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Abstract: Plants produce a wide variety of natural volatile organic compounds (NVOCs), many
of which are unique to each species. These compounds serve many purposes, such as fending
off herbivores and adapting to changes in temperature and water supply. Interestingly, although
NVOCs are synthesized to deter herbivores, many of these compounds have been found to possess
several therapeutic qualities, such as promoting nerve stability, enhancing sleep, and suppressing
hyperresponsiveness, in addition to acting as antioxidants and anti-inflammatory agents. Therefore,
many NVOCs are promising drug candidates for disease treatment and prevention. Given their
volatile nature, these compounds can be administered to patients through inhalation, which is often
more comfortable and convenient than other administration routes. However, the development
of NVOC-based drug candidates requires a careful evaluation of the molecular mechanisms that
drive their therapeutic properties to avoid potential adverse effects. Furthermore, even compounds
that appear generally safe might have toxic effects depending on their dose, and therefore their
toxicological assessment is also critical. In order to enhance the usage of NVOCs this short review
focuses not only on the biological activities and therapeutic mode of action of representative NVOCs
but also their toxic effects.

Keywords: natural volatile organic compound (NVOC); biological modulator; safety

1. Introduction

Natural volatile organic compounds (NVOCs), also known as biogenic volatile organic
compounds, are compounds that derive from living organisms such as plants. Further,
volatile organic compounds (VOCs) are organic compounds that are volatile at environmen-
tal temperature; however, this definition may vary between countries and jurisdictions. For
example, Canada defines VOCs as organic compounds with boiling points between 50 and
250 ◦C [1], whereas the European Union defines them as organic compounds with an initial
boiling point less than or equal to 250 ◦C measured at a standard atmospheric pressure of
101.3 kPa [2]. In India [3] and the United States of America [4], these compounds tend to
be defined from an environmental pollutant standpoint.

NVOCs are primarily synthesized by plants to deter herbivores [5,6] and to promote
plant growth [7]. Given that the types of NVOCs produced by plants are largely species-
dependent [8], plants are often phenotyped based on their unique NVOC characteristics
and ratios [9]. NVOCs can be classified based on their origin (e.g., synthetic vs. natural)
chemical structure (e.g., isoprenoids or terpenoids), or chemical moieties (e.g., oxygenated
forms such as methanol, acetaldehyde, acetone, methyl-ethyl-ketone, or sulfurs such as fu-
ranocoumarins) [10,11]. The diversity and level of the emitted NVOCs are also determined
by a variety of stimuli such as temperature and light [12–14], water and humidity [15,16],
salt concentration [17], or the presence of ozone [18,19], among other factors.
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Recent reports have discussed the many therapeutic qualities of NVOCs, including
their ability to enhance sleep [20]; hypolipidemic activity and anti-cancer effect [21,22];
protective effect against viral pneumonia and anti-inflammatory effects [23]; anti-cancer
and anti-oxidative effects [24,25]; neuroprotective effects [26]; anti-oxidative stress and
anti-asthmatic effects [27–29]; alleviating effect on skin inflammation [30]; anti-Trypanosoma
effects [31]; and industrial applications such as flavoring agents for food additives, oil for
aromatherapy, commercial chemicals for many food products, soaps, and perfume [32].
However, NVOCs can also exert toxic effects, such as irritation of the pulmonary system
and central nervous system [33], developmental toxicity [34,35], nephrotoxicity and hepa-
totoxicity [36], and allergic reactions [37,38]. Therefore, this review discusses the biological
and toxicological effects of NVOCs that could be used as biological modulators of disease.

2. Biological Effects of Natural Volatile Compounds
2.1. (+)-3-Carene

(+)-3-carene is a monoterpene that is often also referred to as isodiprene, (+)-δ3-carene,
δ-3-carene, and (+)-car-3-ene [39]. This compound has several biological effects such
as antibacterial [40], insecticidal [41], and sleep-enhancing [20] properties. Further, Shu
et al. (2019) reported that this compound induced the death of Gram-positive Brochothrix
thermosphacta ACCC03870 and Gram-negative Pseudomonas fluorescens ATCC13525, which
were linked to food spoilage and several diseases [42,43] via membrane breaking, metabolic
dysfunction, DNA disruption, and interrupting cellular function. Insects such as the maize
weevil (Sitophilus zeamais) can devastate entire crops, particularly grains [44]; however,
(+)-3-carene has reportedly been used as an effective pest control fumigant to address
this problem [41]. Further, this compound is not only an effective microbe and insect
inhibitor but also enhances the quality and duration of sleep in animals by interacting with
GABAA-benzodiazepine receptors (Figure 1) [20].
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Figure 1. Mechanisms by which (+)-3-carene enhances sleep by stimulating the GABAA-
benzodiazepine receptor (modified from Woo et al. 2019 [20]). 1© (+)-3-carene binds on the GABAA-
benzodiazepine receptors in the postsynaptic region. 2© Cl− flows into the postsynapse. 3© Inhibitory
postsynaptic potential (IPSP) occurs, thus enhancing the quality and the duration of sleep under
hyperpolarization.

Int. J. Mol. Sci. 2021, 22, 9421 2 of 17 
 

 

furanocoumarins) [10,11]. The diversity and level of the emitted NVOCs are also deter-
mined by a variety of stimuli such as temperature and light [12–14], water and humidity 
[15,16], salt concentration [17], or the presence of ozone [18,19], among other factors. 

Recent reports have discussed the many therapeutic qualities of NVOCs, including 
their ability to enhance sleep [20]; hypolipidemic activity and anti-cancer effect [21,22]; 
protective effect against viral pneumonia and anti-inflammatory effects [23]; anti-cancer 
and anti-oxidative effects [24,25]; neuroprotective effects [26]; anti-oxidative stress and 
anti-asthmatic effects [27–29]; alleviating effect on skin inflammation [30]; anti-Trypano-
soma effects [31]; and industrial applications such as flavoring agents for food additives, 
oil for aromatherapy, commercial chemicals for many food products, soaps, and perfume 
[32]. However, NVOCs can also exert toxic effects, such as irritation of the pulmonary 
system and central nervous system [33], developmental toxicity [34,35], nephrotoxicity 
and hepatotoxicity [36], and allergic reactions [37,38]. Therefore, this review discusses the 
biological and toxicological effects of NVOCs that could be used as biological modulators 
of disease. 

2. Biological Effects of Natural Volatile Compounds 
2.1. (+)-3-carene 

(+)-3-carene is a monoterpene that is often also referred to as isodiprene, (+)-δ3-
carene, δ-3-carene, and (+)-car-3-ene [39]. This compound has several biological effects 
such as antibacterial [40], insecticidal [41], and sleep-enhancing [20] properties. Further, 
Shu et al. (2019) reported that this compound induced the death of Gram-positive Bro-
chothrix thermosphacta ACCC03870 and Gram-negative Pseudomonas fluorescens 
ATCC13525, which were linked to food spoilage and several diseases [42,43] via mem-
brane breaking, metabolic dysfunction, DNA disruption, and interrupting cellular func-
tion. Insects such as the maize weevil (Sitophilus zeamais) can devastate entire crops, par-
ticularly grains [44]; however, (+)-3-carene has reportedly been used as an effective pest 
control fumigant to address this problem [41]. Further, this compound is not only an ef-
fective microbe and insect inhibitor but also enhances the quality and duration of sleep in 
animals by interacting with GABAA-benzodiazepine receptors (Figure 1) [20]. 

Figure 1. Mechanisms by which (+)-3-carene enhances sleep by stimulating the GABAA-benzodiaz-
epine receptor (modified from Woo et al. 2019 [20]). ○1  (+)-3-carene binds on the GABAA-benzodi-
azepine receptors in the postsynaptic region. ○2  Cl− flows into the postsynapse. ○3  Inhibitory 
postsynaptic potential (IPSP) occurs, thus enhancing the quality and the duration of sleep under 
hyperpolarization. : (+)-3-carene; : GABAA-benzodiazepine receptor. 

  

: (+)-3-carene;

Int. J. Mol. Sci. 2021, 22, 9421 2 of 17 
 

 

furanocoumarins) [10,11]. The diversity and level of the emitted NVOCs are also deter-
mined by a variety of stimuli such as temperature and light [12–14], water and humidity 
[15,16], salt concentration [17], or the presence of ozone [18,19], among other factors. 

Recent reports have discussed the many therapeutic qualities of NVOCs, including 
their ability to enhance sleep [20]; hypolipidemic activity and anti-cancer effect [21,22]; 
protective effect against viral pneumonia and anti-inflammatory effects [23]; anti-cancer 
and anti-oxidative effects [24,25]; neuroprotective effects [26]; anti-oxidative stress and 
anti-asthmatic effects [27–29]; alleviating effect on skin inflammation [30]; anti-Trypano-
soma effects [31]; and industrial applications such as flavoring agents for food additives, 
oil for aromatherapy, commercial chemicals for many food products, soaps, and perfume 
[32]. However, NVOCs can also exert toxic effects, such as irritation of the pulmonary 
system and central nervous system [33], developmental toxicity [34,35], nephrotoxicity 
and hepatotoxicity [36], and allergic reactions [37,38]. Therefore, this review discusses the 
biological and toxicological effects of NVOCs that could be used as biological modulators 
of disease. 

2. Biological Effects of Natural Volatile Compounds 
2.1. (+)-3-carene 

(+)-3-carene is a monoterpene that is often also referred to as isodiprene, (+)-δ3-
carene, δ-3-carene, and (+)-car-3-ene [39]. This compound has several biological effects 
such as antibacterial [40], insecticidal [41], and sleep-enhancing [20] properties. Further, 
Shu et al. (2019) reported that this compound induced the death of Gram-positive Bro-
chothrix thermosphacta ACCC03870 and Gram-negative Pseudomonas fluorescens 
ATCC13525, which were linked to food spoilage and several diseases [42,43] via mem-
brane breaking, metabolic dysfunction, DNA disruption, and interrupting cellular func-
tion. Insects such as the maize weevil (Sitophilus zeamais) can devastate entire crops, par-
ticularly grains [44]; however, (+)-3-carene has reportedly been used as an effective pest 
control fumigant to address this problem [41]. Further, this compound is not only an ef-
fective microbe and insect inhibitor but also enhances the quality and duration of sleep in 
animals by interacting with GABAA-benzodiazepine receptors (Figure 1) [20]. 

Figure 1. Mechanisms by which (+)-3-carene enhances sleep by stimulating the GABAA-benzodiaz-
epine receptor (modified from Woo et al. 2019 [20]). ○1  (+)-3-carene binds on the GABAA-benzodi-
azepine receptors in the postsynaptic region. ○2  Cl− flows into the postsynapse. ○3  Inhibitory 
postsynaptic potential (IPSP) occurs, thus enhancing the quality and the duration of sleep under 
hyperpolarization. : (+)-3-carene; : GABAA-benzodiazepine receptor. 

  

: GABAA-benzodiazepine receptor.

2.2. Camphene

Camphene is a monoterpene that is also referred to as comphene, 79–92–5, and 2,2-
dimethyl-3-methylenenorbornane [45]. Camphene inhibits the growth of Paracoccidioides
lutzii, a fungus that causes paracoccidioidomycosis [46], through protease inhibition and the
dysregulation of important biological pathways [47]. Further, this compound induced the
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death of the old-world bollworm (Helicoverpa armigera) the eggs of which were dipped [48].
Regarding its therapeutic properties, this compound decreases the level of serum lipids
such as cholesterol and triglycerides by upregulating sterol regulating binding protein-
1 (SREBP-1) and downregulating MTP expression [21] while leaving the expression of
3-dydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase largely unaffected [49].
Further, this compound decreased the oxidative stress on respiratory macrophages by pre-
venting the upregulation of superoxide dismutase (SOD) and reducing glutathione (GSH)
levels, in addition to decreasing the levels of lipid peroxidation and nitric oxide (NO) [50],
thus stimulating tumor cell death via endoplasmic reticulum stress (Figure 2) [22].
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Figure 2. Diagram of apoptosis induction by camphene via mitochondrial dysfunction and endo-
plasmic reticulum stress (modified from Girola et al. 2015 [22]). Camphene stimulates Ca2+ efflux,
downregulates membrane potential to induce mitochondrial dysfunction, induces endoplasmic retic-
ulum stress, increases caspase 3 activation, HmgB2, and calreticulin, and finally results in apoptosis.
↑: increasing; ↓: decreasing.

2.3. Camphor

Camphor is a monoterpene that is also referred to as camphor gum, (1R)-camphor, and
464–49–3 [51]. Many tropical diseases such as malaria, dengue, and elephantiasis are caused
by mosquito bites. A total of 434,000 mosquito-borne diseases were reported worldwide
in 2015, thus highlighting the serious threat that these insects pose to human health [52].
Camphor has been used as a mosquito repellent in topical application, cosmetics, incense,
fumigants, or sprays [53] and to inhibit the growth of some pathogenic microorganisms
such as Candida albicans, a representative opportunistic pathogenic yeast that causes severe
health complications, particularly in immunodeficient or cancer patients [54]. This com-
pound also inhibits the growth of Staphylococcus aureus, a Gram-positive bacterium linked
to skin abscesses and food poisoning [55], and Pseudomonas aeruginosa, an opportunistic
Gram-negative pathogenic bacterium that infects plants and animals including humans [56]
and has reportedly acquired mulita-antibiotic resistance [57]. Camphor alters cold and heat
perception by modulating blood flow in the skin and muscles [58]. Particularly, cold per-
ception is regulated by transient receptor potential melastatin 8 (TRPM8) [59], whereas heat
perception is modulated by transient receptor potential vanilloid 3 (TRPV3) (Figure 3) [60].
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vasoconstriction and vasodilatation (modified from Kotaka et al. 2014 [58]; Selescu et al. 2013 [59];
Steinhoff et al. 2009 [60]). When camphor is applied onto the skin, 1© the stimulus affluxes via the
dorsal root ganglion and nucleus tractus solitaries and 2© up to the somatosensory cortex. Once
the response to the stimulus is defined in the brain 3© vasoconstriction occurs if the stimulus was
associated to cold temperature, otherwise 4© the blood vessels dilate if a hot temperature is sensed.
DRG, dorsal root ganglion; NTS, nucleus tractus solitaries; TRPM8, transient receptor potential
melastatin 8; TRPV3, transient receptor potential vanilloid 3. The blue line indicates the conduction
of the nervous stimuli.

2.4. 1,8-Cineol

1,8-cineol is a monoterpene and there are many synonyms for this compound includ-
ing eucalyptol, zineol, trepan, and zedoary oil, among others [61]. In 1870, Cloez reported
that 1,8-cineol accounted for 90% of the total composition of Eucalyptus globulus oil [62].
This compound has many therapeutic properties, such as protective effects against the
influenza A virus, which induces pneumonia through cytokine modulation and the NF-κB
pathway [63], as well as anti-cancer effects via G0/G1 arrest [64], anti-asthmatic effect
through mucolysis, downregulation of TNF-α and IL-1β, inactivation of the NF-κB and
TLR4 pathways [64–67], and anti-inflammatory and anti-oxidative effects via inhibition of
NF-κB translocation and the JNK pathway (Figure 4) [68].

2.5. p-Cymene

There are many synonyms for p-cymene, including 1-isopropyl-4-methylbenzene,
p-cimene, 4-isopropyltoluene, and camphogen [69]. This monoterpene has several biologi-
cal effects, such as downregulating of both pathological Gram-positive bacteria such as
Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis, as well as patho-
logical Gram-negative bacteria such as Escherichia coli O157:H7, Vibrio parahaemolyticus,
and Salmonella enterica [70]. Particularly, this compound regulates oxidative stress-induced
factors such as thiobarbituric acid reactive substances (TBARS), nitrite, and catalase (CAT)
activity [71]; inhibits inflammation via NF-κB pathway [72,73], promotes sleep through the
GABAergic pathway [74]; and suppresses cancer proliferation and cancer-associated pain
(Figure 5) [75] via apoptosis and autophagy [23].
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2.6. Limonene

Limonene is another monoterpene whose synonyms include eulimen, dipentene, nesol,
goldflush II, cajeputene, and dipanol [76]. This compound effectively controls Listeria
monocytogenes, a food poisoning-associated microbe, by disrupting its cell membrane
and decreasing ATP activity [77]. Further, it prevents Aβ42-induced neurotoxicity in
a Drosophila Alzheimer’s disease model by eliminating H2O2 and nitric oxide-induced
inflammation and cell death [26]. This compound also prevents reactive oxygen species
(ROS)-induced gastritis by both downregulating proinflammatory cytokines such as TNF-α,
IL-1β, and IL-6 and upregulating the anti-inflammatory cytokine IL-10 [78]. Limonene has
also been reported to modulate depressive behaviors by suppressing psychostimulant and
monoamine neurotransmitters, in addition to inhibiting both neurotrophic factor release
and its receptor activation [79], as well as the proliferation of cancer cells via the stimulation
of apoptosis (Figure 6) [80].
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Figure 6. Anti-proliferation mechanism of limonene against cancer cells (modified from Shojaei
et al. 2014 [80]). Limonene not only induces apoptosis by modulating the bcl-2 gene family and
up-regulating pro-apoptotic proteins such as BAD and down-regulating anti-apoptotic proteins
such as BCL2, but also by G1 arrest through SMAD regulation and by inhibiting metastasis through
suppression of Myc caused by the vascular endothelial growth factor (VEGF) receptor/Akt pathway.
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2.7. Linalool

Linalool is a monoterpene that is also widely known as coriandrol, howood oil,
allo-ocimenol, caswell No. 526A, and phantol [81]. It has antifungal effects against der-
matophytes such as Microsporum spp. and Trichophyton spp. and has synergic effects when
combined with azole [82]. Moreover, this compound promotes operant behavior through
the GABA receptor [83], is used as an ingredient for perfume and cosmetics with anti-
oxidative effects and low cytotoxicity [84], prevents ovalbumin-induced asthma occurrence
by inhibiting airway remodeling [85], and decreases oxidative stress-induced cell death by
regulating glutamate metabolism in the cornu ammonis 1 and 3 and dentate gyrus in the
hippocampal regions of the brain (Figure 7) [27].
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Figure 7. Linalool decreases oxidative stress-induced cell death by regulating glutamate metabolism
in the hippocampus (modified from Sabogal-Guaqueta et al. 2019 [27]). In several neurological
conditions such as Alzheimer’s disease and neuroinflammation, glutamate induces cysteine influx
into the cytoplasm and stimulates oxidative stress, thus inducing apoptosis. Linalool prevents ROS
generation and Ca2+ activation in the mitochondria in the cornu ammonis 1 and 3 and dentate gyrus
in the hippocampal regions of the brain.

2.8. Myrcene

Myrcene is a monoterpene that is also known as MFCD00008908, FEMA No. 2762,
CCRIS 3725, β-geraniolene, and β-mircene [86]. It controls cystic echinococcosis via mor-
phological alteration in Echinococcus granulosus larval cells [87], attenuates pain through
TRPV1 regulation [88], prevents ovalbumin-induced neonatal asthma by controlling pul-
monary matrix changes [29], inhibits glucocorticoid malfunction-induced renal impairment,
which is caused by oxidative stress and inflammation [28], protects against MMP synthe-
sis caused by UVB-induced ROS and IL-6 expression, and reverts UVB-induced TGF-β1
down-regulation (Figure 8) [89].

2.9. α-Phellandrene

α-phellandrene is a monoterpene that is also known as ZINC8418983, p-mentha-
1,5-diene, (5S)-5-isopropyl-2-methylcyclohexa-1,3-diene, CHEB:367, and Q25933668 [90].
α-phellandrene has been used to control insect pests on larvae under dipping or on adults
under topical application such as the southern house mosquito (Culex quinquefasciatus),
the African cotton leafworm (Spodoptera littoralis), and the common housefly (Musca do-
mestica) [91]. This compound also inhibits the proliferation of bacteria such as Staphylo-
coccus pneumoniae, Vibrio cholerae, and Escherichia coli, as well as fungi such as Fusarium
moniliforme [92], and promotes the recovery of skin wounds by reducing oxidative stress-
induced inflammation and stimulating fibroblast activity (e.g., migration and proliferation)
(Figure 9) [93].
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2.10. Pinene

Pinene consists of two isomers including α-pinene and β-pinene [94]. α-pinene and
β-pinene have many therapeutic properties such as antimicrobial activity, anti-proliferation
effects against cancer cells, antioxidation, and anti-inflammation [95], in addition to gas-
troprotective activity by modulating gastrointestinal transitional time [96], as well as
synergistic effects against the proliferation of non-small cell lung carcinoma (NSCLC) when
co-administered with paclitaxel (Figure 10) [97].
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Figure 10. α- and β-pinene have synergistic anticancer effects against non-small cell lung carcinoma
(NSCLC) when co-administered with paclitaxel (Modified from Zhang et al. 2019 [79]). ↑: increasing;
↓: decreasing.

2.10.1. α-Pinene

α-pinene has many therapeutic properties, such as antiviral effects against herpes
simplex virus type 1 (HSV-1) [98], modulation of antibiotic resistance in Campylobacter
jejuni through antibiotic efflux down-regulation [99], apoptosis induction in cancer cells
via ROS production, mitochondrial malfunction, caspase cascade activation, and inhibition
of metastasis [100]. Additionally, this compound mediates sleep-enhancement-induced
hypnosis through GABAA-benzodiazepine receptor modulation [101], and preventive and
therapeutic effects against allergic rhinitis via the regulation of disease-related factors
such as IgE, IL-4, NF-κB, and receptor-interacting protein 2 (RIP2), as well as eosinophils
infiltration in the lungs [102].

2.10.2. β-Pinene

Although the chemical formula of β-pinene is the same as that of its isomer α-pinene,
the former possesses unique biological properties. For instance, β-pinene attenuates Cr-
induced phytotoxicity due to its antioxidant properties [103] and possesses antifungal
and anti-biofilm properties against Candida spp. [104]. This compound also suppresses
hypertension via Ca2+ influx inhibition-mediated vasorelaxation [105] and has antiviral
effects against herpes simplex virus type 1 (HSV-1) [106].

2.11. α-Terpinen

α-terpinen is a monoterpene that is also known as p-mentha-1,3-diene, terpilene,
FEMA No. 3558, CCRIS 9058, Tox21_301126, and ZINC967593 [107]. This compound
has anti-parasitic activity against Trypanosoma evansi when used in oral treatment or in-
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traperitoneal injection and increases the life expectancy of infected animals [31]. Similar to
α-pinene, α-terpinen has antiviral effects against HSV-1 by decreasing infection rate and
selectivity to the virus [106]. Additionally, this compound has antispasmodic activity in
the trachea [108] and blocks antibiotic-resistance in Staphylococcus aureus through NorA
efflux-pump inactivation (Figure 11) [109].
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Figure 11. α-terpinen blocks the antibiotic-resistance of Staphylococcus aureus through NorA efflux
pump inactivation (modified from de Morais Oliveira-Tintino et al. 2018 [109]).

2.12. Terpinolene

The monoterpene terpinolene is also known as tereben, p-Menth-1,4(8)-diene, isoter-
pinene, Nofmer TP, and 1,4(8)-terpadiene [110]. Terpinolene makes Staphylococcus aureus
more susceptible to antibiotics by inactivating the resistance-mediated quaternary am-
monium compounds C (QacC) efflux pump and β-lactamases [111]. Additionally, this
compound has wound-healing effects [93], acts as a relaxant when inhaled [112], deceler-
ates brain tumor growth and oxidative stress [25], controls the proliferation of Microcystis
aeruginosa through (1) upregulation of reactive oxygen species (ROS) and malondialdehyde
(MDA) to activate photosynthesis, (2) inhibition of the activities of important biological
enzymes, e.g., nitrate reductase (NR) for protein synthesis and glutamine synthetase (GS)
for the production of glutamate, and (3) upregulation of ATP-binding cassette transporters
(ABC transporter), which are induced by ions and xenobiotics [113], as well as cytochrome
c oxidase subunit II (COX II), which participates in ATP regulation [114] in the plasma
membrane (Figure 12) [115].
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Figure 12. Terpinolene blocks the propagation of Microcystis aeruginosa through 1© ROS and MDA-
induced photosynthetic inactivity, 2© inhibiting the activity of nitrate reductase and glutamine
synthetase, and 3© increasing the efficacies of ABC transporters and COX II in the plasma membrane
(modified from Zhao et al. 2020 [115]). Reactive oxygen species, ROS; malondialdehyde, MDA;
nitrate reductase, NR; glutamine synthetase, GS; ATP-binding cassette transporters, ABC transporter;
cytochrome c oxidase subunit II, COX II. ↑: increasing; ↓: decreasing

3. NVOC Safety

Despite the promising health-promoting properties of NVOCs, their safety must be
thoroughly assessed prior to their implementation as pharmaceutical candidates or dietary
supplements. NVOCs are used in a variety of products, such as cosmetic materials (e.g.,
soap, perfume, lotion), flavor agents, aromatherapy, additives in several food products
(i.e., baked goods, frozen dairy, gelatins), and vector repellents [20,22–28,31,41,62,84,89];
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however, their safe use is highly regulated. NVOCs can induce toxic effects depending
on their dose and, therefore, toxicology studies are critical (Table 1). (+)-3-carene irritates
the lungs and central nervous system (CNS) [33], camphor irritates the gastrointestinal
tract and CNS [116], and 1,8-cineol induces genotoxicity via oxidative DNA damage [35].
p-cymene is thought to be less toxic, but it induces neurochemical abnormalities after
four weeks of inhalation [117]. Limonene has been found to induce hepatotoxicity and
neurotoxicity [36] and oxidized forms of limonene and linalool induce allergic reactions in
the skin [37]. The toxicity of myrcene has long been the topic of much debate due to its
potential genotoxicity or nephrotoxicity and, therefore, the US FDA prohibited its use as
a food additive [118]. Further, oxidized α-phellandrene and oxidized terpinolene induce
contact allergy [38], α-pinene induces pulmonary inflammation [119], β-pinene can irritate
the skin and mucous systems [120], whereas α-terpinene has embryo/fetotoxic effects [121].
In order to use NVOCs as pharmaceutical candidates or dietary supplements, we should
use them in quantities the enormous volume needs. Then, the level of them in the forest
should be analyzed and they should be collected from the air or from the extracts. All of the
12 NVOCs which are discussed in this review could be analyzed by gas chromatography-
mass spectrometry (GC-MS) based on their biological characters [122–125].

Table 1. Toxicological effects of natural volatile organic compounds (NVOCs).

Natural Volatile
Organic Compound Chemical Structure Molecular Weight

(g/mol) Toxicological Effect References
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Linalool 154.25 To induce skin allergy by oxidized linalool [37] 

Myrcene 

 

136.23 
It does not have unique toxicity but in 2018 US 

FDA decided to stop the usage of it as a food ad-
ditive. 

[118] 

ɑ-phellandrene 
 

136.20 To make contact allergy [38] 

ɑ-pinene 
 

136.23 To induce pulmonary inflammation [119] 

ß-pinene 
 

136.23 To irritate skin and mucous system [120] 

ɑ-terpinene 
 

136.23 Embryofoetal toxicity  [119] 

Terpinolene 
 

136.23 
Oxidized forms can make allergic contact derma-

titis. [38] 

4. Perspectives 
NVOCs are promising modulators of disease, as each NVOC has a potency to control 

diseases such as insomnia via sleep-enhancing by (+)-3-carene [20], cancer proliferation 
via induction of cancer cells’ apoptosis by camphene [22], microbial infection by camphor 
[54], chronic disease through suppression of oxidative stress and inflammation and 
asthma/COPD via modulation of NF-κB activation and TNF-α secretion by 1,8-cineol [64–
67], cancer proliferation via cancer cells’ death and cancer pain by p-cymene [75], mental 
disorder via antidepressant-like effects of limonene [79], allergy through controlling 
MAPKs/NF-κB pathway by linalool [85], pain via TRPV1 regulation by myrcene [88], skin 
damage through controlling inflammation by α-phellandrene [93], allergic rhinitis 

136.23 To irritate skin and mucous system [120]

α-terpinene
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4. Perspectives

NVOCs are promising modulators of disease, as each NVOC has a potency to con-
trol diseases such as insomnia via sleep-enhancing by (+)-3-carene [20], cancer prolifer-
ation via induction of cancer cells’ apoptosis by camphene [22], microbial infection by
camphor [54], chronic disease through suppression of oxidative stress and inflamma-
tion and asthma/COPD via modulation of NF-κB activation and TNF-α secretion by 1,8-
cineol [64–67], cancer proliferation via cancer cells’ death and cancer pain by p-cymene [75],
mental disorder via antidepressant-like effects of limonene [79], allergy through controlling
MAPKs/NF-κB pathway by linalool [85], pain via TRPV1 regulation by myrcene [88],
skin damage through controlling inflammation by α-phellandrene [93], allergic rhinitis
through NF-κB controlling and caspase pathway by α-pinene [100], hypertension via mod-
ulation of Ca2+ influx by β-pinene [105], antibiotic-resistance of Staphylococcus aureus
through NorA efflux pump inactivation by α-terpinene [109], and Microcystis aeruginosa
propagation through induction oxidative stress and carbonyl stress by terpinolene [115].
However, characterizing the mechanisms by which NVOCs inhibit disease progression
is critical for their wide application in clinical contexts. NVOCs can be administered
either directly (e.g., oral administration, inhalation) or indirectly using a syringe, nebu-
lizer, or patch. However, oral administration and inhalation are more convenient to the
patients and caregivers (e.g., nurses, doctors). Most NVOCs have relatively low boiling
points, thus facilitating their administration via inhalation. This is an important advantage,
as it enables the administration of therapeutic compounds without the need for highly
specialized equipment.

Nevertheless, the safety of NVOCs must also be carefully evaluated to ensure their
safety. Paracelsus [126] is credited for stating that “the dose makes the poison,” meaning
that virtually all compounds can be toxic if administered at high enough doses.

Currently, most drugs and therapeutic compounds can be chemically synthesized [127],
and NVOCs are no exception. However, artificially synthesized and natural NVOCs could
have different physiological effects. For example, myrcene has been long used as a food
additive and a flavoring agent or adjuvant due to its pleasant aroma; however, its safety has
been debated for several years. In 2010 the National Toxicology Program (NTP) reported
that β-myrcene could induce renal carcinogenesis in mice and rats [128]. Nevertheless,
the FDA ultimately determined that β-myrcene did not induce genotoxicity. Moreover,
although this compound was linked to renal carcinogenesis in laboratory animals, some
speculated that the compound was safe for human use as a synthetic food additive. Never-
theless, the FDA prohibited the use of synthetic β-myrcene as a food additive in 2018 [129].
This case serves as a precedent for the use of NVOCs (particularly those of natural origin)
in medications and food products. Nevertheless, the current changes in climate conditions
could induce an increase in NVOC concentrations in plants as a stress response mechanism,
which might increase the likelihood of toxic effects. Therefore, future studies should focus
on the dose-dependent toxicity of NVOCs.
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