken, Gorilla, Macaque, Mouse,
Lamprey, Orangutan, Xenopus, and C. elegans. Tripathi et al. [81] developed the ncRNA
identification tool “DeepLnc” which utilized K-mer frequencies of sequence residues as
features and a bag of tricks based deep neural network as a classifier. Using RefSeq [67]
and LNCipedia [82], authors developed ncRNA and coding RNA datasets. Empirical eval-
uation on the benchmark dataset indicated that DeepLnc effectively handled nonlinearity
in data with the use of fewer parameters and attained accuracy of 99% on Human genome
datasets for the task of distinguishing ncRNAs from protein-coding RNAs.

Considering the non-availability of computational tool capable to identify ncRNA
along with their functions, Yang et al. [83] presented “LncADeep” methodology based
on deep neural network and deep belief network, which was capable of discriminating
ncRNAs from coding RNAs as well as annotating biological functionality. LncADeep [83]
acquired intrinsic features from sequences including open reading frame length, hexamer
score, and Fickett score to feed the deep belief network. For the task of functional annota-
tion, the first ncRNAs interaction with proteins was estimated by feeding sequence and
structural information to the deep neural network. To effectively handle full length and
partial length transcripts, authors developed three separate models using full and partial
length transcripts, only partial length transcripts, and solely full length transcripts. To prove
the effectiveness of LncADeep [83], they compared the performance of LncADeep with
four existing predictors COME [63], lncScore [61], lncRScan-SVM [50], CPC [57], CNCI [55],
CPAT [60], CPC2 [58] FEELnc [64], PLEK [56], longDist [49], and lncRNA-MFDL [80].
Empirical evaluation revealed that, for ncRNA identification, over both Human and Mouse
datasets, it achieved the top specificity of 97% and 96% using full-length transcripts, out-
performing other predictors’ performance by 1% and 4%.
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Baek et al. [84] proposed a hybrid predictive methodology “LncRNAnet” to discriminate
ncRNAs from coding RNAs. LncRNAnet [84] used one-hot encoding to learn statistical repre-
sentation of sequences, RNN to extract dependencies of residues, and CNN to deeply explore
different stop codons for the extraction of open reading frame indicators. Authors com-
pared the performance of LncRNAnet with four existing computational predictors including
CPAT [60], CNCI [55], CPC [57], and PLEK [56] using Human, Mouse, and 11 cross-species
datasets such as Chicken Frog, Fruitfly, Zebrafish, Chimpanzee, Cow, Gorilla, Orangutan, Pig,
Platpus, and Rhesus. Empirical evaluation indicated that LncRNAnet achieved the accuracy
of 0.92% on Human and Mouse datasets to outperform previous best performance by 6%,
whereas it achieved the accuracy of 0.9300%, 0.8965 %, 0.9085%, 0.8980%, 0.9165%, 0.9320%,
0.9085%, 0.9335%, 0.9335%, 0.9050%, and 0.9270%, and outperformed other predictors’ accu-
racies by an average amount of 3%. Extrinsic evaluation revealed that LncRNAnet achieves
better performance for short length sequences primarily due to a one-hot encoding scheme.
Because a one-hot encoding scheme lacks capturing order, positional information of residues
as well as facing the issue of the curse of dimensionality on the account of long sequences that
eventually derail the generalizeability of the classifier. Furthermore, Hill et al. [48] developed
a gated recurrent neural network based methodology, namely “mRNN”, to discriminate
ncRNAs from coding RNAs. Using a bag of neural tricks (e.g., dropout), mRNN [48] man-
aged to interpret long-range dependencies and contextual information of residues which
assisted gated recurrent units to accurately identify ncRNAs solely using one-hot encoded
sequence features. Using Human, Human–Challenge, and Mouse species datasets taken
from GENCODE [68], empirical evaluation, and comparison of mRNN [48] with CPAT [60],
FEELnc [64], and longdist-SVM [49] indicated that mRNN achieved performance of 98%,
96%, and 95%, which outperformed existing predictor performance by 4%, 16%, and 2% on
respective datasets in terms of accuracy.

Dang et al. [85] utilized the differences present in the distribution of k-mer frequency
to generate the k-mer occurrence matrix. Optimal combination of k-mer and convolutional
neural network model performance is compared with four machine learning classifiers
including RF, SVM, LR, and DT using Human, Mice, and Chicken datasets. Empirical
evaluation revealed that proposed deep learning methodology achieved the top accuracy of
0.99%, 100%, and 0.88% over Human, Chicken, and Mice datasets, outperforming machine
learning classifiers by 11%, 7%, and 7% on respective datasets.

In a nutshell, discrimination of long non-coding RNA from protein-coding RNAs is
primarily based on three aspects: first is the segregation based on the length of the open-
reading frame of coding and non-coding RNA sequences, second is the categorization by
estimating how similar sequences are to known protein sequences, and third is the inference
through the conservation of secondary structure information. A precise categorization
of such methodologies in terms of features, alignment approaches, classification model,
target species, peak performance values, and availability of source code is provided in
Tables 1 and 2.
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Table 1. A broad classification of computational approaches proposed to distinguish LncRNAs from protein-coding transcripts.

Method Features Alignment
Approach

Feature
Representation

Classification
Paradigm

Algorithm Source Code Availability Database Target Species
Performance

Acc Spe Sen Auc

RNAz [53]

Thermodynamic
stability measure,

consensus secondary
structure

pairwise and
multiple
sequence
alignment

Z-Score

Binary
Classifier

SVM

YES Rfam E. coli 0.7527 0.9893 0.7527

CONC [54]

Amino acid composition,
peptide length, predicted

secondary structure content,
predicted percentage of

exposed residues,
compositional entropy,

number of homologs from
database searches

and alignment entropy

multiple
sequence
alignment

Protein
properties

of potential
peptides from

RNAs

NO
RNAdb,

NONCODE,
FANTOM

Eukaryotic 0.9520 0.9380

PhyloCSF [66] ORFs, Coding ECM multiple
alignments

probability of
the alignment

under the
maximum
likelihood
estimate

fruitfly,
Drosophila,

melanogaster

iSeeRNA[51] conservation, ORF features
sequence nucleotide composition alignment-free K-mer frequency YES RefSeq Human, Mouse 0.96 0.98

CNCI [55] nucleotide triplets alignment-free Usage Frequency
of ANT YES GenCODE ,

Ensembl (v69) Human, Plant 0.98

PLEK [56] Kmer features alignment-free Enhanced K-mer
usage Frequency YES RefSeq,

GenCODE Human, Maize 0.956 0.955 0.925

LncRScan-SVM [50] transcript sequence, gene structure,
codon sequence, conservation

Standard deviation
of stop codon

counts
YES GENCODE Human 0.922 0.953 0.891 0.966

CPC [57] ORF, HIT SCORE multiple
alignments NO

Rfam,
RNAdb

databank
Eukaryotic 0.932 0.873 0.995

CPC2 [58] Fickett score, ORF length,
integrity, isoelectric point CD-hit alignment Combination of

multiple features YES
Rfam,

RefSequence,
Swiss-Prot

Human, Mouse,
Fly, Zebrafish,

Worm, Arabidopsis
0.96 0.97 0.95

LongDist [49]
ORF absolute length, relative length

occurrences of K-mers selected
using principal component analysis

Combination of
multiple features YES Ensembl Human, Mouse,

Zebrafish 0.982 0.974 0.989

CPPred [59]

ORF length, integrity, coverage,
hexamer score, Fickett score,

pI, instability, gravy, composition-
transition-distribution features

Combination of
multiple features YES RefSeq Human, Mouse 0.964 0.977 0.955

http://www.myogenesisdb.org/iSeeRNA
https://sourceforge.net/projects/lncrscansvm/
http://cpc.cbi.pku.edu.cn/
http://cpc2.cbi.pku.edu.cn/
https://github.com/hugowschneider/longdist.py
 http://www.rnabinding.com/CPPred
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Table 1. Cont.

Method Features Alignment
Approach

Feature
Representation

Classification
Paradigm

Algorithm Source Code Availability Database Target Species
Performance

Acc Spe Sen Auc

LGC [52] Relationship between ORF length
and guanine-cytosine content alignment-free Combination of

multiple features YES Ensembl,
GENCODE Human, Plant 0.945 0.925 0.964

CPAT [60]

open reading frame size,
open reading frame coverage,
Fickett TESTCODE statistic,

hexamer usage bias

alignment-free Combination of
multiple features LR YES RefSeq,

GenCODE
Human, Mouse,

Fly, Zebrafish 0.966 0.97 0.96 0.9927

LncScore [61]

hexamer score, ORF length,
coverage, Hexamer score distance,

maximum coding
subsequences, Fickett score

alignment-free Combination of
multiple features YES GENCODE Human, Mouse 0.964 0.940 0.973 0.994

Table 2. A Broad Classification of Approaches Proposed to Distinguish LncRNAs from Protein-Coding Transcripts.

Method Features Alignment
Approach

Feature
Representation

Classifier
Type Algorithm Source

Code Availability Database Target Species
Performance

Acc Spe Sen Auc

LncRNA-ID [62]
open reading frame (ORF),
protein conservation and

ribosome interaction

profile hidden
Markov model
(profile HMM)-
based alignment

Combination of
multiple features

RF

YES LncRNADisease
database Human, Mouse 0.9578 0.9528 0.9628

LncRNApred [69] MaxORF, RMaxORF and SNR self organizing
feature map

Machine
Learning NO UCSC,

NONCODE Human 0.929 0.925 0.934 0.973

FEELnc [64] open reading frame,
K-mer frequencies alignment-free Combination of

multiple features YES NON-CODE,
GENCODE Human, Mouse, Dog 0.939 0.941 0.938

COME [63]

GC content
DNA conservation

Protein conservation
poly(A)- expression
poly(A)+ expression

small RNA expression
H3K36me3
H3K4me3

RNA structure conservation

multiple
alignments

Combination of
multiple features YES lncRNAdb,

RefSeq
Human, Mouse,Fly,

Worm, Plant 0.947 0.963 0.897 0.981

 https://bigd.big.ac.cn/lgc
 https://github.com/WGLab/lncScore
https://github.com/zhangy72/LncRNA-ID
http://mm20132014.wicp.net:57203/LncRNApred/home.jsp
https://github.com/lulab/COME
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Table 2. Cont.

Method Features Alignment
Approach

Feature
Representation

Classifier
Type Algorithm Source

Code Availability Database Target Species
Performance

Acc Spe Sen Auc

LncFinder [75]

Sequence intrinsic features,
physicochemical property

based features,
and secondary structure features

alignment-free Combination of
multiple features Machine

Learning Meta-Classifier

YES GENCODE Human, Mouse, Wheat,
Zebrafish, Chicken 0.974 0.973 0.964 0.991

PredLnc-GFStack [77]

codon-related features,
ORF-related features
GC-related features

coding sequence-related features
transcript-related features
structure-related features

CD-HIT
alignment

Combination of
multiple features YES GENCODE

human, mouse, zebrafish,
fruit fly, S. cerevisiae,
nematode thale cress

0.914 0.933 0.875 0.969

LncPred-IEL [76]

ORF length, coverage, integrity,
Fickett score, hexamer score,
gravy, instability, Spectrum,

composition–transition–distribution,
mismatch, reverse compliment K-mer,

pseudo nucleotide composition,
and auto-cross variance features

CD-HIT
alignment

Combination of
multiple features YES GENCODE Human, Mouse,

Fruitfly, Zebrafish 0.959 0.976 0.856 0.984

CPE-SLDI [78]

ORF length, coverage, integrity,
Fickett score, hexamer score,

gravy, instability,
composition–transition–distribution

Combination of
multiple features YES GENCODE Human, Mouse,

Human-sORF, Mouse-sORF 0.97

IncRNA-MFDL [80]
ORF, secondary structure,

most like coding domain transcript,
K-mer

Combination of
multiple features

Deep
Learning

DSNN YES GENCODE,
RefSeq

Human, Anole lizard, Zebrafish,
Chicken, Gorilla, Macaque,

Mouse, Lamprey, Orangutan,
Xenopus, and C. elegans

0.971 0.965 0.977

DeepLnc [81] k-mer frequencies
Shannon Entropy

feature based
alignment

Combination of
multiple features DNN NO LNCipedia,

RefSeq Human 0.980 0.971 0.989 0.993

mRNN [48] K-mers One-hot encoding RNN YES GENCODE Human, Mouse 0.98 0.999 0.971 0.984

LncRNANet [84] Open reading frame
(ORF) indicator

multiple
sequence
alignment

One-hot encoding RNN, CNN YES

GENCODE,
ENSEMBL

and Human and
Vertebrate Analysis

and Annotation
group databases

Human, Mouse 0.9179 0.8766 0.9591

LncADeep [83] ORF length, hexamer score,
Fickett score

Combination of
multiple features DBN, DNN YES GENCODE, RefSeq Human, Mouse 0.972 0.981

DangCNN [85] k-mer occurrence matrix K-mer frequency CNN YES GENCODE Human, Mice, Chicken 0.995 1.00

The summarized content facilitates a comprehensive baseline as well as information about the availbility of open source predictive methodologies to make the lives of biomedical researchers and practitioners easier.

http://bmbl.sdstate.edu/lncfinder/
https://github.com/BioMedicalBigDataMiningLab/PredLncGFStack/
https://github.com/BioMedicalBigDataMiningLab/LncPredIEL
https://github.com/chenxgscuec/CPESLDI
http://compgenomics.utsa.edu/lncRNA_MDFL/
http://bioserver.iiita.ac.in/deeplnc
https://github.com/hendrixlab/mRNN
http://cqb.pku.edu.cn/ZhuLab/lncadeep/
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2.2. Identification of Long Intergenic RNAs

Long ncRNA is further categorized into various sub types where each sub type has
distinct biological roles [86]. Long intergenic (lincRNAs) is one of the sub types of long
ncRNA and has been discovered in the genomes of the mammals through analyzing
transcriptomic data. LincRNAs mimic the length of lcRNA (200 bp) and are considered
noteworthy resources in gene transcription, as well as translation [87]. Studies have proved
that almost 93% of complex diseases relevant to single nucleotide polymorphisms have
strong connections with intergenic regions [88]. Furthermore, lincRNAs are also responsible
for multiple myeloma [89,90], and multifarious cancers [90]. Although researchers have
managed to discover a substantial number of lincRNAs; however, their core functionalities
are still yet to be decoded. LincRNAs have a structure similar to the coding RNAs of exons
and introns; nevertheless, lincRNAs neither have a long ORF nor perform protein coding.

According to our best knowledge, there exists only one computational approach for
the identification of lincRNAs. Yu et al. [87] developed a deep learning methodology for the
identification of lincRNAs. Proposed methodology utilized a multi-layer autoencoder to
learn optimal representation of sequences. Optimized representation of sequences was later
fed to a predictive neural network for the identification of lincRNAs. In order to evaluate
the integrity of the proposed approach, they compared the performance of an auto-encoder
based model with the most widely used machine learning classifier support vector machine
(SVM) and standard neural network model. Empirical evaluation on a newly developed
dataset indicated that the auto-encoder based deep learning model outperformed the SVM
and trivial neural network based models, achieving almost 100% performance on a newly
developed Human lincRNA dataset.

2.3. Distinguishing Circular RNAs from Long Non-Coding RNAs

Another novel sub type of long ncRNA is Circular RNA (circRNA), which is gener-
ated by the process of back-splicing. CircRNAs can be broadly classified into an intronic
containing a single intron and an exonic containing a flanking intron and exon (ccRNA).
CircRNAs exist in almost 10% of genes due to back splicing, which acts as a modulator
in microRNA activity. It has been established that circRNAs are abundantly expressed in
plasma and tumor tissues of breast cancer patients where they regulate gene expression
impacting metastasis, chemoresistance, and proliferation of breast cancer through specif-
ically regulating and binding microRNAs expression [91]. Gene regulation capability of
circRNAs linked them up with human diseases like lung cancer [92,93]. Considering the
potential of circRNAs acting as prognostic markers, diagnostic markers, and therapeutic
targets for diverse diseases [91–93], researchers have extensively explored the characteris-
tics, functions, and regulatory paradigms of circRNAs by distinguishing them from other
lncRNAs. According to our best knowledge, to date, there exist six approaches [94–99]
that are capable of discriminating circRNs from other lncRNAs. A broad overview of these
approaches in terms of features, representation scheme, classification algorithm, target
species, and peak performance is given in Table 3.
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Table 3. A broad classification of computational approaches proposed to discriminate CircRNAs from other ncRNAs.

Method Features
Redundancy Removal

Approach
Feature

Representation
Classification Task

Type
Algorithm

Source Code/
Web Server Availbility

Database Target Species
Performance

ACC SEN SPE PRE MCC

PredcircRNA [94]

graph features,
sequence composition,

conservation information,
tandem repeat, ALU,

ORF features, SNP density

RT-PCR, HAVANA
manual annotation

fusion of
heterogeneous

features
Multi
-Class

MKL, RF, SVM YES
Circbase,

GENCODE,
circRNADb

Human 0.862 0.864 0.859 0.865 0.724

H-ELM [95]

graph features,
conservation score features,

component composition features,
ALU, tandem repeats, ORF, SNPs

RT-PCR, HAVANA
manual annotation

MMR and IFS based
fusion of features

hierarchical
extreme learning

machine
YES

Circbase,
GENCODE,
circRNADb

Human 0.789 0.703 0.850 0.561

CircCode [96]
Filtering of ribosomal

profiling data
ML Classifier YES

NCBI,
Ensembl,
RPFdb,

CIRCPEDIA,
PlantcircBase

Human,
Arabidopsis

Thaliana
0.60

CirRNAPL [97]

Ribonucleic acid composition,
Autocorrelation, Pseudo-

ribonucleic acid composition,
Predicted structure composition

Eliminating
Overlapping

and Short Sequences
(<200 nt)

Fusion of
multiple features

extreme learning
machine based on

particle swarm
optimization algorithm

YES
Circbase,

GENCODE,
circRNADb

Human
lncRNAs,

PCTS,
Stem Cells

0.815 0.802 0.795 0.635

CircDeep [98]
Manually Curated Features,

K-mer Features
Eliminating Short

Sequences(<200 nt)

Fusion of reverse complement
matching, conservation descriptor,

and ACNN-BLSTM Features
ACNN-BiLSTM YES

Circbase,
GENCODE,
circRNADb

Human 0.949 0.955 0.938 0.845

CircNet Sequence K-mer features
Eliminating Short

Sequences(<200 nt)
CNN-Autoencoder CNN No

Circbase,
GENCODE,
circRNADb

Human 0.9828 0.9775 0.9635

https://github.com/xypan1232/PredcircRNA
https://github.com/xypan1232/PredcircRNA/blob/master/features/training_indepedent_data.zip
https://github.com/PSSUN/CircCode
http://server.malab.cn/CirRNAPL/
http://server.malab.cn/CirRNAPL/
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The first approach PredcircRNA proposed by Pan et al. [94] generated statistical
representation of raw RNA sequences by combining seven different features including
graph features, sequence composition, conservation information, tandem repeat, ALU, ORF
features, and SNP density. Based on this statistical representation, the classifier managed to
acquire a linear weight combination of multiple kernels in which every kernel converting
the hands-on representation into a higher dimensional space just to make the data linearly
separable. Afterwards, SVM was utilized for final classification, the performance of which
was compared with two other classifiers: Random Forest and Multi-Kernel Learning classi-
fier. Among all of these, SVM based predictive methodology PredcircRNA attained a top
accuracy of 86% on the benchmark dataset. Using a similar set of features, Chen et al. [95]
developed H-ELM, which additionally utilized minimum redundancy maximum relevance
(mRMR) as well as the iterative features selection approach to perform a deeper analysis of
sequences and retain only the most discriminative set of features. Using most informative
features and a hierarchical extreme learning classifier, authors distinguished circRNAs
from other lncRNAs. A major bottleneck of both discussed approaches is their inability to
acquire underlay structure and formation of circular RNA along with a lack of utilization of
trinucleotide co-occurrence information. In addition, the dependence of these approaches
over several manually curated features also make them less adaptive and ineffective.

Sun et al. [96] developed“CircCode” to precisely identify translated cicRNAs in
Human as well as Arabidopsis thaliana. Empirical evaluation on two different datasets
indicated that CircCode greatly minimized false positive rate. CircCode was exposed as
a web service to facilitate diverse users. Niu et al. [97] developed a novel methodology
“CirRNAPL” which fused nucleic acid composition features with circRNA sequence fea-
tures to acquire rich inherent relationships of residues. CirRNAPL utilized an extreme
learning machine classifier based on a particle-swarm optimization approach to accurately
distinguish circRNAs from Human lncRNAs, protein-coding transcripts, and stem cells.
Empirical evaluation on three benchmark datasets, a detailed performance comparison
with baseline classifiers and existing predictors, indicated that CirRNAPL archived the top
accuracies of 81%, 80%, and 78% on three core datasets, respectively.

Dominantly, computational predictive methodologies make use of manual curated
features; however, such approaches extract redundant and irrelevant features as well.
Building on these deficiencies, Chaabane et al. [98] developed a hybrid end-to-end compu-
tational framework “circDeep” to accurately discriminate circRNAs from lncRNAs. They
developed three different descriptors including reverse complement matching to determine
the predictive potential of circRNA sequences, for residue context, conservation descriptor
to conserve species and motif specific information, and a neural embeddings based asym-
metric convolutional neural network with Bidirectional Long Short-Term Memory network
(ACNN-BLSTM) to extract local features and retain long range dependencies. Using two
benchmark datasets, performance comparison with existing computational predictors
H-ELM [95] and PredcircRNA [94] indicated that the proposed circDeep approach attained
the top MCC of 85%, which outperformed existing approaches by a significant margin
of 12%. Although authors managed to raise the classification performance significantly,
the extraction of a reverse complement matching score is very time-consuming and also
depends on two manually curated features.

To further increase the predictive performance by effectively handling redundant and
irrelevant features, more recently, Stricker et al. [99] developed an end-to-end deep learning
framework CircNet to automate the process of extracting important sequence features for
the task of discriminating CircRNAs from other long ncRNAs. CircNet utilized encoder–
decoder architecture based convolutional operations to obtain bottleneck representation
of sequences. CircNet utilized another convolutional operations based architecture to
acquire most discriminative features from bottleneck sequence representation to feed the
final classification layer. Authors performed extensive experimentation with different
regions of circRNA sequences to reveal which region contained the most significant residue
distribution for circRNA identification. Preserving the important sequence information
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regarding CircRNA identification, CircNet attained a top accuracy of 98% on the benchmark
dataset. In comparison to CircDeep [98], H-ELM [95], and PredcircRNA [94], CircNet
outperformed the state-of-the-art CircRNA identification approach by a significant margin
of 10% in terms of F1-score.

2.4. Identification of Small Non-Coding RNAs

Small ncRNAs possess a length of around 20–30 bp and are involved in translation,
splicing, and regulation of genes [100]. Primarily, small ncRNAs are segregated into
sub-classes, where every subclass has distinct biological significance [101,102].

One of the unique classes of small ncRNA molecules is piRNA molecules, which
not only exist in germline cells of animals but also in diverse human somatic cells [103].
Their sequence length falls in the range of 26 to 32 nucleotides [104–106]. Studies have
revealed that piRNA plays an important role in a variety of gene functions including
protein translation, preserving genome integrity, transposon silencing, and gene expression
regulation [107,108]. PiRNA molecules move inside the genome, and also induce inser-
tions, deletions, and mutations that might produce genome instability [109]. Similarly,
studies [110–113] have reported that piRNA occurrences are also strongly linked with a
variety of tumor varieties, where they contribute to the development and acceleration of
cancer cells.

Considering these promising findings, there is an immense interest to discover and
categorize piRNA molecules along with the study of functions related to gene stability,
drug development, diagnosis, and treatment for cancer cells. In order to categorize RNA
sequences into pi and non-pi RNA sequences, several methodologies came into the pic-
ture. A broad overview of these approaches in terms of features, representation scheme,
classification algorithm, target species, and peak performance is given in Table 4. For
example, in 2007, Betel et al. [114] proposed the very first one-layer machine learning
methodology for the identification of piRNA molecules in Mouse species. Their proposed
methodology utilized position specific residues properties to generate sequence representa-
tion and support vector machine (SVM) for classification. Empirical evaluation revealed
that, across the Mouse species dataset, their proposed machine learning approach manages
to achieve a precision of 61%. In 2011, Zhang et al. [115] presented a piRNAPredictor
that used the k-mer approach as feature representation and a machine learning classifier,
namely support vector machine (SVM) for prediction. Evaluation of the proposed one-
layer piRNAPredictor over five species datasets including rat, mouse, human, fruit fly, and
nematode indicated the dominance of piRNAPredictor as compared to existing predictive
methodologies by attaining a top precision of 90%.

In 2014, Wang et al. [116] utilized triple elements which combined structure and
sequence information to learn rich representation of piRNA sequences and SVM classifier
to develop a robust piRNA predictor, namely “Piano”. Performance analysis over four
species human, mouse, rat, and Drosophila indicated that Piano outperformed existing
piRNA predictive methodologies by attaining the top performance around 95% in terms of
four most widely used evaluation metrics. In the same year, Brayet et al. [117] developed
another one-layer predictive methodology “PiRPred” which used K-mer sequence descrip-
tor and multiple kernels based SVM for the identification of piRNA molecules. Empirical
evaluation over two species—Human and Drosophila—revealed that PiRPred raised the
previous best performance by a decent margin by attaining the accuracy of 89%, sensitivity
of 83%, and specificity of 95%. Liu et al. [118] developed “Pibomd” methodology for
piRNA classification using sequence motifs as features and SVM as a classifier. Authors
evaluated the integrity of Pibomd over five different species including rat, mouse, human,
fruit fly, and nematode, where Pibomd managed to achieve the top performance of 91%,
92%, and 90% in terms of accuracy, sensitivity, and specificity.
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Table 4. A broad classification of computational approaches proposed to identify piRNA molecules.

Performance
Method Features

Redundancy

Removal Approach

Feature

Representation
1-Layer/2 -Layer

Classification

Paradigm
Algorithm

Source Code

/Web Server Availbility
Database Target Species

ACC SEN SPE PRE MCC

BetelPredictor [114]
Sequence

Features

WU-BLAST and

Newly Developed Tool

position specific

residues properties
One Layer SVM NO Mouse 0.61

piRNAPredictor [115] K-mer features
K-mer based

representation
One Layer SVM YES

NONCODE,

NCBI

rat, mouse, human,

fruit fly, nematode.
0.60 0.90

Piano [116]
Triplet elements combining

structure and sequence

information

SeqMap One Layer SVM NO
GenBank,

NONCODE,

UCSC

human, mouse,

rat, Drosophila
0.95 0.96 0.9461 0.9495

PiRPred [117] K-mer
K-mer based

representation
One Layer

Multi-Kernel

SVM
YES

GtRNAdb,

Biomart
human, Drosophila 0.89 0.83 0.95

Pibomd [118] Sequence Motifs One Layer SVM YES
NONCODE,

NCBI

rat, mouse, human,

fruit fly, nematode
0.906 0.915 0.898

McRUM [119]
correlation based

K-mer features

K-mer based

representation
One Layer L1 based SVM NO

NONCODE,

NCBI

Caenorhabditis elegans,

Human,

Locusta migratoria,

Drosophila melanogaster

0.931 0.939 0.923 0.862

LiuPredictor [120]
weighted

K-mer features

K-mer based

representation
One Layer SVM NO

NONCODE,

NCBI

human, mouse,

drosophila, and rat
0.90 0.90

2L-piRNA [121]
physicochemical properties of nucleotides

pseudo K-tuple nucleotide composition
CD-Hit multiple features Two Layer SVM YES

piRBASE,

NONCODE
M. musculus

86.1,

0.776

88.3,

0.791

83.9,

0.76

0.723,

0.552

piRNAdetect [122]
n-gram model

based features
One Layer SVM NO piRBASE

H. sapiens

R. norvegicus

M. musculus

0.844

piRNApred [123]
physico-chemical

properties based

features

CD-Hit One Layer SVM NO
piRBASE,

NONCODE

H. sapiens, M. musculus,

D. melanogaster, C. elegans

Danio rerio, Gallus gallus domesticus,

Xenopus tropicalus, Bombyx mori

0.986 0.986 0.986 0.97

IpiRId [124]
K-mer motifs

features
BLAST One Layer SVM YES

piRBASE,

piRNABank,

GtRNAdb,

Human, Mouse, Fly 0.936 0.907 0.966 0.964

2L-piRNAPred [125]

single, dinucleotides composition,

physicochemical properties,

position specificities of nucleotides,

proportions of peptide sequence

CD-Hit
F-score based fusion

of multiple features
Two Layer SVM NO

piRBASE,

NONCODE
M. musculus

0.89,

0.84

0.904,

0.843

0.875,

0.836

0.779,

0.68

2lpiRNApred [126]

K-mer, General parallel correlation

pseudo-dinucleotide composition,

General series correlation pseudo-dinucleotide

composition, Normalized Moreau–Broto

autocorrelation, and Geary autocorrelation

CD-Hit Two Layer

Machine

Learning

Sparse

Representation,

SVM classifier

YES
piRBASE,

NONCODE
M. musculus 0.887, 0.806 0.919, 0.824 0.855, 0.776 0.776, 0.600

http://59.79.168.90/piRNA/index.php
http://EvryRNA.ibisc.univ-evry.fr
http://app.aporc.org/Pibomd
http://bioinformatics.hitsz.edu.cn/2L-piRNA/
https://evryrna.ibisc.univ-evry.fr/evryrna/
https://github.com/JianyuanLin/2lpiRNApred
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Table 4. Cont.

Performance
Method Features

Redundancy

Removal Approach

Feature

Representation
1-Layer/2 -Layer

Classification

Paradigm
Algorithm

Source Code

/Web Server Availability
Database Target Species

ACC SEN SPE PRE MCC

GA-WE [127]
multiple K-mer

related features
SeqMap One Layer

Weighted

Random Forest
YES

NONCODE,

NCBI,

UCSC

Human, mouse,

Drosophila
0.964 0.940 0.973 0.694

LuoPredictor [128]
Physico-chemical Properties

based features
SeqMap One Layer

Machine Learning
Random Forest YES

NONCODE

UCSC
Human, Mouse and Drosophila 0.958 0.952 0.965

ine V-ELMpiRNAPred [129]
short sequence motifs

with K-mer features
One Layer

Voting based

Extreme Learning

Machine

NO NONCODE Human 0.952 0.956 0.947 0.899

piRNN [130] K-mer features One Layer CNN YES
miRBASE,

tRNA database

Caenorhabditis elegans,

Drosophila melanogaster,

rat and human

0.95 0.97 0.97 0.94 0.91

2L-piRNADNN [131]
di-nucleotide auto covariance

features with 6 physico-chemical

properties based features

Two Layer

Deep

Learning
DNN YES

piRBASE,

NONCODE
M. musculus 0.918, 0.845 0.909, 0.812 0.948, 0.903 0.821, 0.650

https://github.com/zw9977129/piRNAPredictor
http://ento.njau.edu.cn/Piano.html
https://github.com/bioinfolabmu/piRNN
https://github.com/salman-khan-mrd/2L-piRNADNN


Int. J. Mol. Sci. 2021, 22, 8719 19 of 43

In 2015, Menor et al. [119] developed “McRUM” methodology which utilized correlation
based feature selection to extract important K-mer features and L1 based Gaussian kernel
oriented SVM for final prediction. McRUM was evaluated over Caenorhabditis elegans,
Locusta migratoria, and Drosophila melanogaster, where it achieves the top accuracy of 93%.
In 2016, Lie at al. [120] proposed a weighted K-mer and SVM based approach for piRNA
classification. Authors evaluated the performance of proposed machine learning piRNA
predictor using datasets of four different species including human, mouse, drosophila, and
rat where proposed predictors achieved the sensitivity and precision of 90%.

In 2016, Luo et al. [128] presented an ensemble learning methodology which utilized
physico-chemical properties based encoding scheme and Random forest classifier to predict
piRNA molecules. Performance assessment on three different species Human, Drosophila,
and Mouse indicated that proposed predictive methodology achieved the performance of
96% across most widely used evaluation metrics. In the same year, Li et al. [127] presented
“GA-WE” methodology which used multiple K-mer related features and weighted random
forest classifier for piRNA classification. Authors evaluated the integrity of GA-WE on
three different species Human, Drosophila, and mouse, where GA-WE outperformed the
previous best performance by a decent margin as it achieved a top accuracy of 96%.

In 2017, Chen et al. [122] developed “piRNAdetect” methodology which used n-gram
model based features and an SVM classifier for accurate identification of piRNA molecules.
Authors evaluated the performance of piRNAdetect over H. sapiens, R. norvegicus, and
M. musculus species where piRNAdetect managed to achieve accuracy of 84%. Around a
similar time, Boucheham et al. [124] presented “IpiRId” methodology which utilized K-mer
specific motifs as features to feed an SVM classifier based on the fusion of multiple kernels
for accurate identification of piRNA molecules. IpiRId was evaluated over three species
datasets including Human, Mouse, and Fly, where IpiRId attained a top accuracy of 94%.
Pian et al. [129] developed a deep learning based piRNA classification approach namely
“V-ELMpiRNAPred” which combined short sequence motifs with K-mer features to feed
voting based extreme learning machine (V-ELM) classifier. V-ELMpiRNAPred correctly
identified human piRNAs with an accuracy of 95%.

In 2018, Wang et al. [130] developed the first advanced neural architecture based
methodology “piRNN” for piRNA classification. piRNN utilized position specific K-mer
features to feed a convolutional neural network. Performance evaluation over four different
species including Caenorhabditis elegans, Drosophila melanogaster, rat, and human revealed the
dominance of piRNN which outperformed existing piRNA predictors by obtaining an ac-
curacy of 95%, sensitivity and specificity of 97%. Around a similar time, Monga et al. [123]
developed another one-layer approach “piRNApred” which utilized physico-chemical
properties to capture biological characteristics of piRNA sequence residues and an SVM
classifier for distinguishing piRNA molecules from non-piRNA molecules. piRNApred
performance was analyzed over H. sapiens, M. musculus, D. melanogaster, C. elegans, Danio
rerio, Gallus gallus domesticus, Xenopus tropicalus, and Bombyx mori species. Experimental
results revealed that piRNApred attained a top accuracy of 99% which outperformed
previous best performance by a significant margin.

All of these methodologies categorized RNA molecules into piRNA and non-piRNA
classes. However, they neglected to discover their functions in the context of mRNA dead-
enylation. To address this problem, Lu et al. [121] presented a two-layer machine learning
based predictor, namely “2L-piRNA”, in which pseudo K-tuple nucleotide composition
was combined with physicochemical properties of nucleotides to learn rich inherent rela-
tionships of residues. Optimized sequence representation was passed to an SVM classifier
which identified piRNAs at the first layer with an accuracy of 86% and predicted their func-
tions at a second layer with an accuracy of 78% for the M. musculus species. Likewise, in
the following year, Chen et al. [125] developed another “2L-piRNAPred” which combined
a transcript composition based feature, position specificities of nucleotides, proportions of
peptide sequence, and physicochemical properties to generate a comprehensive represen-
tation of piRNA sequences. 2L-piRNAPred utilized an SVM classifier to identify piRNA
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molecules at the first layer with an accuracy of 89% and piRNA function at the second layer
with an accuracy of 84% over the M. musculus species dataset. However, both presented
approaches “2L-piRNA” [121], and “2L-piRNAPred” [125] utilized SVM in the first layer,
which failed to correctly distinguish piRNA and non-piRNA molecules along with func-
tion kinds mainly due to the fact that piRNA molecules and non-piRNA molecules were
highly similar to each other. In addition, these methodologies required human expertise to
effectively extract most relevant features, which is a major downfall [132].

Building on these deficiencies and considering the room for improvement, Khan et al. [131]
presented another 2-fold computational predictor, namely “2L-piRNADNN”, for the iden-
tification of piRNA molecules and their function types. They combined di-nucleotide auto
covariance features with six physico-chemical properties based features to generate rich
sequence vectors. piRNA sequence vectors were passed to a deep neural network which
automatically extracted most informative features for the task of piRNA classification
and piRNA function prediction. Empirical evaluation of proposed methodology on the
M. musculus species dataset indicated that 2L-piRNADNN achieved the accuracy of 92%
at the first layer and 85% at the second layer.

Recently, Zuo et al. [126] developed a robust two-layered integrated classification
methodology, namely “2lpiRNApred”, which identified piRNAs in the first layer and
estimate their function for the induction of target mRNA deadenylation in the second layer.
They investigated five sequence descriptors including Kmer, Geary auto-correlation, Nor-
malized Moreau Broto auto-correlation, General parallel correlation pseudo dinucleotide
composition (PDC), and general series correlation PDC. To discard redundant features, they
developed a novel feature selection algorithm using Luca fuzzy entropy and a Gaussian
membership approach. They investigate the performance of Sparse Representation and
an SVM classifier to construct 2lpiRNApred methodology for accurate classification of
piRNA molecules. Empirical evaluation on the M. musculus species dataset revealed that
2lpiRNApred attained the accuracy of 88% at the first layer and 81% at the second layer.

Other than PiRNA, some of the initially found subclasses of small ncRNAs are transfer
RNAs (tRNAs) and ribosomal RNAs (rRNAs). Contrary to these primary subclasses,
small ncRNA has a few other subclasses such as Group 1 introns, and 5S rRNA which
were included in the list lately. SnoRNA, and miRNA usually play their part in cancer
by a sequence of mechanisms [133]. SnoRNAs escort chemical modifications in transfer
RNAs (tRNAs), ribosomal RNAs (rRNAs), and other small nuclear RNAs. Primarily,
snoRNA has two core classes: HACA-BOX and CD-Box. Meanwhile, HACA-Box has strong
connections with methylation, and CD-Box is linked with pseudouridylation. However,
the impact of pseudouridylation and methylation modifications on the working of mature
RNAs is yet to be discovered. These modifications are usually known to magnify RNA
folding and exchange with ribosomal proteins. Unlike snoRNAs, scaRNAs are body
specific RNAs that are localized to nuclear organelles and Cajal bodies. Most ScaRNAs are
not only functionally but also structurally identical to snoRNAs; however, few of them
are considered composites of HACA-Box and CD-Box, which can direct modifications
in both pseudouridylation and methylation—whereas, miRNAs mainly perform post
transcriptional gene expression regulation and RNA silencing. MiRNAs target almost
60% of human genes as they exist in abundance. MiRNAs play an indispensable role
in several biological processes like cell differentiation, proliferation, and death [134–137].
Studies have proved that miRNAs are involved in diverse complex human diseases such
as neurodegenerative, cancer, autoimmune, and cardiovascular diseases [26].

Ribosomal RNA (rRNA) is essential for all living organisms as it plays a key role in
protein synthesis. rRNA characteristics are considered extremely valuable for the devel-
opment of multifarious antibiotics. In addition, 5S ribosomal, another kind of rRNA, also
exists in ribosomes. Although its function has not been discovered yet, it has been seen
that their deletion substantially alleviates protein synthesis and also produces detrimental
effects on the fitness of the cell [138]. Likewise, 5.8S ribosomal RNA actively participates in
protein translocation [139]. It also forms covalent connection with tumor suppressor pro-
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teins [140] and can be used to detect miRNA [141], and understand other rRNA pathways
and processes in cells [142].

Two sub-classes of nc-RNA (transfer RNA (tRNA) and ribosomal RNA (rRNA)) play
an important role during translation events in which proteins are formed [143]. Another
well known class of nc-RNA is microRNAs (miRNAs) which participate in regulation of
various biological processes such as proliferation, differentiation, stress tolerance, apoptosis,
energy metabolism, immune response, and cell cycle [144]. It consists of 19–25 nucleotide
long regulative RNA molecules [144–146]. microRNAs always look for opportunities to
bind to other RNAs that resemble them. In such a way, they stop activities of binded RNAs,
which leads to preventing the formation of proteins most of the time [147]. In cancer, there
are some well established famous genes known as oncogenes, that can turn on in cancer
cells and promote cell division that gets out of control. microRNAs have the ability to
control and shut off the process of oncogenes [147]. Recent research has proven that, in a
cell where microRNA is present, oncogenes would be shut off and cells will not divide. On
the contrary, if microRNA genes are missing from a cell, oncogenes could be used for the
promotion of cancer [148].

Park et al. proposed a deep learning based approach called Deep RNN [149]. Deep
RNN makes use of a recurrent neural network based approach for the identification
of microRNAs. Deep RNN requires sequence alignment and extraction of a secondary
structure of the sequence at the pre-processing stage. Secondary structure based features
are passed to RNN layers that extract more discriminative features (Table 5).
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Table 5. Summary of machine and deep learning based methodologies proposed for the identification and clustering of non-coding RNAs.

Method Database Alignment Features Features Classification Approach Target Biomoelcule and Sequence Analysis Task Performance
Accuracy Specificity Sensitivity AUC

Deep RNN [149] NCBI, fRNAdb,
NON-CODE

pairwise sequence
alignment Secondary sequence features RNN Micro RNAs Identification - 0.9920 0.8220 -

EnsembleClust [150] ENSEMBL Pairwise sequence alignment structural alignments score Hierarchical
Clustering Clustering of non coding RNA - - - 0.944

RNAscCLust [151] Rfam - structure conservation
and graph-based motifs

Hierarchical
Clustering Clustering of non coding RNA - - - -

SHARAKU [152]

NCBI Reference sequence
database, ENSEMBL
database and next generation
sequencing output

Pairwise sequence alignment Similarity score matrix Random
forest Clustering of non coding RNA - - - 0.985

CNNClust [153]

Rfam, HUGO gene
nomenclature committee
(HGNC) databases, Ensembl
and genomic tRNA database

Pairwise sequence alignment Derived position weight
matrices of sequence motifs CNN Clustering of non coding RNA 0.9800 - - -

http://bpla-kernel.dna.bio.keio.ac.jp/clustering/
http://www.bioinf.uni-freiburg.de/Software/RNAscClust
http://www.dna.bio.keio.ac.jp/sharaku/
http://www.dna.bio.keio.ac.jp/cnn/
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2.5. Segregating Small and Long Non-Coding RNAs

With the advancements of biological research, it was extrapolated lately that most
of the genome of living organisms are transcribed into multifarious ncRNAs, and they
perform multifarious essential biological functions [154–156]. After these findings, detect-
ing new ncRNAs and discovering their biological functions became a promising area of
research [39,157,158]. Furthermore, to understand the behavior and role of ncRNAs in
biological operations, various sub-classes of ncRNA have been identified [159]. Based on
folding of nucleotide sequence, sequence length, and their biological role, ncRNAs are
categorized into small and long ncRNAs.

Lertampaiporn et al. [160] proposed an ensemble approach for the classification of
ncRNAs into two sub-classes called long ncRNA and small ncRNA. Through the proposed
ensembling approach, they reaped the benefits of two classifiers: random forest and
logistic regression. They used a set of five features (sequence, modularity, coding potential,
structure, and structural robustness) to represent a sequence. They used a correlation
based feature selection algorithm to discard less discriminative features from the set of
extracted features.

2.6. Family Classification of Small Non-Coding RNAs

In order to accurately classify small non-coding RNAs into respective families, a
number of computational methodologies have been developed. In Table 6, we have
summarized state-of-the-art machine and deep learning based methodologies proposed
for the classification of small non-coding RNAs.

Antonino Fiannaca [159] developed a deep learning based methodology where sec-
ondary structural features of RNA sequence and convolutional layers were used for the
extraction of more discriminative features to feed dense layers for classification of small
ncRNA. Their methodology achieved 81% accuracy for classification of small ncRNA se-
quence into 13 predefined classes. Another interesting methodology was proposed by
Emanuele Rossi, which used graph convolutions for the extraction of discriminative fea-
tures from secondary structural features of small ncRNA sequences. Features extracted by
graph based convolutional layers were passed to fully connected layers for the classification
of small ncRNA sequences to 13 different classes with 85% accuracy [161].

Instead of considering a secondary structure as a key determinant to determine small
ncRNA function, Noviello et al. [162] presented a deep learning methodology based
on just raw sequence information. To extract discriminative high level features from
small ncRNA sequences represented using k-mer binary encoding, they used a three-
layer convolutional neural network (CNN) and showed that raw sequence information is
enough to determine the function of small ncRNA. In order to optimize proposed CNN
model, they performed experimentation with different kinds of padding schemes, K-mer
encodings (e.g., 1-mer, 2-mer, 3-mer), CNN layers, and bag of tricks (e.g., Dropout). They
found that K-mer encodings are not very much affected by padding criteria (e.g., random,
constant, new symbol padding) and constant or new-symbol padding is more prone to
impact overall predictive performance. K-mer encoding scheme handles the noise better as
compared to a trivial one-hot encoding scheme. Furthermore, increasing the depth of CNN
improves the predictive performance and dropout strategy largely assists the CNN model
for distinguishing functional and non-functional ncRNA sequences. Building on these
findings, the optimized CNN model outperformed existing secondary structure based
approaches in terms of discriminating function and non-functional small ncRNA sequences
and classification speed, indicating the suitability of purely sequence information based
predictive methodologies for large scale genome annotation. A performance comparison
with baseline RNN and state-of-the-art predictive methodologies showed that the proposed
CNN model achieved the top accuracy of 96% on the benchmark dataset, outperforming
previous best performance by a significant figure of 10%.
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Table 6. A brief summary of computational methodologies developed for small non-coding RNA family classification.

Method Database Alignment Features Features Classification Approach Target Biomoelcule
Performance

ACC SPE SEN AU-ROC

Hybrid Random Forest [160]

Rfam, RefSeq,
NCBI GenBank,

genome database,
lncRNAdb database

Multiple sequence
alignment

sequence, structure,
structural robustness,

modularity and
coding potential

Random Forest
Classification into small non

coding or long non coding RNA
0.9211 0.9350 0.9070

ine
Deep next generation
sequencing [163]

NONCODE, NCBI, lncRNA
Pairwise sequence
alignment

Protein coding features
Deep next generation
sequencing

Classification into coding
or non coding RNA

- - - -

ine nRC [164] Rfam Multiple sequence alignment Secondary structure features CNN
Classification of
small non coding RNA

0.8181 0.9848 0.8181 -

ine RNAGCN [161] Rfam Multiple sequence alignment Secondary structure features
graph convolutional
network

Classification of
small non coding RNA

0.8573 - - -

ine RPC-snRC [47] Rfam - Raw Sequence Dense-Net
Classification of small
non coding RNA

0.9538 - - -
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Likewise, considering the room for improvement in secondary structure based pre-
dictive methodologies for small ncRNA family classification, Chantsalnyam et al. [165]
presented a deep learning methodology “ncRDeep” which extracted discriminative features
using a simple yet efficient convolutional neural network model from one-hot encoded
small ncRNA sequences. They optimized the training and generalizeability of ncRDeep
using a bag of neural tricks such as batch normalization and dropout. Using only se-
quence information, ncRDeep achieved an accuracy of 88% on the benchmark dataset
which outperformed previous best performance by 9%. Considering small ncRNA family
classification approaches based on secondary structure related features usually just take
global characteristics into account while neglecting mutual influence of local structures,
Asim et al. [166] developed a robust and precise CNN based classification methodology
“RPC-snRC” using only sequence information. They applied a maximum-length copy
padding trick to generate fixed length ncRNA sequences where representation at character
and higher order residue level is learned using a variety of encoding schemes. They utilized
one-hot encoding, randomly initialized embeddings, and pre-trained residue embeddings
to investigate whether deep learning approaches perform better with character level encod-
ings or higher order residue encoding. Two recent based classification methodologies were
treated as baseline. Using local and global residue property based sequence vectors, precise
CNN effectively captured the essence of a small ncRNA sequence for the task of small
ncRNA family prediction. Performance comparison of proposed RPC-snRC methodology
with baseline and state-of-the-art computational predictors over the benchmark dataset
showed that RPC-snRC methodology achieved an accuracy of 95%, which outperformed
previous best performance by a great margin of 10%.

2.7. Computational Methodologies for Clustering of Non-Coding RNA

Classification methodologies can be categorized into two different types: supervised
and unsupervised. In the supervised type, we provide class labels information along
with sequences to train any machine or deep learning model. On the other hand, in
unsupervised types, we do not provide class labels to train the model; it finds similarities
among the sequences and makes clusters of similar sequences. Rather than classification
of ncRNAs to predefined classes, various clustering based approaches have also been
utilized. Clustering based approaches identified several new classes of ncRNAs. In Table 5,
we have summarized state-of-the-art machine and deep learning based methodologies
proposed for the clustering of non-coding RNAs. Saito et al. proposed an Unsupervised
Learning approach (EnsembleClust) for ncRNA classification [150]. This technique required
the input as unlabeled samples to construct ncRNA clusters. In this technique, ncRNAs
were clustered on the basis of structural alignment scores. Authors performed sequence
alignment using the Waterman algorithm [167], and a secondary structure was acquired
using the McCaskill algorithm [168]. Another similar methodology was proposed by
Tsuchiya et al. [152]. In the proposed approach, the authors utilized a read mapping profile
alignment program that used decomposition for aligning and folding RNA sequences
simultaneously (DAFS). This technique was more useful to discriminate ncRNAs located
in the brain.

Another similar ncRNA detection approach known as RNAscClust was proposed by
Miladi et al. [151]. This technique made the clusters of RNA sequences by using graph-
based patterns and structure conservation. Authors provided two benchmark datasets:
Rfam-ome and Rfam-cliques. The quality of predicted clusters was measured by rating
how well it agrees with the sequences annotated in the true Rfam database.

2.8. ncRNA Classification Datasets

To assess to what extent machine and deep learning approaches are capable of discrim-
inating different ncRNAs from protein-coding transcripts (PCTs) or each other, a number
of datasets have been developed using public metathesauruses like RNA Central [169],
ENCODE, RefSeq [67], ENSEMBL, and NONCODE [41].
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A number of predictive methodologies including LncRNANet [84], NcResNet [170],
LNcRNAMDeep [171], LiuXQpPredictor [172], and LncRDeep [83] utilized five different
lncRNA datasets to distinguish lncRNA sequences from PCTs which contain Human, Mouse,
and cross-species sequences. Sequence-to-genre distribution of five different lncRNA iden-
tification datasets is summarized in pie charts (Figure 2). Likewise, for CircRNA identifica-
tion, CircRNAPL [97], circDeep [98], ZhangCircLncRNA [173], ZhangCircDeep [173], and
JEDI [174] are evaluated on five distinct datasets containing lncRNA and circRNA sequences
for the task of differentiating circRNA sequences from lncRNA sequences.

Figure 2. Statistics of different benchmark datasets used in the literature to evaluate the performance of ncRNA classifica-
tion predictors.

For small ncRNA, especially piRNA identification, there exist a variety of datasets
belonging to distinct species. Figure 3a–d describes the aggregated statistics of different
species datasets (whose names are mentioned in Table 4) along with respective compu-
tational predictors. For LincRNA identification, there exists only one benchmark dataset
prepared by Yu et al. [87], the statistics of which are summarized in Figure 3e. Similarly,
only the benchmark dataset used in literature for small non-coding RNA family classifi-
cation is summarized in terms of 13 different classes, and the distribution of each class
is given in Figure 3g. For microRNA identification, a positive and negative number of
sequences with respect to three different benchmark datasets [149] are given in Figure 3f.
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Figure 3. Statistics of different benchmark datasets used to identify piRNA (a) 1-Layer 4 Species Datasets, (b) 1-Layer
3 Species Datasets, (c) 1-Layer 2 and 1 Species Datasets, (d) 2-Layer Datasets, where Species = H. sapiens, M. musculus,
D. melanogaster, C. elegans, Danio rerio, Gallus gallus domesticus, Xenopus tropicalus, Bombyx mori 4 , LincRNAs (e), MicroRNAs
(f), and family of small ncRNAs (g).

3. Sub-Cellular Localization of Coding and Non-Coding RNAs

ncRNAs contribute to several biological functions such as dosage compensation,
genomic imprinting, and cell differentiation [26,27]. In addition, ncRNAs are strongly
linked to several complex diseases including cardiovascular disorders, Alzheimer’s, and
Cancer [26,27]. Over the period, researchers have discovered that localizations of ncRNAs
within cells primarily determine their biological functions [175,176]. The identification and
deep investigation of localization of ncRNAs through controlled biological experiments are
extremely labor-intensive tasks and also infallible to errors. Building on this, developing
diverse machine and deep learning based methodologies to automate the process of
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identifying ncRNA subcellular locations and discovering their biological functions soon
became the hottest research area in Bioinformatics. Throughout this period, the primary
focus of researchers has been to develop robust computational methodologies that can
accelerate ncRNA structural and functional research, enabling the practitioners to have a
better picture of various biomedical implications.

Utilizing the RNALocate database [45] and other resources such as ENCODE project [177]
and the Ensembl database [46], up to now, researchers have proposed six computational
methodologies for long ncRNA (lncRNA), four for messenger RNA (mRNA), and two for
microRNA (miRNA) for the task of sub-cellular localization. The importance of lncRNA,
mRNA, and miRNA and computational methodologies proposed to determine their biological
functionalities through sub-cellular localization are briefly discussed below.

3.1. Messenger RNA Sub-Cellular Localization

Sub-cellular localization of messenger RNA (mRNA) plays a pivotal role in post-
transcriptional regulation of genes. Messenger RNA localization mechanisms and their
dependency on transcript structure have esoteric biomedical implications, hence their local-
ization patterns are essential to explore in order to acquire the fundamental understanding
of molecular biology. Although recent sequencing based robust technologies enable the
identification of mRNA localities in the context of certain sub-cellular compartments, the
mechanisms associated with specific sequence structures have been poorly understood.
Building on this, Yan et al. [178] presented RNATracker, which utilized a neural network
to predict the distributions of messenger RNA trasncripts in the context of a pre-declared
collection of sub-cellular compartments. CNN is more suitable for performing automated
parallel feature engineering through learning and Long Short Term Memory (LSTM) for
discovering the correlations among different positions, capturing cooperative binding
and sequence context by analyzing the sequential data. Considering these advantages of
diverse neural networks, RNATracker integrated a number of state-of-the-art deep learn-
ing approaches including CNN, LSTM, and Attention mechanism to effectively leverage
secondary structure and sequence information. RNATracker substantially outperformed
baseline predictors and paved the way for the generation of testable hypotheses related to
cis-regulatory and trans-regulatory molecules, and also to estimate the mutation impact on
gene regulation.

Zhang et al. [179] developed a machine learning based methodology iLoc-mRNA for
accurate determination of mRNA sub-cellular localization. They utilized binomial distribu-
tion to obtain a unique representation of mRNA sequences and variance analysis to select
an optimal set of features. Using the support vector machine, the proposed iLoc-mRNA
methodology managed to achieve a top accuracy of 90.12% on the benchmark dataset for
sub-cellular localization of Homo sapiens. Garg et al. [180] developed another machine
learning based methodology mRNALoc to infer the sub-cellular localization of mRNAs.
mRNALoc utilized a pseudo K-tuple nucleotide composition descriptor to generate the
encoding of mRNA sequences and support vector machine for classification. In compari-
son to existing mRNA sub-cellular localization predictors, using 5-fold cross validation,
mRNALoc achieved the accuracies of 99%, 75%, 74%, 67%, and 65% for mitochondria,
endoplasmic reticulum, nucleus, cytoplasm, and extracellular region sub-cellular locations
across the benchmark dataset. For an independent test set, mRNALoc attained the accura-
cies of 99%, 69%, 69%, 64%, and 58% for mitochondria, nucleus, endoplasmic reticulum,
cytoplasm, and the extracellular region, respectively.

In the real world of transcriptomes, mRNAs are usually localized to multiple compart-
ments as indicated by the RNA sub-cellular localization metathesaurus [45]. Considering
the lack of computational methodology capable of predicting multiple compartments
of mRNAs, Wang et al. [181] developed a deep learning methodology “DM3LOC” to
predict multi-label sub-cellular localization of mRNA sequences. Typically, CNN is uti-
lized to acquire discriminative features, BI-LSTM is utilized to take spatial distances and
orientation of residues into account, and attention layer is employed to assign greater
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weights to important regions. Such attention mechanism is called single head attention
as just one attention-to-weight vector is used. Although a single head attention paradigm
facilitates some intelligence for the interpretation of model, it may negatively affect the
predictive performance as well. For instance, for a protein sub-cellular localization task, a
non-attention neural architecture produced better performance than a single head attention
paradigm. Considering the downfalls of single head attention, Wang et al. [181] utilized
CNN architecture based on multi head self-attention in order to attend to several sub-
cellular components simultaneously and capture the important global features generated
by the combination of multiple sequence elements. Performance analysis on a benchmark
dataset and independent test set indicated that a multi head attention paradigm helped
DM3LOC to achieve better parallelization and predictive performance, outperforming all
existing predictive approaches and a close competitor RNATracker in terms of speed and
overall accuracy.

3.2. MicroRNAs Sub-Cellular Localization

MicroRNAs (miRNA), which are also referred to as short ncRNAs, significantly par-
ticipate in a number of cellular processes of animals and plants including development,
digestion, proliferation, and differentiation in organisms accompanied with contributions
in post-transcriptional gene regulation [182]. A number of studies have discovered that
miRNAs usually target diverse compartments of cells [183,184]. Mature miRNAs generally
exist in distinct cellular segments of cytoplasm, which involve mitochondria, endoplasmic
reticulum, and RNA granules. More recent findings suggest that some miRNAs also con-
tribute to regulating nucleus and epigenetic function. Moreover, most miRNAs possess
multiple locations in the cells which reveal their abundant localization patterns [176]. Sub-
cellular localization of miRNA not only facilitates the interactions among proteins and RNA
but also determine the action mode of miRNA to target mRNAs. Sub-cellular localization
of miRNAs is fundamentally needed to regulate diverse scientific processes that gener-
ally occur inside sub-cellular infrastructures or organelles—for example, mitochondrial
metabolism performed by mito-miRNAs and synaptic plasticity conducted by endosomal
miRNAs. As compared to other ncRNAs, a very limited amount of work exists related to
miRNA sub-cellular localization due to the distinct sub-cellular localization characteristics
of miRNAs, lack of ontologies, and scarcity of miRNA functional annotations.

Up until now, only four methodologies, namely miRGOFS [185], MIRLocator [176],
miRnALoc [186], and MirLocPredictor [187], have been proposed for the prediction of
miRNA sub-cellular localization. MIRLocator utilized an attention based sequence to
sequence a neural network with pre-defined information of label order to discover sub-
cellular localities of human miRNA. Yang et al. [185] developed a novel approach “miR-
GOFS” to estimate functional similarity of miRNA molecules. miRGOFS adopted a naive
GO semantic-similarity measure which computed closeness between GO descendants as
well as common ancestors to weight the features on the basis of their statistical significance.
Authors represented miRNA sequences in terms of correlation scores computed using
different approaches. To make final miRNA sub-cellular localization prediction, the SVM
classifier with RBF kernel was used. Over the benchmark dataset, miRGOFS achieved the
F1-score of 61.2%, indicating that miRGOFS attained significant coverage of homo sapiens’
miRNA molecules.

MIRLocator identified high-level noteworthy features that are hard to capture from
miRNA sequences. Considering the fact that most miRNA have multiple locations in cells
and sub-cellular compartments are biologically correlated, rather than treating sub-cellular
localities as independent target labels, inherent linkages among locations are incorporated
into MIRLocator output. Authors transformed the multi-label problem into a sequence to
sequence problem to better capture the hidden correlations of sub-cellular localities and to best
utilize prediction information of recent locations. The authors reported that the MIRLocator
managed to produce promising performance with little input information and outshined the
models that were utilizing manually curated features or trivial recurrent neural network based
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approaches. Meher et al. [186] developed another miRNA sub-cellular localization predictor
“miRnALoc” based on pseudo di-nucleotides compositions, thermodynamic, and physico-
chemical properties. miRnALoc utilized an SVM classifier optimized thorough Grid Search
to accurately identify sub-cellular compartments of miRNAs. Authors eliminated 80%
overlapping sequences from core datasets using the CD-HIT tool. To prove the integrity
of the proposed approach, authors compared the performance of miRnALoc with six
baseline classifiers including artificial neural network, random forest, naive Bayes, boosting,
bagging, and k-nearest neighbor as well as existing computational miRNA localization
predictors using core and independent datasets. Empirical evaluation indicated that
miRnALoc achieved an AU-ROC score of 63–71% on the core dataset, and 50% localization
of the independent test set was accurately predicted.

MIRLocator [176] utilized a sequence-to-sequence model and pre-trained k-mer em-
beddings. The prime focus of pre-trained neural embeddings is to capture the semantic
information of higher order residues while neglecting the position of higher order residues.
Apart from semantics, the position of k-mers is another key component that defines the
function of RNA molecules. Recently, Asim et al. [187] developed a novel sequence descrip-
tor kmerPR2Vec that fused positional information of higher order residues with randomly
initialized higher order embedding. Using kmerPR2Vec statistical representation, they
developed a deep learning based end-to-end predictive methodology “MirLocPredictor”
which utilized CNN for accurate determination of miRNA sub-cellular localization. A
rich performance analysis using the Recurrent Neural Network as baseline and existing
predictive methodologies over the benchmark dataset indicated that the MirLocPredictor
attained top performance, outperforming previous best performance by 19% and 18% in
terms of recall and precision.

3.3. Long Non-Coding RNA Sub-Cellular Localization

Amongst all ncRNAs, long ncRNAs (lncRNAs) are highly prevalent and have the most
diverse functional classes. LncRNAs are massive RNA transcripts (200 nucleotides) that are
estimated to surpass protein coding genes inside the human genome [188]. Nevertheless,
lncRNAs are badly preserved at the sequence level; this is why their functional annotation
is quite difficult. LncRNAs perform a number of indispensable molecular functions at
diverse sub-cellular locations [189]. LncRNAs transcripts may reveal different cellular
localities involving the nucleus, chromatin, exomoes, and cytoplasm [190,191]. In ad-
dition, lncRNA have noteworthy functions in development [192,193], and metabolism
of cells like chromatin modifications [194,195], genome rearrangements [196,197], ge-
netic markers [198,199], transcription [200], translation [201], and regulation of the cell
cycle [202]. Having the knowledge of lncRNAs localization assists with comprehending
their biological functionalities. Sub-cellular localization of lncRNAs depend on several
facets such as structural and sequence motifs [203].

Guednas et al. [204] developed a deep learning based methodology called DeepLncRNA
to predict the sub-cellular localization of lncRNA by directly analyzing transcript sequences
of lncRNA. They processed 93 strand-particular RNA sequences of cytosolic and nuclear
fractions acquired from diverse cell types to discover deferentially localized long ncRNAs.
The DeepLncRNA approach developed marked significant performance and authors also
reported that, primarily, sequence motifs are deriving lncRNA sub-cellular localization.

Su et al. [205] developed a bioinformatics framework called “iLoc-lncRNA” to estimate
the sub-cellular localities of lncRNAs through embedding features of 8-tuple nucleotides
into generic Pseudo K-tuple Nucleotide Composition (PseKNC). The developed framework
utilized binomial distribution methodology. Extensive jackknife tests revealed that the
developed framework managed to outshine a state-of-the-art lncRNA sub-cellular locality
predictor by a promising figure.

Cao et al. [206] proposed a machine learning based lncLocator methodology for long
ncRNA sub-cellular localization. The lncLocator utilized k-mer based features along with
high-level abstraction features extracted using unsupervised deep learning models. At
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the classification stage, lncLocator takes both kinds of features as input for two different
classifiers: SVM and random forest. Separately training both classifiers with two different
features produced four trained models that are used for the prediction of long ncRNA
sub-cellular locations in different compartments.

Considering that sequence descriptors introduce significant bias and irrelevant fea-
tures as well as generating encoding, the use of feature selection approaches soon became
a frontier in the development of robust lncRNA sub-cellular localization prediction ap-
proaches. In this regard, Zhang et al. [207] developed a machine learning methodology
“KD-KLNMF” for accurate determination of lncRNA sub-cellular localization. They utilized
a data augmentation approach to balance the imbalance dataset. Dinucleotide based spatial
autocorrelation and k-mer descriptors were used to generate the representation of lncRNA
sequences. In order to discard redundant features, a dimensionality reduction approach
called nonnegative matrix factorization based on Kullback–Leibler divergence was used.
An optimal set of features was passed to support a vector machine classifier that predicted
different sub-cellular compartments of lncRNAs. Performance analysis on the benchmark
dataset and independent test set indicates that KD-KLNMF attained the accuracies of 97%
and 92% in terms of jack-knife evaluation.

Ahmed et al. [208] proposed a machine learning based predictive methodology
Locate-R for accurate determination of lncRNA sub-cellular localization. They learned
that representation of lncRNA sequences uses a very simple technique based on n-gaped
l-mers. In order to select the most representative features of sequences, they utilized a
Pearson correlation coefficient approach, the output of which was passed to the support
vector machine classifier. Performance comparison with existing computational predictors
lncLocator [206] and iLoclncRNA [205] indicated that Locate-R outperformed previous
best performance by 2%.

Likewise, Fan et al. [209] developed a machine learning based methodology “lncLocPred”
to accurately determine the sub-cellular localization of lncRNAs. They utilized three differ-
ent sequence descriptors including K-mer, Pseudo Dinucleotide Composition (PseDNC),
and Local Structure–Sequence Triplet Element to represent lncRNA sequences. In order to
select the most representative sequence features only, they developed a feature selection
approach using binomial distribution, variance threshold, and F-score. Highly discrimi-
native features were passed to a logistic regression model to determine the sub-cellular
localization of lncRNAs. Using the benchmark dataset, rich performance comparison
with baseline machine learning models including Adaboost, Naive Bayes, Random Forest,
Stacking classifier, and existing computational lncRNA sub-cellular localization predictors
(Locate-R [208], lncLocator [206], iLoclncRNA [205]) indicated that lncLocPred attained
promising performance. LncLocPred outperformed the state-of-the-art predictor by 2% on
the benchmark dataset and 6% on the independent test set.

In Table 7, we have summarized state-of-the-art machine and deep learning based
methodologies for the sub-cellular location prediction of coding and non-coding RNA.
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Table 7. Summary of machine and deep learning based methodologies for the sub-cellular location prediction of coding and non-coding RNA.

Method Database Features Classification Approach Target Biomolecule Performance

miRGOFS [185] RNALocate [45] Correlation scores SVM miRNA F1 Score: 0.612

MiRLocator [176] RNALocate [45] Raw Sequence sequence to sequence model miRNA F1 Score: 0.4933

miRNALoc [186] RNALocate [45], miRBase [44]
pseudo di-nucleotides compositions,

thermodynamic, and physico-chemical properties
SVM miRNA AU-ROC Score: 63-71%

MirLocPredictor [187] RNALocate [45] kmerPR2Vec Features CNN miRNA F1 Score: 0.6178

RNATracker [178] Ensembl database [46] secondary structure information, CNN, LSTM mRNA Pearson: 0.604

iLoc-mRNA [179] GENBANK, RNALocate databases [45] binomial distribution and variance analysis, SVM mRNA accuracy: 0.9012

mRNALoc [180] GENBANK, RNALocate databases [45] pseudo K-tuple nucleotide composition, SVM mRNA Jackknife accuracy: 0.99

DM3LOC [181] GenBank and RNALocate databases [45] one-hot encoding sequence information, multi-head self attention CNN mRNA Average AU-ROC: 0.7416

DeepLncRNA [204] ENCODE project [177] Raw Sequence Deep Neural Network lncRNA Accuracy: 0.724

iLoc-lncRNA [205] RNALocate [45] Pseudo K-tuple Nucleotide Composition SVM lncRNA Accuracy: 0.8672

lncLocator [206] RNAlocate [45] K-mer nucleotide composition features ensemble classifier lncRNA Accuracy: 0.598

KD-KLNMF [207] RNAlocate [45]
Dinucleotide based spatial autocorrelation,

k-mer descriptors, nonnegative matrix factorization SVM lncRNA Accuracy: 0.97

Locate-R [208] RNAlocate [45] n-gaped l-mers SVM lncRNA Accuracy: 0.89

lncLocPred [209] RNAlocate [45]

K-mer, Pseudo Dinucleotide Composition,
Local Structure–Sequence Triplet Element AND

binomial distribution, variance threshold, F-score Logistic Regression lncRNA Accuracy: 0.91

MKSVM-HSIC [210] RNAlocate [45]
K-mer, CKSNAP,DNC,

TNC,NAC, RCKmer Multi-Kernel learning based SVM mRNA, lncRNA, miRNA, snoRNA Average Precision: 0.755, 0.754, 0.791, 0.816
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3.4. Multi-Label Sub-Cellular Localization Prediction of Diverse RNAs

Biological functionalities of diverse biomolecules primarily rely on their distribution
in cellular compartments. The presence of RNAs in different cellular compartments allows
the cells to carry out a variety of biochemical processes concurrently. Taking the presence
of RNAz into multiple compartments and the deficiency of a robust multi-label classifica-
tion model capable of handling different RNAs into account, Wang et al. [210] extracted
multi-label classification datasets related to sub-cellular localization of four different RNAs
including miRNA, mRNA, lncRNA, and snoRNA. They evaluated six different nucleotide
composition based encoding schemes including K-mer, RCKmer, NAC, DNC, TNC, and
CKSNAP to efficiently capture the inherent relationships of the most discriminative se-
quence features. Multivariate information was fused using a multiple kernel learning
paradigm based on a Hilbert–Schmidt independence criterion (HSIC), and optimal ker-
nel combination was integrated with an SVM classifier to develop a robust multi-label
predictor (MKSVM-HSIC) for the task of RNA sub-cellular localization. To prove the
integrity of the proposed methodology MKSVM-HSIC, they compared the performance of
MKSVM-HSIC with four other integration strategies using an SVM classifier such as binary
relevance, label powerest, ensemble classifier, and multiple kernel learning using average
weights (MK-AW). Empirical evaluation using four different RNA sub-cellular localization
datasets indicated that the K-mer encoding scheme attained the best average precision of
0.68 for mRNA molecules and 0.745 for lncRNA molecules, whereas NAC achieved the
peak average precision of 0.785 for miRNA molecules and DNC gained the top perfor-
mance of 0.793 for snoRNA molecules. Among all integration strategies, multi-kernel SVM
based on HISC achieved top average precision of 0.755, 0.754, 0.791, and 0.816 for mRNAs,
lncRNAs, miRNAs, and snoRNAs followed by MK-AW (Table 7). To further illustrate the
effectiveness of the proposed MKSVM-HSIC approach, authors compared the performance
of MKSVM-HSIC with five different standalone classifiers including SVM, RF, ML-KNN,
XGBT, and MLP. Performance evaluation of four RNA sub-cellular localization datasets
once again proved the dominance of the proposed MKSVM-HSIC methodology which
attained the top average precision of 0.703, 0.757, 0.787, and 0.800 on mRNAs, lncRNAs,
miRNAs, and snoRNAs molecules, respectively (Table 7).

3.5. Benchmark Sub Cellular Localization Datasets

In order to evaluate the integrity of diverse machine and deep learning approaches
proposed for the determination of sub-cellular localization of different ncRNAs, a num-
ber of benchmark datasets have been developed. Researchers have mainly employed
public metathesauruses such as RNA Central [169], RNAlocate [45], miRBase [44], and
ENCODE [177] to develop unique sub-cellular localization information based datasets
for ncRNAs. Figure 4 illustrates the statistics of different ncRNA sub-cellular localization
datasets used in the literature.

Analyzing the first part of Figure 4 indicates that MiRNALoc [186] is evaluated on a
benchmark dataset annotated against eight sub-cellular locations including Cytoplasm,
Nucleus, Circulating, Microvesicle, Exosome, Mitochondrion, Axon, and Extracellular
Vesicle, the sequence-subcellular location distribution of which is shown in the top leftmost
pie chart (Figure 4). Performance of LncLocator [206] is assessed on a seven sub-cellular
locations based dataset, the distribution of which is shown in the top rightmost pie chart
(Figure 4). Both MirLocPredictor [187] and miRLocator [176] are evaluated on the same
dataset comprised of six sub-cellular locations including Cytoplasm, Nucleus, Circulating,
Microvesicle, Exosome, and Mitochondrion. DeepLncRNA [204] is evaluated on a small
dataset annotated against only two sub-cellular locations, namely Cytosol and Nucleus.

Turning towards the second part of Figure 4, computational predictors including
lncLocPred [209], iLoc-LncRNA [205], Locate-R [208], and KD-KLNMF [207] are evaluated
on benchmark datasets annotated against four distinct sub-cellular locations such as Nu-
cleus, Cytoplasm, Ribosome, and Exosome. Among all four approaches, the performance
of two computational predictors lncLocPred [209] and KD-KLNMF [207] is additionally
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analyzed on the independent test set as well. For each dataset, the number of sequences
against four different sub-cellular locations is depicted in the bar graph (Figure 4).Version July 31, 2021 submitted to IJMS 27 of 38

Figure 4. Statistics of Different Benchmark Datasets used in the Literature to Evaluate the Performance
of ncRNA Sub-Cellular Localization Predictors
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4. Current Challenges and Future Directions

Distinguishing ncRNAs from protein-coding transcripts and identifying their sub-type
and sub-cellular localization patterns are the most important tasks to better understand
the functionality, biogenesis, and complex mechanisms behind the development of distinct
diseases and their potential to act as biomarkers. This paper sheds light on the progress
of Artificial Intelligence related to identification of ncRNAs and their distribution pat-
terns in cellular compartments. Unlike sub-cellular localization, a significant amount
of work has been performed for the classification of RNA. We find that, in coding and
ncRNA classification, state-of-the-art computational approaches mostly use alignment
strategies. Furthermore, these methodologies utilize standard machine learning classifiers
on manually extracted graph properties of RNA secondary structure. A critical analysis
of diverse computational approaches indicates that pre-dominant lncRNA identification
approaches make use of intrinsic sequence features such as ORF length, coverage, and
integrity [58–61,77,78,83]. This is primarily because these features have good discrimi-
native power as protein coding genes are ultimately transcribed as well as translated to
yield a certain chain of amino acids that require unique nucleotide composition along
with great quality open reading frames. Some predictive methodologies make use of
transcript related features such as transcript length, higher order residues (K-mer), and
composition–transcription–distribution [56,57,59,61,64,75,77,83,204] structure related fea-
tures like molecular weight, Gravy, Instability [57–59,75,77,84], or protein-coding sequence
features such as protein-coding sequence length [50,55]. However, few computational
approaches utilize codon related features such as stop codon count, frequency [50,77], or
GC content related features like frame score [51,77]. Existing approaches also do not inves-
tigate the potential of a wide range of feature selection approaches capable of eliminating
redundant and irrelevant features. Furthermore, no researcher has attempted to explore
the effectiveness of an attention mechanism that assigns higher weights to important
features with the aim to improve the generalizability of deep neural networks. Despite
considering the success of transfer learning, especially neural higher order embeddings for
different genomic and bioinformatics tasks [211], no researcher has deeply investigated
the performance of diverse types of neural higher order embeddings to learn rich inherent
relationships of sequence residues. We consider comprehensive exploration of transfer
learning, and bag of neural tricks has the potential to significantly increase the performance
of lncRNA identification approaches.

For CircRNA classification, to date, six computational approaches have been devel-
oped where the majority of approaches utilize manually extracted features. In the quest
for the development of a robust computational predictor which shall not rely on exten-
sive pre-processing by making the best use of sequence information, more recent deep
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learning (CNN) based CircRNA classification methodologies managed to achieve the top
performance of 98%.

Analysis of small ncRNA, especially piRNA identification approaches, reveals that,
initially, the prime focus of researchers has been to develop one-layer computational
predictors for identifying piRNA molecules. However, over the last few years, taking
the biological importance of piRNA functionality into account, increasing the number of
two-layer computational predictors are being developed to identify piRNA molecules and
predict their core functionality. To date, a total of 18 computational predictors have been
developed, out of which 14 predictors can be classified as one-layered approaches, whereas
the remaining four predictors fall under the hood of two-layered approaches. For the first
layer, piRNA predictors have managed to achieve the best performance of 98%, whereas,
for the second layer, piRNA predictor best performance falls around 84%, indicating a lot
of room for improvement.

It is quite evident from performance analysis that deep learning approaches perform
better than machine learning approaches for small ncRNA classification and clustering
tasks. However, there is still room for improvement, especially for the classification of
small ncRNAs (e.g., piRNA function prediction). Although very deep neural architectures
have more computational power, such architectures do not necessarily attain promising
performance because they are prone to extracting irrelevant and redundant features. Gen-
erally, ncRNA sequence data (negative samples) including piRNA molecules contain many
outliers and are highly sparse in nature; therefore, appropriate use of feature scaling, a
balanced neural architecture with a suitable number of hidden layers, activation functions
(e.g., sigmoid), and optimization function (e.g., Adam) found using neural architecture
and hyper-parameter search algorithms (e.g., Particle SWARM) can increase the predictive
performance up to a significant level.

In order to identify the family of small ncRNA sequences, to date, five computational
predictors have been developed where predominantly secondary structure related features
are used to represent small ncRNA sequences. Most of the computational predictors
make use of deep neural networks; more specifically, recent DenseNet similar architecture
achieved the best performance of 95% solely using raw sequences. This shows the potential
of sequence information to accurately learn biological characteristics of sequence residues;
therefore, more computational predictors on top of sequence information need to be
developed to fill the performance gap.

Turning towards ncRNA sub-cellular localization, there exist several high-throughput
controlled experimental approaches for the detection of RNA sub-cellular locations. How-
ever, limited computational approaches exist for RNA sub-cellular location prediction.
RNAs mostly exist in more than one cellular compartment, which makes the identification
of RNA locality at the cellular level a multi label classification task. Overall, in DNA and
RNA sequence classification, most problems, such as coding and ncRNA classification,
nucleuosome position detection, and histone markers identification, can be categorized as
binary classification problems. Publicly available benchmark datasets of all these classifi-
cation problems are almost balanced where positive and negative classes have an equal
number of samples. Thus, for the aforementioned classification problems, computational
approaches perform way better as they do not face data imbalance problems. On the
other hand, for RNA sub-cellular location prediction, the deficiency of public annotated
data sets is another major bottleneck. In addition, existing datasets have class imbalance
problems and have a much lower number of samples for most classes. While computational
approaches have achieved the performance of over 90% for lncRNA and mRNA molecules,
miRNA sub-cellular localization performance is still around 60%. This is primarily due
to less annotated data and failure of existing computational approaches to handle imbal-
anced sequences for multi-compartment distribution at different levels of the predictive
pipeline. We consider that the use of multi-label data transformation approaches along with
data over-sampling approaches (e.g SMOTE) have the potential to improve the predictive
performance of miRNA sub-cellular localization.
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