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Abstract: The Drosophila eye has been used extensively to study numerous aspects of biological
systems, for example, spatio-temporal regulation of differentiation, visual signal transduction, protein
trafficking and neurodegeneration. Right from the advent of fluorescent proteins (FPs) near the
end of the millennium, heterologously expressed fusion proteins comprising FPs have been applied
in Drosophila vision research not only for subcellular localization of proteins but also for genetic
screens and analysis of photoreceptor function. Here, we summarize applications for FPs used in
the Drosophila eye as part of genetic screens, to study rhodopsin expression patterns, subcellular
protein localization, membrane protein transport or as genetically encoded biosensors for Ca2+ and
phospholipids in vivo. We also discuss recently developed FPs that are suitable for super-resolution or
correlative light and electron microscopy (CLEM) approaches. Illustrating the possibilities provided
by using FPs in Drosophila photoreceptors may aid research in other sensory or neuronal systems that
have not yet been studied as well as the Drosophila eye.

Keywords: Drosophila eye; visual system; cornea neutralization; mosaic tissue; genetic screen; biosen-
sor; GECI; calcium imaging; PI signaling; superresolution

1. Introduction

Fluorescent proteins (FPs) have revolutionized the localization of molecules within
cells or living organisms. As compared to classical detection methods for localizing
cell components, like antibodies for immunocytochemistry or DNA probes for in situ
hybridization, recombinantly expressed FPs allow subcellular localization of molecules in
real time. Depending on the system used, methods are available for non-invasive detection
of FPs in living animals, plants or in cell culture cells. For instance, in a widely used
approach, an FP like the green fluorescent protein (GFP) from jellyfish is fused to a protein
of interest and recombinantly expressed in cell culture cells or transgenic organisms [1].
This allows subcellular localization of the protein of interest via its GFP fluorescence. The
usage of FPs, however, is not limited to visualizing (fusion-)proteins. Numerous variants
of FPs have been designed as biosensors to facilitate detection of, for example, specific
membrane lipids (phosphoinositides) or Ca2+ ions, thereby expanding the usability of FPs
beyond protein localization and addressing questions related to lipid signaling pathways
or Ca2+ homeostasis.

The Drosophila visual system has helped to unravel the intricacies of light perception
by phosphoinositide-mediated signaling and visual processing in neuronal circuits on a
molecular level. In addition to investigations into visual processes like phototransduc-
tion and vision guided behaviour, the Drosophila eye has also been used as a model for
membrane protein trafficking and neurodegenerative diseases. Neuronal cells are highly
dynamic systems that need careful fine regulation of their homeostasis to function properly.
One particularly complex topic pertains to proteostasis—the sum of all processes involved
in protein biosynthesis, translocation, regulation and degradation—which is tightly linked
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to cellular health. Significant perturbation inevitably leads to the build-up of cellular stres-
sors and ultimately results in cell death when a certain threshold is reached. Aside from
developmental defects, two major components of cellular homeostasis have been proposed
as etiological for retinal degeneration in the Drosophila visual system: Ca2+ control and Rh1
regulation [2]. Mechanisms contributing to cellular death include reduction, misfolding or
mistrafficking of Rh1 as well as Ca2+-mediated excitatoxicity. Since rhodopsin is a highly
abundant protein in photoreceptor cells (PRCs), even slight misregulation of its trafficking
can result in rhodopsin accumulation with vast negative effects on the entire cell. In spite
of anatomical differences, Drosophila and human eyes share a significant portion of con-
served genetic pathways and degeneration causes [3]. Accordingly, understanding the link
between proteostasis and neuronal degeneration in Drosophila may pose the foundation for
future therapeutic treatments of human diseases.

Uncovering the details of neurodegeneration and its underlying mechanisms requires
appropriate sensors and detection methods to match. Investigations of dynamic processes
like vesicular transport, membrane protein trafficking or neuronal processing profit from
live imaging setups. Like in many other fields, live imaging techniques of the Drosophila
visual system for the most part rely on fluorescence for efficient visualization. Numerous
genetically encoded reporters, subcellular markers and biosensors have been developed in
the previous two decades on the basis of FPs. These have helped to screen for phenotypes,
track subcellular translocation and detect changes in neuronal activity. In this review, we
describe these various applications of FPs as examples for their usability in an intact and
complex sensory system. Initially, though, we present the system of the Drosophila eye as
well as some key techniques with which FPs are routinely detected in vivo.

1.1. Anatomy of the Drosophila Eye and Optic Lobe

The Drosophila compound eye is made up of several hundred unit eyes—called
ommatidia—which are themselves each comprised of eight photoreceptor cells (PRCs,
R1–8) as well as approximately 14 auxiliary cells, including cone cells, pigment cells and
bristle complex cells (Figure 1A,B). Each PRC possesses a specialized plasma membrane—
known as rhabdomere—which is made up of roughly 30,000 microvilli and acts as an
optical waveguide housing the main proteins of the phototransduction cascade [4]. The
rhabdomeres of the first six PRCs are arranged in a trapezoidal layout while the seventh
and eighth rhabdomeres are located in the center and stacked on top of each other. A major
component of these membranes are cell-specific light-absorbing rhodopsins (Rh), i.e., Rh1
in PRCs R1–6, Rh3 or Rh4 in R7 and Rh5 or Rh6 in R8. The Drosophila eye is routinely used
for genetic screens and general studies regarding organ development, neurodegeneration
and protein trafficking [5–8].

Drosophila’s visual system is divided into several interconnected layers of neuropils
forming the optic lobe [9]. From distal to basal, the optic lobe consists of the retina (re),
the lamina (la), the medulla (me) and the lobula complex, which can be subdivided into
the lobula (lo) and the lobula plate (lop) (Figure 1B). There are two major types of neurons
which either project within the optic lobe or from the optic lobe into the central brain.
This system serves as a model for investigations into neuronal circuitry, sensory signal
processing and visual perception [10–12].

1.2. Live Imaging of Drosophila’s Visual System

The regular and repeating structure of the Drosophila compound eye can be visualized
microscopically by either autofluorescence of rhodopsins or by fluorescent labeling of any
of the rhabdomeral proteins in combination with imaging techniques of Drosophila’s deep
pseudopupil (DPP) and optical neutralization [13]. The DPP is a phenomenon of optical
superposition owed to the exact and symmetrical orientation of the PRCs and ommatidia
as well as the curvature of the eye and cornea (Figures 1C and 2A). Since the layout of the
PRCs within ommatidia is mirrored at the dorsoventral midline of the eye, the DPP is best
seen when the microscope objective is aimed slightly above or below the eye’s equator.
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Optical neutralization, an alternative non-invasive method in this context, represents a
form of microscopy in which the living animal is immersed into a medium (e.g., water)
with a similar refractive index as the cornea and surrounding tissue to minimize light
refraction and generate optical cross sections of ommatidia (Figure 2B,C). The ability to
depict the retinal structure and detect intracellular fluorescence with comparably simple
methods in a live imaging setup is one of the major advantages of the Drosophila visual
system as a tissue for genetic screens and a model for neurobiological studies.
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side). Indication of the hexagonal tiling by individual corneas on the curved surface of the compound eye and partial cross 

section to illustrate the wedged shape of ommatidial units. Order of neuropils from distal to basal: retina (re), lamina (la), 

medulla (me), lobula (lo) and lobula plate (lop). (C) Illustration of the repetitive organization and identical orientation of 
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Figure 1. Schematics of the Drosophila visual system. (A) Illustration of a longitudinal section through the ommatidial center
(left side) and a cross section through the plane just below the pseudocone, where the nuclei (white) of the photoreceptor
cells (PRCs) R1–7 (light grey) are located (right side). Trapezoidal layout of the outer PRCs’ rhabdomeres in the center of
the ommatidium is indicated (dark grey). Primary and secondary pigment cells not drawn. (B) Top view of a partially
cross sectioned Drosophila head to illustrate the organization of the ommatidia (left side) and the optic lobe (right side).
Indication of the hexagonal tiling by individual corneas on the curved surface of the compound eye and partial cross
section to illustrate the wedged shape of ommatidial units. Order of neuropils from distal to basal: retina (re), lamina (la),
medulla (me), lobula (lo) and lobula plate (lop). (C) Illustration of the repetitive organization and identical orientation of
ommatidia and PRCs in a top view of a section of the compound eye. Origin of the pseudopupil phenomenon is indicated
by highlighting the fluorescence of individual rhabdomeres from adjacent ommatidia (green) which together generate the
fluorescent ommatidial trapezoid when rhabdomeral FPs are expressed in R1–6.

Investigations into neuronal activity within the optic lobe require more advanced
methods. Aside from electrophysiological studies, which are for the most part confined
to the outermost layers of the visual system, microscopic techniques have emerged here
as well. However, imaging of living tissue is limited mostly by three factors: (1) poor
resolution in the z-axis caused by excitation and emission outside of the focal plane, (2)
shallow penetration of light due to scattering and (3) phototoxicity—the summation of
negative side effects caused by prolonged irradiation of biological matter. While the first of
these issues can be addressed optically, for example, by suppressing out of focus emission
with confocal microscopy, the others remain. With the advent of two photon laser scanning
microscopy (TPLSM), these restrictions had mostly been ameliorated to a point where
in vivo imaging of brain tissue became possible [14]. In TPLSM, the energy required
for reaching the excitation state of the fluorophore is provided by two photons which
are absorbed almost simultaneously, namely within one femtosecond apart from each
other. By carrying only half of the energy necessary for excitation, the photons can have
longer wavelengths (800–1000 nm as compared to 390–600 nm in single photon excitation),
therefore reducing scattering and phototoxic effects. As a side effect, optical sections are
generated due to the fact that the only region where photon density is high enough to
efficiently excite the fluorophore with two photons is at the focal point of the excitation
laser. Accordingly, the resolution in the z-axis is significantly increased, comparable to a
confocal microscope. Thus, in TPLSM of the Drosophila optic lobe, the exposed tissue of a
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living specimen is focused under a microscope using optical neutralization and excited by
laser irradiation with wavelengths of the near infrared spectrum (Figure 2D). Recently, it
has been shown that three photon excitation may even allow subcellular resolution imaging
of the Drosophila brain through the intact cuticle [15].
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Figure 2. Illustration of common live imaging microscopy techniques of the Drosophila visual system. (A) A fluorescent
deep pseudopupil can be visualized in anaesthetized or fixed flies by aiming a microscope objective (10×) slightly above or
below the equator of the half spherical eye focusing approximately 180 µm below the cornea (top). (B,C) Optical cornea
neutralization microscopy using water immersion and cold anaesthesia (indicated by ice cubes) or a single droplet between
the eye of a fixed fly and the objective (20×) to detect fluorescent proteins in the rhabdomeres of ommatidia (top). (D)
Imaging of the partially dissected optic lobe by two photon laser scanning microscopy (TPLSM) using a water droplet for
optical neutralization (top). Illustration (center) and micrograph (bottom) of animals that express rhabdomerally located
TRP::GFP in the outer photoreceptor cells (PRCs) R1–6 (A–C).

2. Fluorescence Proteins in Forward Genetic Screens in the Drosophila Visual System

FPs serve a complementing dual role in targeted or untargeted genetic screens of the
fly visual system: First, they visualize mosaic tissue in the investigation of lethal alleles by
way of labeling genetically identical cell clones. Secondly, rhabdomeral proteins tagged
with FPs present reporters for developmental defects, cellular integrity, membrane protein
trafficking and more. Combined with DPP or optical neutralization microscopy, forward
genetic screens in the fly eye are fast and allow efficient analysis of large libraries with
relatively little effort in a short time span. Accordingly, this system has been utilized in
one form or another for many screens as well as for targeted investigations in the past two
decades, examples of which will be described in more detail below.
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2.1. Using Fluorescent Proteins to Identify Cell Clones in Mosaic Tissue

The process of forward genetic screens has been exceedingly simplified with the
inclusion of FPs. The fly eye serves as an excellent tissue for genetic screens due to its
relative size and non-essential nature for adult viability. With regard to homozygous lethal
mutations, which are difficult to investigate in adult organisms, mosaic tissue containing
homozygous mutant cell clones is routinely generated. In this context, FPs function as a
marker to visualize cell clones.

With the adoption of the yeast-based Flp/FRT system into Drosophila, induction of
site-specific mitotic recombination became much simpler [16]. Via targeted exchange of two
chromosome arms in heterozygously mutant cells during organ development, one of the
emerging daughter cells may become homozygously mutant and grow into a mutant tissue
patch. A set of fly stocks carrying centromere-adjoining FRT sites and an eye-specifically
expressed flippase allow for readily generated adult mosaic eyes (Figure 3A) [17,18]. While
the introduction of recessively cell-lethal genes onto the corresponding non-mutated chro-
mosome arm results in the absence of homozygous wild type clones, the addition of an
eye-specifically expressed apoptosis activator also eliminates heterozygous cells during eye
development [18,19]. Thus, if required, the adult fly eye can almost entirely be made up of
homozygously mutant cells which in most cases largely compensate for the lost tissue to
generate a morphologically intact organ. On the other hand, the presence of immediately
adjacent non-mutant clones as a reference may also be desirable in certain cases. Regarding
the Drosophila eye, pigmentation appears to be the simplest way to distinguish mutant
and non-mutant cell clones by utilizing a white (w+) marker in an otherwise white mutant
(w–) background to generate red and white patches of retinal tissue. Unfortunately, due
to their light-absorbing property eye pigments come with disadvantages for a number of
downstream analyses, for example optical neutralization, DPP, immunohistochemistry, or
assays involving the influence of light exposure stress on cellular integrity. This circum-
stance excludes numerous comparative investigations between mutant and non-mutant
cells. Additionally, many transgenic constructs integrated into Drosophila stocks have
traditionally been marked with some variant of the functional white gene, further limiting
the utility of eye pigmentation in mosaic studies.

As an alternative to eye pigmentation, the Flp/FRT system has been expanded by
adding ubiquitously or cell-specifically expressed FPs to mark clonal tissue [20,21]. These
methods have later been improved upon into more advanced tools. Twin spot genera-
tor (TSG) introduced complementary GR and RG hybrid cassettes into the fly genome
which combined the N-terminal portion of the green fluorescent protein (GFP) with the
C-terminus of the red fluorescent protein (RFP) and vice versa [22]. The hybrid FP se-
quences are separated by an FRT sequence allowing mitotic recombination via flippase
between the FP termini in heterozygous GR/RG cells to generate functional GFP and
RFP genes in descended cells, respectively. Thus, TSG enables fluorescent tracing of both
daughter cells from a specific division event. Meanwhile, Flybow uses two cassettes of
two FP-encoding cDNAs (GFP/Citrine and Cherry/Cerulean), each arranged in opposing
orientations and flanked by modified FRT sites [23]. Induced expression of an appro-
priately modified flippase during development causes inversion and/or excision events
resulting in the expression of only one FP per cell, effectively labeling the tissue with four
distinguishable fluorescent markers. In the Drosophila eye-specific tomato/GFP-Flp/FRT
system, all R1-6 PRCs express a GFP::NINAC fusion protein localized in the rhabdomere
(Figure 3B) [24]. Additionally, the red fluorescent fusion protein coding tomato::NINAC
transgene is located on an FRT carrying chromosome arm, thus labeling the presence of a
non-mutant chromatid. Accordingly, homozygous mutant tissue patches are identified by
the expression of solely GFP which can be compared to GFP/tomato-expressing regions
and even be traced over time due to the distinctive shape of the cell clones as visualized
by fluorescent rhabdomere patterns. This property pairs perfectly with the non-invasive
nature of DPP visualization and optical neutralization microscopy on living Drosophila’s
eyes. Genetically distinguishable cell clone patches within the same individual also make
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it possible to differentiate between cell-autonomous and non-autonomous effects, while
labeling techniques like TSG or Flybow facilitate effective lineage studies in neuronal tissue
by utilizing numerous FPs simultaneously.
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Figure 3. Schematic representation of mosaic tissue generation by mitotic recombination events via the Flp/FRT system
adapted from Saccharomyces cerevisiae. (A) Conventional mosaic technique applied during Drosophila eye development
utilizing pigmentation as phenotypic marker. (I) Heterozygous diploid cells with one maternal (dark grey bar) and one
paternal (light grey bar) copy of chromatids (X and 3 illustrated, 2 and 4 not shown). Both X chromatids are mutant
for the eye pigmentation gene white (white rhombus, w–). The yeast flippase gene is expressed eye-specifically from
the maternal X chromatid by the enhancer of the eyeless gene (grey rectangle). In this example, both copies of the third
chromatid carry a flippase recognition target (FRT) site (white oval) at the identical genomic locus of the same arm close
to where the centromere will form. Distal on the same chromatid arm, the maternal copy carries a functional white gene
(red rhombus, w+) as phenotypic cell clone marker, while the paternal copy carries the lethal mutation of interest (blue
hexagon). (II) During development, chromatids are replicated into chromosomes tethered at the centromere (vertical line).
(III) Flippase expression may lead to a recombination event (orange cross) between two homologous chromosome arms.
(IV) If the recombination event exchanged a maternal for a paternal arm, cell division results in the generation of genetically
distinguishable progeny. Cells receiving chromatids with two maternal arms are homozygously non-mutant for the gene
of interest but carry both copies of w+, thus producing red pigmented retinal tissue (center). Cells receiving chromatids
with two paternal arms are homozygously mutant for the gene of interest and carry no pigmentation marker, resulting in
non-pigmented retinal tissue (right). (V) In the absence of a recombination event or in case of an exchange of identical sister
chromatids, cell division generates heterozygously mutant progeny which also forms red pigmented retinal tissue due to
the presence of one copy of w+ (left). (VI) Adult eyes display mosaics of red and white ommatidia originating from w–

and w+ cell clones, respectively. White regions are homozygous for the lethal mutation of interest and can be investigated
immediately adjacent to red pigmented non-mutant tissue. (B) Advanced variant for mosaic eyes in Drosophila utilizing
two fluorescent proteins instead of eye pigmentation as phenotypic markers. The Gal4 transcription factor is expressed in
outer photoreceptor cells by the Rh1 promoter (brown ribbon) and drives expression of both FP::NINAC fusion proteins
under UAS control (green/red hourglasses). Homozygously mutant retinal tissue exclusively exhibits green fluorescence of
rhabdomeres R1–6, while heterozygously mutant and homozygously non-mutant tissue displays green and red fluorescence
simultaneously, appearing with yellow rhabdomeres in merge.
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2.2. Using Fluorescent Proteins to Detect Structural and Protein Translocation Defects in
Genetic Screens

Besides labeling of cell clones, FPs present reporters for photoreceptor cell integrity as
well as protein localization in genetic screens. By way of labeling the repeating structure of
ommatidia and the PRCs within them, FPs are highly useful to evaluate a possible impact
of mutations on cell morphology, especially with respect to defects in the structure or
spatial orientation of rhabdomeres. As reporters in the Drosophila eye, fusion proteins of
GFP with different rhabdomerally located proteins such as rhodopsins, the ion channels
TRP and TRPL, the signal regulator Arrestin 2 (Arr2) or the tail domain of the NINAC
isoform p174 have been generated and expressed in PRCs (Figure 4) [25–29].
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Figure 4. Schematic representation of common FP fusion proteins with applications in the research of the Drosophila visual
system. Shown are FP fusions with rhabdomeral proteins (Rh1::GFP, TRP::GFP, TRPL::GFP, Arr2::GFP, GFP::NINAC,
tomato::NINAC) for visualization of photoreceptor cells within the context of Drosophila mosaic eyes or as read-out for
genetic screenings related to protein abundance, localization and trafficking as well as rhabdomere and cell integrity.

As sensory receptor cells, PRCs are highly specialized and precise regulation of their
homeostasis is required in order to ensure proper functionality. This includes the compo-
sition of the plasma membrane and other membraneous compartments regarding lipids
and proteins. Proteostasis is achieved by balancing protein synthesis, stability, degradation
and targeted protein translocation. Trafficking of rhabdomeral plasma membrane pro-
teins in Drosophila PRCs comprises the initial anterograde transport of newly synthesized
proteins to the rhabdomere, endocytic internalization as a means of adaptation or signal
deactivation, vesicular transport towards lysosomal protein degradation as well as various
recycling processes [30]. Given that two of the membrane proteins of the phototransduc-
tion cascade in Drosophila (Rh1 and TRPL) undergo light-induced translocation between
the rhabdomere and the intracellular space, fly PRCs offer a system in which neuronal
membrane trafficking can be specifically triggered and thus systematically studied. While
rhodopsin is extremely abundant in the rhabdomeral membrane, endocytosed in compara-
tively small numbers and largely channeled towards lysosomal degradation, virtually all
TRPL molecules are endocytosed within several hours, remain stored in an intracellular
compartment as long as illumination persists and are recycled back to the rhabdomere
upon onset of darkness [31,32].

TRPL::GFP had been utilized in a genetic screen with the chemical mutagen ethyl
methane sulfonate (EMS) to uncover components that are involved in membrane protein
trafficking. This approach resulted in the isolation of 15 TRPL translocation defective
(TTD) mutants and the detailed characterization of the P-Loop-containing, GTP- and
phospholipid-binding protein TTD14 [28,33]. Following an RNA-seq screen, another
study reported the importance of a CUB and LDLa domain protein (CULD) for endocytic
turnover of both Rh1::GFP and TRPL::GFP within Drosophila’s PRCs [34]. Consistent
with previous findings, defective protein translocation in culd1 mutants resulted in retinal
degeneration. Rh1::GFP was further used as a reporter in an RNAi screen for transcription
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factors regulating Rh1 expression and localization. In this screen, ewg was identified and
described in its role in R8 photoreceptor subtype specification [35].

Evaluating reduced Rh1::GFP fluorescence in rhabdomeres also helped to identify
mutants with defects in Rh1 homeostasis in several EMS-based screens. One such screen
uncovered mutations in the DEAD box protein Dbp21E2 to affect Rh1 synthesis, maturation
and trafficking which simultaneously resulted in Rh1-independent retinal degeneration [36].
Another study isolated mutants in V-ATPase V1 Subunit A1 which exhibit defects in
post-Golgi trafficking of Rh1 and light sensitivity as well as synaptic dysfunction and
degeneration of PRCs [37]. A third screen described mutations in Subunits 3, 5 and 6 of
the ER membrane protein complex (EMC) as cause for Rh1 loss independent of the ERAD
(ER associated degradation) pathway and retinal degeneration [38]. In combination with
Flp/FRT mosaic eyes, low Rh1::GFP fluorescence in rhabdomeres was also an indicator
of degeneration in a screen that identified phosphoethanolamine cytidylyltransferase
(PECT) activity as essential for phosphoethanolamine homeostasis, phototransduction and
neuronal cell integrity [39]. As an alternative read-out, the waveguide properties of the
rhabdomeres themselves have been used in combination with optical cornea neutralization
to infer defects in rhabdomeral organization caused by knock-down of genes potentially
involved in vesicle trafficking in an RNAi screen [40].

Due to its physical interaction with metarhodopsin, Arr2::GFP has previously been
used as an alternative to Rh1::GFP to investigate Rh1 transport defects by screening lethal
transposon insertion lines as well as EMS-induced mutants via Flp/FRT mosaic eyes [41,42].
These screens resulted in the descriptions of a role for GPI-anchored proteins in post-Golgi
cargo sorting processes towards the rhabdomere and the requirement of EMC Subunits 1, 3
and 8/9 for stabilization of immature Rh1 and other multi-pass transmembrane proteins,
respectively. Later studies from the Satoh lab used the Arr2::GFP reporter to elucidate the
importance of Rab6, its guanine exchange factor Rich and the SNARE protein Syx5 for
crucial steps of intra-Golgi membrane protein transport as well as the involvement of the
membrane curving F-BAR protein syndapin in segragating the rhabdomere from the stalk
membrane [43–45].

2.3. Fluorescent Protein Fusions with Rhabdomeral Proteins in Investigations of Specific Mutants

The visualization of rhabdomeral proteins by way of fusion with FPs is also frequently
used as a reporter in targeted investigations. For instance, the tomato/GFP-Flp/FRT
system was used to demonstrate oppositional roles of tumor suppressor p53′s two iso-
forms regarding autophagy and apoptosis in one study, while another study showed
that an eye-specific knockout of CSN4—a subunit of the COP9 Signalosome—resulted
in a loss of photoreceptors which was not linked to apoptosis but rather proliferation
impairment [46,47]. In another work regarding Drosophila as a model for Huntington’s
disease, GFP::NINAC was expressed to visualize rhabdomeres of PRCs R1–6 and track
age-dependent degeneration in HTT97Q expressing PRCs by optical neutralization mi-
croscopy [48]. This study reported significantly accelerated neurodegeneration by protein
phosphatase 1 (PP1) knock-down. Similarly, transgenically expressed Arr2::GFP served
as a read-out for retinal degeneration in the phospholipase Cβ (PLCβ)-deficient mutant
norpAP24 [49]. This report demonstrated that while Rh1 phosphorylation was not required
for interaction with Arr2::GFP, it appeared to be needed for internalization of Rh1/Arr2
complexes and thus to be partially responsible for retinal degeneration in norpAP24 mutants.
In a work utilizing the Drosophila eye as a model for Alzheimer’s disease, both Rh1::GFP
as well as GFP::NINAC were utilized as rhabdomeral markers to record retinal degenera-
tion [50]. Lambert et al. reported dysregulation of the endosomal trafficking machinery by
the neuronally expressed isoform 1 of the genetic risk factor BIN1. Likewise, TRP::eGFP
and optical neutralization is used routinely to investigate PRC integrity and determine
or exclude degenerative processes from the experimental setups [28]. With respect to
TRPL trafficking, FP fusions in chimeric TRP/TRPL ion channels were used to provide
evidence for the necessity of both TRPL termini for light-induced protein translocation [51].
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Furthermore, TRPL::GFP helped to uncover the involvement of RabX4 and Rab5 during
light-induced TRPL internalization [52].

2.4. Other Genetic Screening Approaches in Drosophila Involving FPs

Apart from labeling of mosaic tissue and as reporters for cellular morphology or sub-
cellular protein localization, FPs are utilized to determine gene expression. The integration
of reporter constructs into genetic loci can be used to identify expression patterns of these
loci and has come to be known in Drosophila as enhancer trap. This is based on the circum-
stance that transcriptional enhancers govern the expression of numerous genes in their
sphere of influence which can encompass regions in the order of 105 basepairs [53]. This
then includes transgenes that are integrated via transposons into these regions of regulation
within an organism’s genome. Among the first enhancer trap screens in Drosophila was
the identification of photoreceptor-specifically expressed genes via FP reporters [54]. The
addition of splice acceptor and splice donor sites flanking the FP sequence gave rise to
protein traps which potentially generated whole libraries of Drosophila stocks expressing
FP-tagged fusion proteins under endogenous regulation as long as the integration event
took place within a gene intron. The Carnegie and pigP collections, for instance, are li-
braries of Drosophila stocks that carry insertions of either transposable P element or piggyBac
cassettes containing the white or the yellow marker gene as well as the coding sequence of
GFP or YFP, respectively, in hundreds of individual gene loci [55,56]. The MiMIC library
similarly utilizes a Minos transposon cassette for genomic integration into various genes
in combination with the GFP transgene [57]. Another project generated hundreds of fly
stocks expressing C-terminally FP-tagged proteins by integration of cDNA fosmid libraries
via the site-directed phiC31 system to study expression patterns and subcellular protein
localization [58]. Together with further techniques, these libraries can be used in a variety
of screening setups. Thus, iGFPi (in vivo GFP interference), for instance, specifically knocks
down expression of GFP-trapped proteins by targeting the GFP-encoding portion of the
respective mRNA through RNAi [59]. Further, deGradFP (degrade GFP), on the other
hand, utilizes the highly conserved eukaryotic ubiquitin pathway for targeted proteasomal
degradation of FPs and FP fusions via genetically encoded anti-GFP nanobodies [60]. Mean-
while, GrabFP and equivalent techniques use similar alpaca-derived nanobodies raised
against GFP to force protein interactions and relocalize GFP-tagged target proteins [61,62].
Conveniently, while being the target of these approaches, GFP fluorescence simultane-
ously serves as reporter for successful knock-down or mislocalization. More recently,
the exploitation of the bacterial CRISPR/Cas9 system as well as the ribosomal skipping
peptide T2A has expanded the toolkit even further with, for example, Trojan exons or
CRIMIC in which the integrated cassettes can easily be exchanged for constructs with
various other properties [63,64]. A Cas9::T2A::GFP construct has also been implemented as
a positive fluorescence marker in a novel CRISPR approach to identify Cas9 expressing
cells in which a knock-out could be expected [65]. Raghu Padinjat’s group then proceeded
to screen for regulatory genes of the phosphatidylinositol signaling pathway necessary for
eye development.

3. Fluorescence Proteins in Functional Studies of the Drosophila Visual System

Drosophila phototransduction has been studied in detail as a neuronal model for G-
protein coupled signaling pathways. Here, signal transduction starts with photons entering
the compound eye through the cornea of an ommatidium. Once at the rhabdomere of a
PRC, most of the light rays are assumed to be guided along the entire length of the rhab-
domere by total reflection. This leads to a very high probability of photon absorption by
abundant rhodopsin molecules embedded in the microvillar membranes. Fly rhodopsins
are comprised of the opsin protein and the chromophore 11-cis-3-hydroxy-retinal which
photoisomerizes into an all-trans conformation upon absorbing a photon. Photon absorp-
tion results in the formation of activated rhodopsin referred to as metarhodopsin which
sets the phototransduction cascade in motion. Metarhodopsin’s interaction with the het-
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erotrimeric G protein (Gq) causes the exchange of GDP for GTP, which in turn leads to the
release of the GTP-bound α-subunit of Gq. Gqα-GTP activates PLCβ which then cleaves
the membrane lipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] into the products
diacylgycerol (DAG) and inositol (1,4,5)-trisphosphate (InsP3). Cleavage of PI(4,5)P2 also
generates protons, measurable changes in the microvillar structure and is responsible for
gating the ion channels TRP and TRPL in the rhabdomeral membrane, resulting in Na+ and
Ca2+ influx and depolarization of the PRC. Changes in Ca2+ concentration then feed back
onto numerous regulatory mechanisms, for example inactivation of rhodopsin, positive and
negative regulation of TRP channels as well as short- and long-term light-adaptation [66].
The deactivation of the cascade as well as conservation and replenishing of the PI(4,5)P2
pool via negative feedback, the phosphoinositide cycle and vesicular membrane traffic are
subject of ongoing research. Methods for tracking PIs and Ca2+ are accordingly of great
importance in this field and will be discussed in this chapter.

3.1. Fluorescence-Based Calcium Sensors

In neurons, regulation of Na+, K+ and Ca2+ flux across the plasma membrane results
in cellular de- and hyperpolarization as a response to external stimuli. Signal transmission
at the synapse is then triggered by the Ca2+-mediated release of neurotransmitters. In
addition, Ca2+ feeds back on neuronal signaling cascades in various ways. Accordingly,
investigations of neuronal activity and function demand determination of cellular Ca2+

levels and its regulated changes in a time resolved manner. Apart from electrophysiological
methods to study neuronal function, the establishment of appropriate Ca2+ biosensors for
imaging has been vital to neurobiology. In addition to chemical indicators which are based
on Ca2+-chelating agents that fluoresce, protein-based indicators have been developed over
the years. In initial approaches, the bioluminescent protein Aequorin from the eponymous
jellyfish Aequorea victoria was used as a sensor for Ca2+ ions, since its ability to luminesce
is linked to Ca2+-binding. However, Aequorin’s luminescence also relies on a prosthetic
group—the luciferin coelenterazine—which is absent in most biological systems. Therefore,
a major advance has been the introduction of Ca2+-sensing molecules based on FPs referred
to as GECIs (genetically encoded calcium indicators) which have several advantages
over previous chemical indicators as well as Aequorin (Figure 5A). Most remarkably,
these sensors allow the tracking of changes in intracellular Ca2+ concentrations in live
imaging setups. The first iteration, Cameleon, implemented a pair of complementary
FPs (CFP/YFP or BFP/GFP) linked by Ca2+-binding calmodulin (CaM) and M13, the
C-terminal fragment from myosin light chain kinase, to generate the prototypical and
ratiometric Ca2+-sensing Förster resonance energy transfer (FRET) probe [67]. Alternatives
like camgaroo and G-CaMP used only a single circularly permuted (cp) FP in combination
with CaM-M13 [68,69]. To account for fast dynamics and low levels of Ca2+ changes of
neuronal cells, a mutagenesis approach coupled with in vivo evaluation has ultimately
yielded the variant GCaMP6f with improved sensitivity for cytosolic measurements [70].
More recently, ER-GCaMP6–150 was developed with reduced Ca2+-binding affinity, an
N-terminal signal peptide of ER-located calreticulin and a C-terminal KDEL retention motif
to examine ER Ca2+ dynamics [71]. Ratiometric FRET probes were optimized as well by
reducing the number of Ca2+-binding sites from four to two or even one in so called Twitch
sensors in which the CaM-M13 domain was exchanged for a truncated troponin C (TnC)
from the toadfish Opsanus tau [72]. To address the issue that red-shifted FPs require two
photon laser excitation with wavelengths outside the near-infrared region (>1000 nm), the
long Stokes shift Ca2+ sensor REX-GECO1 has been engineered [73]. REX-GECO1 can be
excited by one 480 nm photon or two 910 nm photons and has been demonstrated to act as
both an excitation as well as an emission ratiometric single FP-based Ca2+ probe [74].
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Figure 5. Schematic representation of fluorescent proteins (FPs) and FP fusion proteins with applications in the functional
dissection of the Drosophila visual system. (A) Fluorescent genetically encoded calcium indicators based on conformational
changes in singular circularly permuted (cp)FPs (GCaMP6f, ER-GCaMP6-150, RCaMP, R-GECO) or FRET probes (Cameleon,
Twitch-2C) in response to Ca2+ binding. (B) Fluorescent biosensors for neuronal activity reacting to changes in extracellular
glutamate concentration (iGluSnFR) or membrane potential (ASAP2f). Purple circles represent respective binding sites. (C)
Phospholipid binding probes (PH::GFP, GFP::PH, OSH1/2::GFP, GFP::2xFYVE, P4M::GFP, TubbyR322H::YFP) for imaging
intracellular pools of phosphoinositides like PI(3)P, PI(4)P, PI(4,5)P2 and InsP3. (D) Examples of advanced variants of FPs
capable of photoconversion from green to red fluorescence (mEosFP1, mEos4b, pcStar), reversible photoswitching from
an “OFF” state to an “ON” state (rsEGFP2, Kohinoor2.0, rsFusionRed3) or both (mIrisFP). (E) Extrinsically fluorescent
protein tags able to covalently bind specific fluorogenic or inhibitory substrates allowing rapid chemical labeling (Halo,
SNAP/CLIP, TMP).
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3.2. Calcium Imaging in Drosophila Photoreceptors

In pioneering works, two groups used chemical Ca2+ sensors and electrophysiological
recordings in parallel to study light-triggered Ca2+ changes in Drosophila PRCs [75,76].
These studies revealed that Ca2+ changes are spatially localized to the rhabdomeres where
the light-dependent Ca2+ influx generates micromolar range transients essential for nega-
tive regulation of TRP channels. With respect to FP-based Ca2+ sensors for fast kinetics,
GCaMP6f was the first to be employed in Drosophila PRCs. Utilized under regulation of ei-
ther the synthetic eye-specific enhancer glass multiple reporter (GMR) or the Rh1 promoter,
GCaMP6f has been used to characterize light-triggered Ca2+ changes with high precision,
demonstrating its practical performance in the fly eye [77,78]. Since all GFP-based in vivo
live imaging methods have to deal with light scattering and photon absorption by tissue as
well as phototoxic effects at least to some degree, longer wavelengths with less energy are
usually preferred. With regard to GECIs, red-shifted variants like RCaMP and R-GECO
have been developed to address this issue and at the same time enable two-color fluo-
rescence setups [79,80]. An enhanced variant of R-GECO with sensitivity comparable to
GCaMP6f has been successfully used in photoreceptors of transgenic flies in combination
with ER-GCaMP-150 to simultaneously trace complementary changes of cytosolic as well
as ER Ca2+ levels and demonstrate that the Na+/Ca2+ exchanger CalX functions as a Ca2+

transporter in the ER membrane [81,82]. The Drosophila visual system has also been recently
established as a model to investigate contractile forces in tissue morphogenesis [83]. Ready
and Chang utilized the eye-specifically expressed GCaMP6m variant for intermediate
kinetics to detect phototransduction-independent waves of Ca2+ propagating through
interommatidial cells which promote stress fiber contractions that generate forces needed
to shape the eye’s curvature.

3.3. Monitoring Calcium and Neuronal Activity in the Drosophila Optic Lobe

Sensing neuronal activity by light-microscopical means in Drosophila is not limited to
Ca2+ changes within retinal neurons but can also be performed by visualizing signaling
in the entire optic lobe—especially in combination with multiphoton imaging techniques
which are able to use longer wavelengths for excitation and thus penetrate deeper into
the tissue with little scattering. Accordingly, the FRET probe Twitch-2C was successfully
utilized in a study uncovering color processing by inhibitory synaptic interactions involv-
ing histamine receptors HisCl1 and Ort in photoreceptor terminals of R7/R8 pairs [84].
Another recently published report compared measurements in the medulla obtained from
GCaMP6f with those acquired via the glutamate-sensing reporter iGluSnFR which had
been developed earlier by coupling a glutamate-binding GltI domain from an E. coli ABC
transporter with a cpGFP (Figure 5B) [85,86]. The study presents iGluSnFR to have an
even faster response than the Ca2+-sensing GCaMP6f in Drosophila vision, while admitting
certain limits of this sensor regarding ligand diffusion due to iGluSnFR’s localization in
the plasma membrane facing the extracellular space within the synaptic cleft. A further
technique to image neuronal activity exists in the form of so called GEVIs (genetically
encoded voltage indicators) which use a voltage-sensing domain—mostly from voltage
sensitive phophatases of the tunicate Ciona intestinalis and chicken (Gallus gallus)—or opsins
from various microbial species linked to a fluorescent reporter (Figure 5B) [87]. As with
GECIs, some sensors facilitate FRET while others are based on modifying the properties
of singular (cp)FPs [88]. Applied to medulla intrinsic and transmedullary neurons of the
Drosophila visual system, concurrent measurements with GCaMP6f and the GEVI ASAP2f
demonstrated that unlike voltage responses which consistently decay from the site of
synaptic input, Ca2+ dynamics are compartmentalized and differ unpredictably between
distinct regions [89]. This finding led Thomas Clandinin’s group to the interpretation
that these neurons transmit specific signals to their downstream connections in different
synaptic layers.
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3.4. Phosphoinositide Tracking by Fluorescently Tagged Lipid Probes

The history of investigations into PI signaling is at least in part rooted in neurophysi-
ological experimentation and as thus its importance for neuronal cell function as well as
a role in disorders of the nervous system has long been established [90]. Emphasis has
also been put on the role of phosphoinositides in the vertebrate and invertebrate visual
systems [91,92]. Phosphatidylinositol (PI)—the basic molecule of this lipid family—can be
phosphorylated on Positions 3, 4 and 5 of its inositol ring and all possible combinations
thereof, leading to the generation of seven phosphorylated variations. As phospholipids, PI
and its phosphorylated derivatives—known overall as phosphoinositides—are an integral
part of eukaryotic membranes. Phosphoinositides are to various degrees participating
in important cellular processes like signal transduction, cytoskeletal organization and
vesicular transport. Presence of various phosphoinositides has also been described as
characteristic for certain subcellular membranes. To unravel the plethora of mechanisms PI
signaling is involved in, effort has been put forward to accomplish intracellular tracking of
specific phosphoinositide levels and dynamics. Thus, in order to complement biochemical
detection methods, which are not part of this review, fluorescent probes specific to either a
single phosphoinositide or a subset of these lipids have been developed (Figure 5C). One
of these probes comprised a fusion of GFP with the PI(4,5)P2-binding pleckstrin homology
(PH) domain of the PI(4,5)P2-cleaving enzyme phospholipase Cδ (PLCδ) at either its N- or
C-terminus to generate PH::GFP and GFP::PH, respectively [93,94]. However, these PH
domains are not exclusively binding PI(4,5)P2 and also recognize the cleavage product and
second messenger inositol (1,4,5)-trisphosphate (InsP3). Another phosphoinositide sensor
for the early endosomally enriched PI(3)P was established in the form of GFP::2xFYVE,
containing two zinc finger domains from tyrosine kinase substrate Hrs [95,96]. Subse-
quent endeavors yielded less ambiguous sensors for PI(4,5)P2 based on the PH domain
of the murine transcription factor Tubby which was fluorescently tagged with either GFP
or YFP [97,98]. A genome-wide analysis of PH domains in yeast lead to the generation
of an entire set of GFP-fusions—both specific and promiscuous in their affinity towards
different phosphoinositides, whereas FP-tagging of the PH domains from human OSBP
and FAPP1 as well as the P4M domain of the secreted effector protein SidM from Legionella
pneumophila resulted in PI(4)P-specific probes [99–101]. More elaborate ratiometric sensors
were introduced to monitor phosphoinositides based on FRET and dimerization-dependent
FPs [102,103].

3.5. Monitoring Phosphoinositides in Drosophila Photoreceptors via Fluorescently Tagged
Lipid Probes

Given that Drosophila phototransduction utilizes a phosphoinositide-mediated signal-
ing pathway, usage of phosphoinositide-specific fluorescent probes to study this system
has yielded fruitful approaches. While the majority of studies that produced and charac-
terized phosphoinositide sensors were based on cultured cells, a subset thereof (PH::GFP,
TubbyR332H::YFP, P4M::GFP, OSH1::GFP and OSH2::GFP) has been integrated into in vivo
investigations of Drosophila PRCs to test sensor performance regarding the monitoring
of specifically PI(4,5)P2—arguably the most important of the phosphoinositides for PLC-
mediated signal transduction—and PI(4)P [104]. In another study, Roger Hardie’s group
later on tracked PI(4)P and PI(4,5)P2 with P4M::GFP and TubbyR332H::YFP, respectively, in
recordings of Drosophila’s DPP in order to screen candidate genes for their involvement
in phosphoinositide turnover and ultimately described PI4KIIIα as the kinase responsible
for PI(4)P synthesis in Drosophila photoreceptors [105]. PI4KIIIα’s importance for PI(4)P
as well as PI(4,5)P2 homeostasis and phototransduction was simultaneously corroborated
by Raghu Padinjat’s group via similar experiments with P4M::GFP and PH::GFP [106].
Furthermore, detection of PI(4,5)P2 via PH::GFP in optical neutralization microscopy sup-
ported the claim that the kinase PIP5K was required for resynthesis of the PI(4,5)P2 pool
following PLC-mediated depletion during phototransduction [107]. Aside from studies
into the metabolic phosphoinositide cycle, fly PRCs are also utilized to investigate mem-
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brane contact sites between the endoplasmic reticulum (ER) and the plasma membrane
(PM), in particular with regard to phosphatidylinositol transfer proteins (PITPs) [108]. By
using PH::GFP to detect PI(4,5)P2 in the DPP, it was demonstrated that the PITP RDGB
(retinal degeneration B) required an FFAT motif and two C-terminal domains (DDHD and
LNS2) to interact with the ER integral protein dVAP-A as well as activity of an enhanced
synaptotagmin (Esyt) to correctly localize to the ER/PM contact sites [109–111]. Fluo-
rescently tagged phosphoinositide-binding domains additionally serve another purpose
in cell biological questions. Due to PI(3)P’s significant enrichment in early endosomal
structures, GFP::2xFYVE is routinely used as a subcellular marker, especially for studies
regarding vesicular trafficking including investigations in the Drosophila eye [50,112].

4. FP-Based Tags and Sensors of Tomorrow’s Investigations

Arguably one of the most significant advances regarding microscopic imaging tech-
niques in recent years was overcoming Ernst Abbe’s limit for optical resolution by several
independent methods generally referred to as super-resolution microscopy or nanoscopy
[113,114]. All of these microscopical approaches rely on certain properties of fluorophores.
Single molecule localization microscopy (SMLM) techniques circumvent the diffraction
limit of light by detecting only small subsets of all fluorescent molecules within the sample
at a time. Therefore, the signals are effectively being spread out into fluorescent point
sources before their visualization. An algorithm then utilizes the microscope’s point spread
function (PSF) and mathematically infers from the Gaussian distribution a more precise
localization for the origin of each individual fluorescence signal. One of these methods
is photoactivation localization microscopy (PALM), which uses photoactivatable fluores-
cence proteins (PAFPs) with the characteristic of starting out in an “OFF” state that can be
switched into a distinctly fluorescent “ON” state by irradiation with a specific wavelength
(Figure 5D) [115]. Prior to fluorescence detection, a small subpopulation of FPs within the
sample is converted from the “OFF” state to the “ON” state by inefficient photoactivation.
Afterwards an image is recorded, the “ON” state FPs are photobleached to switch off
their fluorescence and the process is repeated. Individual images, which were fitted to the
respective PSFs, are then combined into a composite representing the fluorescence signal
of every detected FP with a single molecule resolution below the diffraction limit. The use
of PALM for in vivo imaging of Drosophila is still rare but has been exemplified in detail
for visualizing E-cadherin in embryonic tissue with the use of mEosFP1 [116]. Similarly,
the mEos derived pcStar has been recently employed in another variant of SMLM called
single molecule-guided Bayesian localization microscopy (SIMBA) to detect E-cadherin
nanostructures during early Drosophila embryogenesis [117]. More recent developments
into PAFPs have yielded OsO4 fixation-resistant variants like mEos4b or mEosEM for the
use in correlative light and electron microscopy (CLEM) approaches [118,119].

The other main category of super-resolution imaging is known as the reversible sat-
urable optical fluorescence transition (RESOLFT) family and includes stimulated emission
depletion (STED) as well as ground state depletion (GSD) [120]. The common idea behind
these techniques is to use a fluorophore which can reversibly be switched by light between
two states of distinguishable fluorescent properties. Combined with a spatial intensity
distribution of a light beam containing a zero-point, the existence of the fluorophore in
one specific fluorescent state can in theory be confined to an arbitrarily small volume far
below the diffraction limit. In practice, this volume is limited by the intensity of light
which can reasonably be used in the context of biological tissue, setting a soft resolution
limit at around 20 nm—roughly one order of magnitude below the one suggested by
Abbe’s law. RESOLFT microscopy relies on reversibly photoswitchable fluorescent proteins
(RSFPs) and has already been successfully applied to Drosophila larval and adult tissue.
The previously reported rsEGFP2 was used as a transgenic fusion with α-tubulin in a
still rare in vivo proof of concept of time-lapse super-resolution imaging [121]. rsEGFP2
can be switched from a non-fluorescent “OFF” state to a green fluorescent “ON” state by
irradiation with 405 nm, while 488 nm are used for fluorescence excitation and to simul-
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taneously switch rsEGFP2 back to the “OFF” state. Alternatively developed RSFPs come
with high stability for long-term time-lapse image acquisition (Kohinoor2.0), far red-shifted
wavelength properties (rsFusionRed3) or dual-color modes for pulse-chase setups and
other more elaborate investigations (mIrisFP) [122–124]. A fairly extensive list of currently
available RSFPs for RESOLFT microscopy has been published recently [125].

So far, we discussed intrinsically fluorescent proteins, i.e., FPs that form a fluorophore
within the protein structure itself. Extrinsically fluorescent proteins, on the other hand,
are genetically encoded engineered enzymes with the capability to covalently bind fluo-
rogenic substrates. In recent years, there have been a couple of these FPs developed as
protein-tags like Halo, SNAP/CLIP or TMP. These tags were quickly adopted as a visual-
ization alternative and applied in numerous approaches including studies in Drosophila
tissue (Figure 5E) [126]. The Halo-tag is based on a bacterial haloalkane dehalogenase
reacting with labeled chloroalkanes, SNAP- and CLIP-tags are both modified human O6-
alkylguanine DNA alkyltransferases cleaving benzylguanine and benzylcytosine deriva-
tives, respectively, and the TMP-tag is derived from a bacterial dehydrofolate reductase,
binding trimethoprim derived substrates. Extrinsically fluorescent proteins have similar
advantages over antibody stainings as conventional FPs, i.e., high signal linearity, easier
sample preparation, lower background, more precise signal localization and less issues with
tissue penetration. At the same time, the photophysical properties of their organic dyes
mostly exceed that of intrinsical FPs. Among many other studies, this was demonstrated
in the context of a long-standing labeling problem regarding tightly packed microvillar
spaces within rhabdomeres of Drosophila PRCs which are only partially accessible for
antibodies [127]. Using TRPL::SNAP alongside the fusion proteins Rh1::GFP, TRP::GFP
and TRPL::GFP, it was shown that repeatedly published crescent shaped antibody staining
patterns of rhabdomeral proteins were an artifact of poor tissue penetration. This tech-
nical artifact could be avoided with both intrinsically and extrinsically fluorescent tags,
ultimately leading to a more detailed description of TRPL’s internalization dynamics. With
the goal to visualize expression patterns and subcellular localization of neurotransmit-
ter receptors in the Drosophila brain, a recent work opted to combine fluorescent protein
trap technology with rapid chemical labeling of Brp::SNAP—a widely used marker for
neuropils—instead of time-consuming immunochemical stainings, in order to allow au-
tomated image processing of large sets of fluorescence images [128]. While extrinsically
fluorescent proteins do require the incubation with fluorogenic substrates which limits
their usability in live imaging setups, they are much more modular than intrinsically fluo-
rescent proteins. A protein of interest that has been tagged with a self-labeling enzyme can
afterwards be labeled with various substrates specifically optimized for the imaging setup.
These substrates can have distinct fluorescence spectra, act as enzyme blocking agents in
pulse-chase experiments, serve as anchors for affinity-based protein purification or even
be used in super-resolution microscopy like STED or CLEM due to stochastic blinking or
contrasting properties [129,130].

5. Concluding Remarks

Fluorescent proteins in combination with optimized live imaging microscopy tech-
niques have undeniably helped to further cell biological investigations thus far and will
continue to do so for the foreseeable future. Despite being deployed in this context for
the first time more than 25 years ago, GFP remains the most abundantly utilized FP in
many imaging methods of biological tissue today. This is also true for investigations within
the model system of the Drosophila eye as the above chapters of this review can confirm.
GFP has been optimized many times, modified in various ways and combined with sen-
sors to allow, for example, detection of Ca2+ ions, voltage changes and phosphoinositides
or to generate FPs that can be switched between different fluorescent states by light for
usage in super-resolution microscopy. Recombinant expression of reporters and sensors
based on intrinsic and extrinsic fluorescence requires the labour-intensive generation of
transgenic organisms. However, we recommend taking on this endeavour in view of the
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many advantages of FPs over immuno- and conventional chemical stainings. Investing into
appropriate genetically encoded fluorescence tools can speed up investigations manifold
and enable microscopic techniques not possible with conventional immunochemistry. In
Drosophila, more versatile and modular FP variants will allow to couple forward genetic
screens with subcellular molecule tracing, specific knock-downs and visualization on the
nanoscopic scale.
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