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Abstract: Type 1 tunneling nanotubes (TNTs-1) are long, cytoplasmic protrusions containing actin,
microtubules and intermediate filaments that provide a bi-directional road for the transport of various
components between distant cells. TNT-1 formation is accompanied by dramatic cytoskeletal reor-
ganization offering mechanical support for intercellular communication. Although the centrosome
is the major microtubule nucleating center and also a signaling hub, the relationship between the
centrosome and TNTs-1 is still unexplored. We provide here the first evidence of centrosome localiza-
tion and orientation towards the TNTs-1 protrusion site, which is implicated in TNT-1 formation. We
also envision a model whereby synchronized reorientation of the Golgi apparatus along with the
centrosome towards TNTs-1 ensures effective polarized trafficking through TNTs-1. Furthermore,
using immunohistochemistry and live imaging, we observed for the first time the movement of an
extra centrosome within TNTs-1. In this regard, we hypothesize a novel role for TNTs-1 as a critical
pathway serving to displace extra centrosomes and potentially to either protect malignant cells
against aberrant centrosome amplification or contribute to altering cells in the tumor environment.
Indeed, we have observed the increase in binucleation and proliferation markers in receiving cells.
The fact that the centrosome can be both as the base and the user of TNTs-1 offers new perspectives
and new opportunities to follow in order to improve our knowledge of the pathophysiological
mechanisms under TNT control.

Keywords: tunneling nanotubes; centrosome; tumor development

1. Introduction

Since their discovery by Rustom and colleagues in 2004 [1], Tunneling nanotubes
(TNTs) represent a direct mode of intercellular communication that are gaining widespread
importance in our understanding of processes involved in health and disease [2–4]. During
TNT formation, the cell architecture undergoes a dramatic change to form long cyto-
plasmic extensions, which hover freely above the substratum and reach a distance up to
100 µm [5,6]. While actin filaments are presents in all TNTs, the microtubules (MTs) are
considered as the main component of the thicker subtype (type 1 TNT, hereafter referred
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to as TNTs-1 for simplicity) [7,8], and serve as tracks for direct exchanges of various com-
ponents including organelles (e.g., mitochondria, lysosomes) between the cytoplasm of
non-adjacent cells [9,10].

Microtubule nucleation and anchoring are mainly under centrosome control [11].
Indeed, in most epithelial cells, the centrosome moves from the perinuclear region towards
the cell membrane to nucleate the axoneme of the ciliary projection [12]. Similarly, the
reorientation of the centrosome toward the leading edge of motile cells results in the
asymmetric distribution of the MTs as well as the establishment of front–rear cell polarity
and oriented trafficking [13,14]. In neuronal cells, the centrosome position has an important
role in axial elongation [15]. In dividing cells, the centrosome facilitates the assembly
of astral MTs and dictates the position and orientation of the cleavage furrow during
cytokinesis [16]. However, the involvement of the centrosome in the formation of TNTs-1 is
still unexplored. It is therefore of interest to understand whether centrosome reorientation
occurs during TNT-1 establishment to impact the subsequent MT reorganization.

Furthermore, given the increasing evidence indicating a role of TNTs in tumor progres-
sion [3,4,10], some fundamental issues, such as the involvement of TNTs-1 in centrosome
abnormalities, have to be addressed. As a conspicuous feature of many tumor cells, centro-
some amplification can translate to malignant transformation and predicts poor patient
prognosis [17]. However, the question of how abnormal cells with supernumerary centro-
somes could survive has not been conclusively resolved. Herein, we induced concomitant
centrosome amplification and TNT-1 formation in human epithelial bronchial cell lines and
investigated whether TNT-1 formation could provide benefits to the cells with an extra
centrosome to avoid genetic instability [18,19]. Our results provide the first evidence of
movement of centrosomes within TNTs-1, and consequently lay the foundation for an
exciting new research direction for improving our understanding of TNTs formation and
their role in carcinogenesis.

2. Results and Discussion
2.1. The Centrosome Polarizes towards TNT-1 Protrusion Sites

Owing to the pivotal role of centrosomes in MT nucleation, we first investigated
centrosome localization in TNTs-1-formed cells by using either anti-γ-tubulin and/or anti-
pericentrin, which detect the protein matrix around the centrosome, named pericentriolar
material [20]. As determined by immunofluorescence analysis of the human bronchial
epithelial cells (HBEC-3), in 70% of cells that form TNTs-1, the centrosome dissociates from
its tight association with the nuclear envelope (Figure 1A–D, yellow arrows) and becomes
oriented towards the leading edge where the TNTs-1 forms or protrudes (Figure 1A–D,
white arrows). To derive more reliable conclusions, these results were repeated and
verified not only in three other different lung epithelial cell lines (H1299, A549, BEAS-2B)
(Figure S1A–C), but also in paraffin-embedded tissue sections of patients with non-small
cell lung cancer (NSCLC) (Figure 1E).

Next, with regard to the well-established role of centrosome polarization in the asym-
metric distribution of stable MTs [11], we hypothesize that a close apposition of the centro-
some to the cell cortex probably guided the directionality of microtubules growth toward
the site of TNT-1 protrusion. In fact, the same organization is found not only in migrating
cells [13], but also during axon or cilia outgrowth, where the centrosome can settle at some
distance apart from nucleus and polarize facing the cell extension site, in order to facilitate
MT elongation [12,15]. To test this hypothesis and determine whether centrosomes are
required for TNT formation, we treated the cells with Centrinone (LCR-263), a selective and
reversible inhibitor of polo-like kinase 4 (PLK4), which causes centrosome depletion and
arrests cells in a senescence-like G1 state [21]. Importantly, the function of the centrosome
was shown to be critical for TNT-1 extension, as Centrinone treatment decreased TNT
formation by 85% in HBEC-3 cells (Figure 1F,G).
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Figure 1. The centrosome polarize towards TNT-1 protrusion sites. (A,B) Representative images, and (C) illustration show-
ing the localization of centrosome at the base of the formation of TNT-1. Dashed white squares indicate the regions used 
for the zoom. White arrows indicate centrosome polarization towards TNT-formed cells and yellow arrows represent 
normal centrosome position near nucleus. (D) Figurative illustration showing the method of centrosome quantification 
and quantification of centrosome orientation towards TNT’s-1 protrusion site. n > 200 cells. In each TNT-formed cell, the 
labeled centrosome position was determined using a cell body centroid analysis, which divides the cell body into quad-
rants. The centrosome was scored as “Front” if it was positioned within a 90° sector facing the TNT-1 protrusion as illus-
trated. (E) Representative immunohistochemistry staining of pericentrin in paraffin-embedded NSCLC tumor section. 
Dashed black squares indicate the regions used for the zoom. Black arrows show centrosome localization. (F) Quantifica-
tion and (G) representative images of TNT-1 number in HBEC-3 cells treated with Centrinone (100 nM) for seven days. n 
> 200 cells. White arrows show centrosome localization. Data are represented as the mean ± SEM from three individual 
experiments. Statistical significance was calculated and p value are indicated by asterisks: ** p < 0.01 and *** p < 0.001. 

However, centrosome displacement not only involves the reorganization of microtu-
bules but also implies a reorientation of cell function and polarity through intimate struc-
tural and functional association with the Golgi apparatus and endocytic-recycling com-
partment [22–24]. Consistent with this scenario, immunofluorescence staining showed pe-
ricentrosomal polarization of the Golgi complex towards and within the TNT-1 structure 
(Figures 2A,B and S2). In our previous experiments, intracellular vesicles, including recy-
cling endosomes stained with anti-Rab11 [25] and lysosomes, stained with LysoTracker 
[26], were also observed within TNTs-1 in HBEC-3 cells [8]. These data support a model 
in which such geometrical organization brings the centrosome and Golgi complex close 
enough to the TNT-1 protrusion site in order to facilitate directional intercellular exchange 
of endocytic-recycling vesicles through TNTs-1 (Figure 2C). Furthermore, these data pro-
vide additional mechanistic context describing the role of centrosomes in the control of 
Golgi orientation [13]. 

 

Figure 1. The centrosome polarize towards TNT-1 protrusion sites. (A,B) Representative images, and (C) illustration
showing the localization of centrosome at the base of the formation of TNT-1. Dashed white squares indicate the regions
used for the zoom. White arrows indicate centrosome polarization towards TNT-formed cells and yellow arrows represent
normal centrosome position near nucleus. (D) Figurative illustration showing the method of centrosome quantification
and quantification of centrosome orientation towards TNT’s-1 protrusion site. n > 200 cells. In each TNT-formed cell, the
labeled centrosome position was determined using a cell body centroid analysis, which divides the cell body into quadrants.
The centrosome was scored as “Front” if it was positioned within a 90◦ sector facing the TNT-1 protrusion as illustrated.
(E) Representative immunohistochemistry staining of pericentrin in paraffin-embedded NSCLC tumor section. Dashed
black squares indicate the regions used for the zoom. Black arrows show centrosome localization. (F) Quantification and (G)
representative images of TNT-1 number in HBEC-3 cells treated with Centrinone (100 nM) for seven days. n > 200 cells.
White arrows show centrosome localization. Data are represented as the mean ± SEM from three individual experiments.
Statistical significance was calculated and p value are indicated by asterisks: ** p < 0.01 and *** p < 0.001.

However, centrosome displacement not only involves the reorganization of micro-
tubules but also implies a reorientation of cell function and polarity through intimate
structural and functional association with the Golgi apparatus and endocytic-recycling
compartment [22–24]. Consistent with this scenario, immunofluorescence staining showed
pericentrosomal polarization of the Golgi complex towards and within the TNT-1 struc-
ture (Figure 2A,B and Figure S2). In our previous experiments, intracellular vesicles,
including recycling endosomes stained with anti-Rab11 [25] and lysosomes, stained with
LysoTracker [26], were also observed within TNTs-1 in HBEC-3 cells [8]. These data support
a model in which such geometrical organization brings the centrosome and Golgi complex
close enough to the TNT-1 protrusion site in order to facilitate directional intercellular
exchange of endocytic-recycling vesicles through TNTs-1 (Figure 2C). Furthermore, these
data provide additional mechanistic context describing the role of centrosomes in the
control of Golgi orientation [13].
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Figure 2. Pericentrosomal localization of the Golgi towards TNT’s-1 formation site facilitates intercellular trafficking. (A) 
Representative images (B) and quantification of pericentrosomal localization of the Golgi apparatus towards and within 
TNTs-1. n > 100 cells. In each TNT-formed cell, the labeled Golgi complex position was determined using a cell body 
centroid analysis, which divides the cell body into quadrants. The Golgi was scored as “Front” if it was positioned within 
a 90° sector facing the TNT-1 protrusion as illustrated. Dashed white square indicates the region used for the zoom. White 
arrows indicate centrosome polarization towards TNT-formed cells. (C) Figurative illustration of pericentrosomal locali-
zation of the Golgi apparatus and endocytic-recycling compartment towards and within TNTs-1. Boxed region used for 
the zoom. Arrows indicates centrosome, Golgi complex and microtubules position. Blue arrows mark bright vesicles that 
moved along the TNT-1. Data are represented as the mean ± SEM from at least three individual experiments. Statistical 
significance was calculated and p value are indicated by asterisks: ** p < 0.01. 

Accordingly, it will be interesting to investigate whether the activity of centrosome, 
as a signaling platform [27], is also necessary for the recruitment and anchoring of addi-
tional molecules with specific functions in TNT-1 formation, such as the Cdc42 signaling 
molecule, which regulates both centrosome repositioning [28] and TNT-1 formation [29]. 

2.2. TNTs-1 as an Unexpected Road for Extra Centrosomes  
Our venture into studying the relationships between centrosomes and TNTs-1 

prompted us to explore the pathological relevance of this connection in the context of cen-
trosome amplification. Because of the MT nucleation capacity of extra centrosomes, we 
hypothesized that centrosome amplification would influence both the fidelity of chromo-
some transmission and tissue architecture including TNT-1 formation. For this purpose, 
we focused our attention on the scaffold protein RAS association domain family 1A 
(RASSF1A) because of its role in control of both centrosome number [30–32] and TNT-1 
formation [8]. By using RNA interference (RNAi) treatment, we first took advantage of 
nontumorigenic, non-transformed HBEC-3 cells to avoid additional effects caused by can-
cer mutations [33].  

Consistent with previous reports, RASSF1A depletion (Figure S3A) leads to the de-
velopment of nuclear atypia such as multi-nucleation (Figure S3B) and micronuclei (Fig-
ure S3C), as an indication of extra centrosome occurrence and mitotic spindle defects (Fig-
ure S3D) [32,34]. Surprisingly, in almost 70% of the RASSF1A-depleted HBEC-3 cells that 
contain both extra centrosomes and TNTs-1, we observed a displacement of at least one 

Figure 2. Pericentrosomal localization of the Golgi towards TNT’s-1 formation site facilitates intercellular trafficking. (A)
Representative images (B) and quantification of pericentrosomal localization of the Golgi apparatus towards and within
TNTs-1. n > 100 cells. In each TNT-formed cell, the labeled Golgi complex position was determined using a cell body
centroid analysis, which divides the cell body into quadrants. The Golgi was scored as “Front” if it was positioned within
a 90◦ sector facing the TNT-1 protrusion as illustrated. Dashed white square indicates the region used for the zoom.
White arrows indicate centrosome polarization towards TNT-formed cells. (C) Figurative illustration of pericentrosomal
localization of the Golgi apparatus and endocytic-recycling compartment towards and within TNTs-1. Boxed region used
for the zoom. Arrows indicates centrosome, Golgi complex and microtubules position. Blue arrows mark bright vesicles
that moved along the TNT-1. Data are represented as the mean ± SEM from at least three individual experiments. Statistical
significance was calculated and p value are indicated by asterisks: ** p < 0.01.

Accordingly, it will be interesting to investigate whether the activity of centrosome, as
a signaling platform [27], is also necessary for the recruitment and anchoring of additional
molecules with specific functions in TNT-1 formation, such as the Cdc42 signaling molecule,
which regulates both centrosome repositioning [28] and TNT-1 formation [29].

2.2. TNTs-1 as an Unexpected Road for Extra Centrosomes

Our venture into studying the relationships between centrosomes and TNTs-1
prompted us to explore the pathological relevance of this connection in the context of
centrosome amplification. Because of the MT nucleation capacity of extra centrosomes, we
hypothesized that centrosome amplification would influence both the fidelity of chromo-
some transmission and tissue architecture including TNT-1 formation. For this purpose, we
focused our attention on the scaffold protein RAS association domain family 1A (RASSF1A)
because of its role in control of both centrosome number [30–32] and TNT-1 formation [8].
By using RNA interference (RNAi) treatment, we first took advantage of nontumorigenic,
non-transformed HBEC-3 cells to avoid additional effects caused by cancer mutations [33].

Consistent with previous reports, RASSF1A depletion (Figure S3A) leads to the
development of nuclear atypia such as multi-nucleation (Figure S3B) and micronuclei
(Figure S3C), as an indication of extra centrosome occurrence and mitotic spindle defects
(Figure S3D) [32,34]. Surprisingly, in almost 70% of the RASSF1A-depleted HBEC-3 cells
that contain both extra centrosomes and TNTs-1, we observed a displacement of at least one
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of the centrosomes through TNTs-1 (Figure 3A,B). To obtain insight into the nanoscale de-
tails of the centrosome through TNTs-1, we used STED super-resolution microscopy, which
provides an optical resolution well below the diffraction limit [7]. In STED images, the
pericentrin staining was not only resolved into the ring shape instead of blobs under confo-
cal microscopy, but also revealed that centrosomes clearly used the microtubule to travel
through TNTs-1 (Figure 3C). This result was confirmed not only in lung epithelial A549
and H1299 tumorigenic cell lines with the hypermethylated RASSF1 gene (Figure S5A,B),
but also remarkably in paraffin-embedded tissue sections of the patients with NSCLC
(Figure 3D). To determine whether these observations also hold true in live cells, HBEC-3
cells were subjected to transfection with vector encoding EGFP-centrin. Time-lapse imag-
ing further confirmed the presence and movement of centrosome within TNTs-1 between
interconnected cells (Figure 3E, Movie S1). To our knowledge, and except in the case of
cell division, this is the first demonstration of the displacement of the centrosome from cell
to cell.
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Figure 3. The presence and movement of centrosome within TNTs-1. (A) Representative images, with zoom focusing on
three cells with TNT-1 (i, ii, iii), showing centrosome at the base of TNT-1 (ia, iia, iiia) or in the TNT (ib, iib, iii b). Dashed
squares indicate the region used for the zoom. (B) Quantification of centrosome displacement through TNT-1. n > 70 cells.
The cells were scored as (+) if extra centrosome was positioned within TNT-1. Data are represented as the mean ± SEM
from at least three individual experiments. Statistical significance was calculated and p value are indicated by asterisks:
* p < 0.05. (C) STED super-resolution microscopy reveals ring shape pericentrin staining using microtubule to move through
TNT. Dashed white square indicates the region used for the zoom (D) Representative immunohistochemistry staining of
pericentrin in paraffin-embedded NSCLC tumor section. White arrows indicate centrosome position. Dashed black square
indicates the region used for the zoom. Black arrows show centrosome localization. (E) Montage of time-lapse imaging
of EGFP-centrin transfected HBEC-3 cells showing centrosome movement through TNT-1. The Centrin2-RFP signal is
presented as green, but the brightness and contrast were adjusted to identify the Centrin signal in the black and white
background. Dashed white square indicates the region used for the zoom.
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This fascinating observation raised two main questions about the functional conse-
quence of such localization within TNTs-1. In fact, numerous studies have showed that,
despite high levels of centrosome amplification in low-grade lesions of the most human
cancers [35], cells have various coping mechanisms to escape death caused by multipolar
mitoses and still divide successfully [17,36]. One of these, certainly the best characterized
mechanism, is the coalescence of supernumerary centrosomes into two functional spindle
poles (Figure S3C) [18,37,38].

According to these findings, we first asked whether the localization of extra-centrosome
within TNTs-1 can account for an additional process to limit the detrimental consequence of
centrosome amplification and to protect cells from genomic instability and transformation.
We tested this hypothesis by performing co-culture experiments. To distinguish both cell
populations, RASSF1A depletion was performed in labeled HBEC-3Cherry cell line, while
the normal HBEC-3 cell line was used for siNeg transfection. These populations were
then cultured together in a 1:1 ratio for 48 h. Of importance and in agreement with our
prediction, transport of extra centrosomes via TNTs-1 was also confirmed in coculture
system from RASSF1A-depleted HBEC-3Cherry cells toward control siNeg HBEC-3 cells
(Figure 4A). Additionally, and in line with the failure of proper DNA segregation, we also
noticed in some cases the localization of micronuclei through TNTs-1 (Figure 4B).

Another appealing idea is the possibility that TNTs-1 assist in the dissemination of
extra centrosomes to manipulate the surrounding cells and participate in creating a highly
heterogenous microenvironment. In support of this possibility, it has been reported that
the transfer of genetic materials such as mRNA or microRNAs via TNTs could induce
or repress the transcription of genes implicated in cancer cell motility or even enhance
the transformation of normal neighbor cells [39,40]. Concordantly, the active transfer of
mitochondria from normal cells to tumor cells with dysfunctional mitochondria, is able to
restore normal cell respiration [3,41].

To address this idea, we conducted another series of complementary co-culture experi-
ments. This time either non-treated HBEC-3Cherry cells or RASSF1A-depleted HBEC-3Cherry

cells were (co-) transfected with GFP-centrin plasmid and then co-cultured with either
siNeg-transfected HBEC-3 or non-treated A549 cell lines for 24 h. After fixation, we focused
on the HBEC-3 and/or A549 cells that received GFP-centrin without being transfected.
We hypothesize that using TNTs-1 is the unique conduit for intercellular transfer of cen-
trosomes (identified by GFP-centrin) from donor HBEC-3Cherry cells into receiving cells
(without cherry signal) since the average size of centrosome matrix (in vertebrates) is
1.6 ± 0.5 µm2 [42–44] and among communication tools, only TNT-1 reach a thicknesses of
over 700 nm sufficient to transfer of whole centrosomes from donor cells into receiving
cells [45,46]. Indeed, gap junctional pores range in size from 11 to 24 Å in diameter [47]
and extracellular vesicles, from nanometer-size exosomes (30–100 nm) to submicron-size
microparticles (100–1000 nm) [48,49].

As expected, due to the increase in TNT-1 formation after RASSF1A depletion [8], the
number of control cells that were co-cultured with RASSF1A-depleted HBEC-3Cherry cells
and presented GFP-centrin signals was significantly higher than control cells co-cultured
with non-treated HBEC-3Cherry cells (Figure 4C and Figure S6). Remarkably, our results
show that the number of binucleated cells was increased in GFP-centrin acceptor cells
compared to control cells that did not receive any centrosomes (Figure 4D,E). Accordingly,
another experiment revealed that the presence of GFP-centrin in normal cells caused a
significant increase in proliferation identified by Ki67 staining (Figure 4F,G). Altogether,
these exciting findings fit a model in which TNTs-1 serves as a critical pathway to transfer
extra centrosomes from malignant cells and alter healthy cells in the tumor environment.
In future experiments, it will also be interesting to assess whether centrosome transfer
leads to other features of malignant transformation, such as invasive protrusions in accep-
tor cells [17].
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siNeg-transfected. Dashed orange rectangle indicates the region used for the first zoom, while small dashed white squares
indicate the regions used for the second zoom. (B) Representative images showing micronuclei displacement through
TNT-1. “Green” boxs show centrosome, “White” box show micronuclei. For the sake of clarity, the zoom pictures have
been captured in another z-planes (C) Quantification of the number of GFP-centrin received A549 cells in co-culture with
either siNeg- or siRASSF1A- transfected HBEC-3Cherry. (D) Representative images and (E) quantification of the number of
binucleated A549 cells in co-culture with either siNeg- or siRASSF1A- transfected HBEC-3Cherry. Dashed white square
indicates the region used for the zoom. (F) Representative images of Ki-67 staining in co-culture of Non treated A549
cells + HBEC-3Cherry siRASSF1A (transfected with GFP-centrin) to monitor cell proliferation. Boxed regions used for the
zoom. “Green” boxs show the A549 cells with GFP-centrin, “Orange” box show the A549 cells without GFP-centrin. (G)
Quantification of ki-67 MFI per cell. Data are represented as the mean ± SEM from at least three individual experiments.
n > 200 cells. Statistical significance was calculated and p value are indicated by asterisks: * p < 0.05, ** p < 0.01.

Last but not least, it should keep in mind that intercellular communication through
TNTs-1 is a two-way process and can not only promote but also inhibit tumor growth,
depending on the transferred materials and their effect on cell activation status. In this
regard, the present observations can form the basis for new therapeutic strategies that
target cells carrying extra centrosomes.

Collectively, in this short report, we suggest that the location of the centrosome not
only predicts the site of TNT-1 formation but also may facilitate intercellular trafficking
through the regulation of both microtubule formation and Golgi orientation. Furthermore,
except for the case of dividing cells, our results provide the very first strong assumption of
centrosome displacement from cell to cell even if we failed to show the actual transfer of
centrosome from the donor cell to the recipient cell directly. Accordingly, the displacement
of extra centrosomes through TNTs-1 might protect cells from the deleterious impact
of centrosome amplification, which can translate to malignant transformation and poor
patient prognosis. Clearly, more studies are needed to substantiate our findings and their
pathological implications during the carcinogenesis. However, herein, we undeniably lay
the basis for a new research direction for improving our understanding of TNTs-1 roles in
tumorigenesis processes.

3. Materials and Methods
3.1. Cell Culture and Transfection

Isogenic HBEC-3 (and HBEC-3-cherry) bronchial epithelial cell lines were a generous
gift from Dr. White (UT Southwestern Medical Center, Dallas, TX, USA) and were cultured
in keratinocyte serum-free medium (KFSM) complemented with 0.2 ng/mL of human
recombinant epidermal growth factor (EGF) and 25 µg/mL of bovine pituitary extract (BPE)
supplements (Thermo Fisher Scientific, Rockford, IL, USA). The other tumorigenic epithe-
lial cell lines, BEAS-2B, H1299 and A549, were obtained from ATCC and were cultured
in high-glucose Dulbecco’s modified essential medium (DMEM; Gibco, Waltham, MA,
USA) with 10% fetal bovine serum and 2 mM of L-glutamine. All the mediums were also
complemented with 10% (v/v) heat-inactivated fetal bovine serum, 100 U/mL penicillin,
and 100 µg/mL streptomycin (Gibco). The cultures were incubated at 37 ◦C in a humid-
ified atmosphere with 5% CO2. Cells were transfected using Lipofectamine RNAiMAX
(Invitrogen, Carlsbad, CA, USA) at 30% confluence according to the manufacturer’s in-
structions and analyzed 72 h after treatment as described in our previous studies [8,33].
The following RNAi oligonucleotides from Eurogentec® were used: RASSF1A: si1: 5′-
GACCUCUGUGGCGACUUCATT-3′ [50] and non-targeting control RNAi (siNeg) from
Dharmacon using a concentration of 0.1 µM for each oligonucleotide. Transient transfection
with plasmids encoding centrin-green fluorescent protein (EGFP) (Addgene®, Teddington,
UK) were performed using Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s instructions and analyzed 24 h after transfection. To investigate
whether TNT formation was dependent on centrosomes, Centrinone [LCR-263] (MCE) was
added to the cell culture for seven days at the final concentration of 100 nM as previously
described [20].
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3.2. Preparation of RNA and RT-qPCR

Extraction of total RNA from treated and untreated cells was performed using the
Illustra RNAspin mini® column (GE Healthcare, Bio-Sciences, Pittsburgh, PA, USA) accord-
ing to the manufacturer’s instructions. Total RNA was treated with DNAse I (Invitrogen,
Carlsbad, CA, USA) to remove contaminating genomic DNA. The RNA concentrations
were determined with spectrophotometer Nanodrop® 2000c. Total RNA (250 ng) was
reverse-transcribed with random primers and 200 IU M-MLV reverse transcriptase at 37 ◦C
for 90 min, followed by 5 min of dissociation at 70 ◦C with Mastercycler Eppendorf®. The
resulting cDNAs were diluted (1/10) and used as templates. PCR performed in Mx3005P
QPCR system (Agilent Technology, Santa Clara, CA, USA) with 5 pmol of RASSF1 primer
sets as follows: Forward (F): GGG GTC GTC CGC AAA GGC C and Reverse (R): GGG
TGG CTT CTT GCT GGA GG. Actin was used as an internal control. Forward (F): CAA
CCG TGA AAA GAT GAC CCA G and Reverse (R): ATG GGC ACAGTG TGG GTG AC.

3.3. Immunofluorescence and Time-Lapse Video Microscopy

For immunofluorescent staining, the cells were fixed 72 h after transfection. For co-
cultured experiments, at 48 h after transfection with either siNeg or siRASSF1A, HBEC-3
and HBEC-3-cherry cells were trypsinized and seeded together at 60% confluence into
24-well plates containing coverslips coated with poly-L-lysine (Sigma; St Louis, MO, USA).
Cells were allowed to grow for an additional 24 h. The cells were washed with PBS, fixed
with paraformaldehyde (4%), and permeabilized with cold methanol for 10 min. The
slides were treated with 1% BSA in PBS for one hour. The cells were incubated with the
following antibodies for 1 h at room temperature: rabbit polyclonal pericentrin (Abcam,
Cambridge, UK, 1:400), mouse-monoclonal Golgin-97 (Cell Signaling Technology, Danvers,
MA, USA, 1:400), rabbit-polyclonal anti-ki67 (Abcam, Cambridge, UK, 1:100), mouse-
monoclonal gamma tubulin (Abcam, Cambridge, UK, 1:200) and a mouse monoclonal
anti-α-tubulin antibody (Molecular Probes; Eugene, OR, USA, 1:300). After washing
with PBS, the Alexa Fluor 488-conjugated anti-rabbit and 643-conjugated anti-mouse
secondary antibodies (Molecular Probes) were used, and DNA was counterstained with
DAPI (Ultracruz Mounting Medium, Santa Cruz Biotechnology, Dallas, TX, USA). Images
were obtained with an Olympus™ FluoView FV1000 laser scanning confocal microscope.
Color images were processed using ImageJ.

To follow centrosome displacement through TNTs in live cells, EGFP-centrin trans-
fected HBEC-3 cells were cultured in glass bottom cell culture dishes and monitored by
video microscopy in a humidified, CO2-equilibrated chamber (Incubator i8, Singapore)
using an inverted microscope (Leica DMi8, Wetzlar, Germany) equipped with a motorized
stage controlled by Metamorph 7.8.13.0 software. The acquired images were then analyzed
with the ImageJ software (version 1.50d).

3.4. Tissue Samples and Immunohistochemical Staining

NSCLC tissue samples were from the Caen University Hospital and were obtained
in accordance with the Declaration of Helsinki; all patients provided informed consent
regarding the collection of tumor specimens and their molecular evaluation, as required
by French laws, and the study was approved by the institutional ethics committee of
Caen University Hospital, France (DC-2008-588). Tissue samples were formalin-fixed
and embedded in paraffin. Hemalun and eosin-stained sections from original block were
reviewed by a pathologist (CB) and used to select a representative area. Three micrometer
sections were prepared from paraffin-embedded blocks and placed on superfrost plus
slides. After antigen retrieval with pH 9.0 EDTA, immunohistochemistry was performed
using a manual technique. After incubation overnight at 4 ◦C with primary antibody
Pericentrin (Abcam, rabbit polyclonal, 1:400), detection was performed using Novolink
detection kit (Leica®, Wetzlar, Germany) according to the manufacturer’s instructions.
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3.5. Quantification of the Centrosome and Golgi Complex Position in Cell

In each TNT-formed cell, the labeled centrosome and Golgi complex position were
determined using a cell body centroid analysis, which divides the cell body into quadrants
(perpendicular lines crossing the center of the nucleus divided the cell into four 90◦ quad-
rants) oriented toward the TNT protrusion site. The centrosome and Golgi were scored
as “Front” if it were positioned within a 90◦ sector facing the TNT protrusion. Grids were
aligned manually to the TNT axis, and quantification was obtained in a blinded fashion.

3.6. TNT Quantification

As there are no known specific TNT markers, we took into account three phenotypic
criteria to avoid this confusion with similar-looking structures. As reviewed recently [9],
the TNTs are thin and long cytoplasmic extensions that (i) do not touch the substrate, (ii)
connect at least two cells, and (iii) are able to transfer the cargo or signal between the
interconnected cells. Among the two classes of TNT, type 1 TNTs are thicker and contain
not only actin but also microtubules and intermediate filaments, and type 2 TNTs are thin
and contain only actin filaments [6]. To pursue this issue with functional experiments,
we focused only on type 1 TNTs, because of their characterization for the transport of the
large material (e.g., lysosomes, mitochondria) along microtubules [6,7], while type 2 TNTs,
assimilated to the adherent’s junction, does not allow the exchange of biological material.

3.7. STED Imaging

Image acquisitions were performed with a 93× glycerol immersion objective (NA
1.30) through STED 3X imaging (TCS SP8; Leica Microsystems, Mannheim, Germany) with
optimized parameters for Alexa 647 and Alexa 488 sequential detection. Within samples
(zoom 6, pixel size = 20 nm), Alexa 647 and Alexa 488 were excited with the 650 and 499 nm
wavelength of a supercontinuum laser, respectively. Depletion was obtained with 775
and 592 nm lasers for Alexa 647 and Alexa 488, respectively. Fluorescence (660–760 nm
for Alexa 647 and 510–560 nm for Alexa 488) was collected with a hybrid detector and a
pinhole for Airy 1.

The deconvolution of raw data from STED imaging was obtained through image
processing with Huygens professional 4.5.1 software (SVI, Hilversum, The Netherlands).

3.8. Statistical Analysis

Data are represented as the mean ± SEM of experiments performed independently
at least three times. To determine statistical significance, Student’s unpaired t test was
applied to all experiments. Statistical significance was set at p < 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189680/s1, Figure S1: The centrosome polarizes towards TNT protrusion sites., Figure S2:
The pericentrosomal localization of the Golgi towards the site of TNT formation, Figure S3: In
results of centrosome abnormalities, RASSF1A depletion reduces the fidelity of DNA segregation,
Figures S4 and S5: Displacement of centrosome through TNTs, Figure S6: Representative images
showing displacement of centrosome (signal of GFP-centrin) from donor RASSF1A-depleted GFP-
centrin transfected HBEC-3 cherry cells to accept non-treated A549 cells, Movie S1: Time-lapse
imaging of the movement of centrosome through TNT between interconnected cells.
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