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Abstract: Drug discovery based on artificial intelligence has been in the spotlight recently as it sig-
nificantly reduces the time and cost required for developing novel drugs. With the advancement of 
deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based 
methodologies are emerging at all steps of drug development processes. In particular, pharmaceu-
tical chemists have faced significant issues with regard to selecting and designing potential drugs 
for a target of interest to enter preclinical testing. The two major challenges are prediction of inter-
actions between drugs and druggable targets and generation of novel molecular structures suitable 
for a target of interest. Therefore, we reviewed recent deep-learning applications in drug–target in-
teraction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive 
summary of a variety of drug and protein representations, DL models, and commonly used bench-
mark datasets or tools for model training and testing. Finally, we present the remaining challenges 
for the promising future of DL-based DTI prediction and de novo drug design. 

Keywords: artificial intelligence-based drug discovery; deep learning; drug–target interaction; vir-
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1. Introduction 
The primary goal of drug discovery is to develop safe and effective medicines for 

human diseases. All the drug development processes—from target identification to step-
by-step clinical trials—require significant amount of time and cost. As costs increase grad-
ually with every step, it is essential to ensure that appropriate drug candidates are se-
lected for the next phase at each milestone. In particular, the “hit-to-lead” process is a 
pivotal step in identifying promising lead compounds from hits and determining their 
potential as therapeutics. One of the reasons why clinical trials face side effects and lack 
in vivo efficacy is that single or multiple drugs often interact with multiple targets based 
on the concept of polypharmacology [1]. Ideally, full-scale in vivo tests for each disease 
model should be able to address this problem; however, that will require astronomical 
time and effort. Computer-aided drug discovery or design methods have played a major 
role in this hit-to-lead process by reducing the burden of consumptive validation experi-
ments since the 1980s in modern pharmaceutical research and development (R & D) [2–
4]. However, even this in silico approach has not prevented the decline in pharmaceutical 
industry R & D productivity since the mid-1990s. 

Recently, much effort was invested in drug discovery through artificial intelligence 
(AI), which has enabled significant and cost-effective development strategies in academia 
and pharmaceutical industries. The vast amounts of chemical and biological data accu-
mulated over decades, along with technological automation through the availability of 
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high-performance processors such as graphics processing unit computing, paved the way 
for AI in drug development [4–6]. Not only state-of-the-art AI technologies are adopted 
in the drug development process, but also diverse pipelines or frameworks for AI-driven 
drug development are being built [7–9]. Utilizing deep neural networks provides the ad-
vantage of understanding the very complex contexts of biological space. This is because 
nonlinear models can be constructed in hidden layers to extract complex patterns from 
multi-level representations. It also minimizes the work of manually preprocessing unfor-
matted raw data and selecting all kinds of features. Consequently, advances made in the 
development of deep learning (DL)-based methods have led to successful outcomes for 
prediction of drug–target interactions (DTIs) and generation of novel molecules with de-
sired properties [4,10,11]. However, since datasets for drug development exhibit types 
and distributions that are different from those used in traditional AI data, such as images 
and texts, further attempts are still required to analyze data from a different angle and 
apply the latest DL techniques. 

In this review, we introduce essential data representations and DL models for DTI 
prediction and de novo drug design. In addition, we investigate recent advances and 
benchmark datasets in DL-based methods in the following sections: The “Data Represen-
tation” section introduces several data representations of the inputs that were used in DL-
based drug discovery. The “Deep Learning Models” section explains DL methods for 
drug discovery via comparison of the strengths and weaknesses of models. In the two 
sections, “Deep Learning Methods for Drug–Target Interaction Prediction” and “Deep 
Learning Methods for De Novo Drug Design,” we classify and describe the models for 
each of the DTI predictive models and de novo drug design models based on their utility. 
The “Benchmarking Datasets and Tools” section demonstrates the commonly used bench-
mark dataset and publicly available benchmarking tools. Finally, we discuss the ad-
vantages and limitations of the current methods as well as the remaining important chal-
lenges and future perspective for DL-based drug discovery in the “Limitation and Future 
Work” section.  

In the “Deep Learning Methods for Drug–Target Interaction Prediction” section, the 
description of the following studies was minimized: (1) studies that predict compound 
properties not considering protein targets such as blood–brain barrier permeability, solu-
bility, lipophilicity, and chemical-based adverse effect [10,11]; (2) target prediction studies 
that determine targets for the existing drugs, such as reverse docking simulation [12]; (3) 
studies that only use knowledge-based documents from which information is extracted 
by text mining techniques [13]; (4) studies that focus on only optimizing binding between 
the drug and target using molecular dynamics simulation [14–16]. 

2. Data Representation 
The input data for DL-based drug discovery are molecules; drugs and protein targets 

are small molecules or macromolecules. To characterize these molecules, several types of 
molecular representations (often referred to as descriptors or features) have been used in 
many machine learning (ML) methods—from simple sequences of molecular entities to 
manually predefined molecular features [17,18] (Figure 1). However, because it is directly 
related to the knowledge of learning models, data representation has a significant impact 
on pre-training to improve performance of predictive models. There has been a surge of 
interest in research on representation of molecules, and these efforts can contribute to cap-
turing unknown features of compounds and targets [19,20]. Learning expressive repre-
sentation from molecular structures is one of the challenges of these studies [21]. Besides, 
many recent DL models tend to use three-dimensional (3D) representations based on pro-
tein–ligand complexes, including molecular graphs, atom-pair fingerprints, and voxels. 
The various molecular representations utilized in deep neural networks as drug represen-
tations and target representations are described separately in this section. 
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Figure 1. Different types of drug representations used in DL-based drug discovery. This figure 
shows the drug representations of acetaminophen, which is widely used to treat mild to moderate 
pain. (1) SMILES: a string that expresses structural features including phenol group and amide 
group. (2) Fingerprint: a 16-digit color-coded 64-bit MACCS key fingerprint. (3) Learned represen-
tations: In this case, it depicts the features learned from an autoencoder (AE). (4) Voxel: binary vol-
ume elements with atoms assigned to a cube with a fixed grid size. (5) Molecular graph: Each node 
encodes the network information of the molecular graph. 

2.1. Drug Representations 
2.1.1. SMILES 

The most commonly used drug representation is a simplified molecular-input line-
entry system (SMILES) string, which is a line notation that encodes structural, geometric, 
and topological properties of a molecule. The SMILES is simple and easy to obtain; there-
fore, it enables fast training. A number of molecular deep-learning models use the SMILES 
as the molecular representation [22–25]. As it is a sequence-based feature, a SMILES string 
can be directly used as a “sentence” to learn the representations. Sequence models using 
the SMILES can be successfully applied to predict chemical reactions. For example, many 
studies have shown promising results for synthetic prediction by directly converting to 
the predicted reactants in the SMILES format through seq-2-seq approaches to illustrate 
the reactions of compounds [26–28]. Furthermore, most molecules can be randomly gen-
erated with more than one SMILES string by starting in different atoms and changing the 
atomic orders, and this randomized SMILES model exhibits much better performance 
[29,30]. 

2.1.2. Fingerprint 
Another chemical structure-implemented feature is molecular FP, which is a bit 

string encoding structural or pharmacological feature of a ligand. Many types of molecu-
lar FPs have been proposed for similarity comparisons for virtual screening (VS), includ-
ing ligand-based similarity searching and quantitative structure-–activity relationship 
(QSAR) analysis. A number of deep-learning-based DTI prediction models also used FPs 
as input features [24,31–34]. We discuss three types of widely used molecular FPs: key-
based FPs, hashed FPs, and pharmacophore FPs. 

Key-based FPs include molecular ACCess system (MACCS) and PubChem FP. The 
MACCS keys are composed of predefined 166 substructures. PubChem FP [35] has 881 
bits and each bit tests the presence of element count, type of ring, atom pairing, and near-
est neighbors, etc. These structural keys are designed for substructure retrieval. Therefore, 
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although it is possible to quickly and accurately find substructures, there is a limit to clas-
sifying various characteristics. 

Hashed FPs, such as Daylight FP, Morgan FP, extended-connectivity FP (ECFP), and 
functional-class FP (FCFP), are also used in the similarity analysis of compounds. Unlike 
key-based FPs, hashed FPs do not require predefined substructures and are instead cre-
ated by a hash function to convert all possible fragments to numeric values. ECFP, a cir-
cular FP based on the Morgan algorithm [36], is often used in a wide range of applications, 
including DL models for the DTI prediction. This is because several DL methods using 
ECFP exhibited robustness in bioactivity prediction [8,37].  

Pharmacophore FPs have pharmacophoric features such as aromatic, hydrophobic, 
charged, and hydrogen bond donor/acceptor. The pharmacophore FPs consider the over-
lapping of energy-minimized conformations of a set of known ligands and the extraction 
of recurrent pharmacophoric properties [38]. Many studies have used these pharmaco-
phoric features to assess similarities between binding sites [39]. 

Finally, recent studies have attempted to add 3D structures to FPs to accurately pre-
dict binding affinity [8,40,41]. Gao et al. [33] reassessed the predictive power of 2D and 3D 
FPs and concluded that 2D FPs are still competitive in prediction of toxicity, physicochem-
ical properties, and ligand-based binding affinity; however, 3D structure-based models 
outperformed 2D-based counterparts in the protein–ligand binding prediction. In other 
words, 2D FPs are still competitive; therefore, considering the structural properties at the 
2D and 3D levels together will yield better results. 

2.1.3. Learned Representations 
“word2vec” is a very popular method in natural language processing for word em-

bedding [42]. With word2vec, the meaning of the word is learned and reflected in the 
coordinates; therefore, an ML model can better characterize the words. The embedding 
method, which usually adds “(2)vec” to the end, is inspired by “word2vec” and treats a 
molecule or protein as a sentence or word of a natural language and converts it into a real 
vector. ProtVec [43] and Mol2vec [44] are representative representations, and there are 
other methods such as SPvec [40] and SMILES2vec [41]. When converted to the 2vec type, 
specific information such as atom (or amino acid) type or bonding relationship of the orig-
inal data cannot be known without restoration. Therefore, it is not suitable for a de novo 
design and is mainly used for property prediction. It is also known that the 2vec type has 
better prediction accuracy than the SMILES or FP [32]. 

There are other learned representation methods that employ DL. Recently, many 
studies used deep representation learning to encode molecules. The most common 
learned representation method is AutoEncoder (AE) [45]. The AE extracts the potential 
characteristics that make the input data distinguishable and compress them into vectors 
of desired length, called as latent vectors. Currently, the transformer model is preferred 
over the AE [46]. However, to train representation learning, a large amount of data is re-
quired; however, a publicly available pre-trained transformer or AE model can also be 
used without making your own DL model [46]. X-Mol [46] or MolGNet [47] are well-
known frameworks designed for this purpose. By fine-tuning these frameworks accord-
ing to the purpose, they can be used in a variety of ways—from property prediction, DDI, 
DTI, de novo design, to molecule optimization. 

Additionally, Denis et al. applied wave transform for efficient representation of 
sparse voxel data [48], and Ziyao et al. proposed HamNet [49] considering molecular con-
formation in their study. 

2.1.4. Voxel 
A voxel is a combination of “volume” and “pixel,” which is a data representation that 

extends a 2D image into three dimensions. In the 3D space, a value is assigned to the ge-
ographic location where the atom exists, and the rest is filled with zeros. The value can be 
1 to indicate the presence of only an atom, and it may be an encoded value corresponding 



Int. J. Mol. Sci. 2021, 22, 9983 5 of 37 
 

 

to the type of atom or a quantum chemical property such as hydropathy or electric charge 
[50]. In addition, as mentioned in Section 2.2, a voxel is used as the expression of the target 
protein and has the advantage that it can express only the pocket that reacts with the lig-
and instead of the entire protein [51]. Because the voxel has specific 3D information, it is 
a very suitable expression for binding prediction. 

Resolution is important when using voxel. For example, if the size of a voxel is 20 × 
20 × 20, the number of features in the input data is 8k, so the size is large; however, most 
of the data are filled with zeros. If the resolution is lowered to reduce the size, the accuracy 
will decrease, and if the resolution is increased, the data size and training speed will in-
crease significantly. There are also 3D mesh [52] or point cloud [53] for geometric 3D rep-
resentation; however, the voxel is most widely used in the DTI field. 

2.1.5. Molecular Graph 
A molecular graph is a mapping of atoms constituting a molecule to nodes and chem-

ical bonds to edges. In molecular graphs, nodes are sometimes represented using symbols 
in the periodic table to indicate atom types, or using some kinds of functional groups or 
fragments [20]. The edge attributes can describe bond strength or bond resonances be-
tween two atoms, which is important training data that is expressed as the adjacent matrix 
in the graph convolution neural network model [11]. With the development of graph neu-
ral networks, recent DL-based works have adopted molecular graphs as drug or target 
representations for both DTI prediction models and novel molecular design models. No-
tably, molecular graphs can represent not only 2D structures but also 3D structures with 
the spatial information including atomic coordinates, bond angles, and chirality. How-
ever, since the arrangement of atoms in a three-dimensional space changes constantly, the 
space in a molecular graph is almost infinite. Some successful results using 3D graph rep-
resentation were obtained for the DTI prediction by avoiding inefficient computations 
[54]; however, the 3D structure data of the protein–ligand complex is insufficient. Thus, 
the model can memorize the features of the training data extensively [55]. If you need a 
further explanation of molecular graphs, we recommend referring to Ref. [20], which pro-
vides a good review of molecular representations. 

2.2. Target Representations 
2.2.1. Sequence-Based Feature 

The simple and primary feature of targets is a protein sequence composed of a linear 
composition of amino acid residues, which is easy to obtain and serves as the input of the 
recurrent neural network (RNN). Amino acid sequences including protein primary struc-
tures have been frequently used as a target representation in the predictive models. Infor-
mation on protein primary structures can also generate a variety of target properties, such 
as monopeptide/dipeptide/tripeptide composition (also called protein sequence composi-
tion description; PSC), sequence motif, and functional domain. Lin Zhu et al. [56] listed 
the types of protein features derived from the amino acid composition: amino acid com-
position, sequence order, etc. Some studies [34,57] considered a position specific scoring 
matrix (PSSM) as the target feature. The PSSM is derived from an ordered set of sequences 
that are presumed to be functionally related and serves as an important feature that is 
widely used in the prediction of DNA or RNA binding sites (e.g., PSI-BLAST [58]) [34]. 

2.2.2. Structure-Based Feature 
For known protein structures, as previously described in the drug presentation part, 

molecular descriptors such as atom-pair map, voxel, and molecular graph were often used 
for the target representation to determine structurally matching ligands or to design new 
ligands for the protein [17,40,59,60]. However, there are not many known protein struc-
tures. Genetically encoded amino acid sequences determine the remarkable diversity of 
the molecular functions performed by finely tuned 3D structures (i.e., tertiary structure) 
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through protein folding. Accurately predicting the folding structure of proteins in a real 
biological system is important in biomedicine and pharmacology. Scientists directly ana-
lyzed the stereoscopic structure of proteins using methods such as X-ray crystallography, 
nuclear magnetic resonance spectroscopy, or cryo-electron microscopy to decipher the 
structures of more than 170,000 protein species; however, it took a very long time to ana-
lyze a single protein. For this reason, the tertiary structure of proteins has been determined 
using computational methods. Since there are many variables in protein folding, this chal-
lenge has not been addressed over fifty years in computational biology [61]. Recently, 
DeepMind developed AlphaFold and succeeded in accurately predicting the 3D structure 
of proteins from amino acid sequences [62]. As these prediction results are open to the 
public, it is expected that all scientists will be able to gain new insights and spur their 
discovery in drug development. 

2.2.3. Relationship-Based Feature 
The key questions for druggable targets are how to extract important features of the 

drug-binding site and how to predict potential space. Many DL models have simply ap-
plied amino-sequence-based features; however, some studies have focused on a variety 
of aspects of target proteins. Some groups [59,63,64] utilize not only sequences but also 
pathway membership information such as gene ontology (GO) terms [60] and MSigDB 
pathways [65]. A number of studies [59,63,66–68] employed a protein–protein interaction 
(PPI) network, which is generated into network-based features by node2vec or AE. Other 
studies showed the transcriptome data, such as connectivity map (CMAP) [69] and Li-
brary of integrated network-based cellular signatures (LINCS)-L1000 database [70], can 
be utilized as target features for the DTI prediction models [63,71]. The transcriptional 
profile is an integrated result of many genetic processes; thus, the characteristic changes 
in the transcriptional profiles can denote the underlying mechanisms of diseases of inter-
est [72]. 

3. Deep Learning Models 
Basic DL models can be classified according to their purpose, loss function, learning 

method, and structure. When DL was initially applied for drug development, there were 
studies using only a single model; however, recently, there are very few cases where only 
a basic model is used. In most cases, two or more of the basic models introduced below 
are combined. There are many different types of DL models, but only very basic ones have 
been described in this section. We describe the strengths and weaknesses of each model 
and introduce the characteristics of the models from the point of view of drug discovery. 

3.1. Multi-Layer Perceptron 
Multi-layer perceptron (MLP) is the most common neural network structure and is 

also called the fully connected layer, linear layer, etc. MLP’s strengths lie in classification 
and regression. Usually, it is trained by finding the optimal parameters that can minimize 
the error between the predicted value and the correct answer for the input. Since it is a 
standard model that has been studied extensively, various techniques have been estab-
lished and almost all DL frameworks basically provide it; therefore, it is easy to apply, 
and stable performance can be expected. Because of its wide versatility, various data such 
as FP, transcriptome [71], bioassay [73], and molecular properties can be used along with 
the compound structure. Chen et al. used the MLP with four hidden layers for the DTI 
prediction, FP was used for compound, and various information such as PseAAC, 
PsePSSM, NMBroto, and structure feature were combined with the target protein infor-
mation [57]. 
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3.2. Convolutional Neural Network 
Convolutional neural networks (CNN) extract local features by calculating several 

adjacent features through the same computational filter. By stacking the CNNs in several 
layers, global features including local features can be extracted. The CNN is generally 
used when all the input data are single-modal-like image recognition. The convolution 
filter is the same regardless of the amount of the input data. Even if the amount of the 
input data is large, the number of calculations increases; however, the number of param-
eters of the DL model does not increase much. Therefore, it is efficient for training. It is 
also relatively robust against noise from the input data. Because the CNN is well suited to 
atomistic geometry [74], it is often used in combination with the voxel or image-type data. 
DEEPScreen [19] used a 2D image of the molecule, and RoseNet [15], AK-score [75], and 
DeepDrug3D [51] predicted the DTI by converting the protein and ligand into a voxel. 
Although it is not optimized for sequential expression methods such as SMILES or amino 
acids, the CNNs are sometimes used instead of the RNNs [76]. Both DeepConv-DTI [31] 
and transformer-CNN [77] used the CNNs for sequential input data to build QSAR mod-
els. 

3.3. Graph Neural Network 
Most of the data used in ML is expressed in the form of a vector that matches the 

Euclidean space. In the case of single-vector-type data or sequential data, models such as 
MLP, RNN, or transformer can be used; however, it is not appropriate to apply these 
models to data expressed in relational graphs such as social networks. A graph neural 
network is a model designed to learn graph-type data in a DL method [78]. There are 
various graph types of data in drug discovery—compound structure, DTI relationship, 
PPI, patient–disease relationship, etc. There are several types of graph neural networks 
(GNN); however, the graph convolution network (GCN) [79,80] adopting the CNN 
method and the graph attention network(GAT) applying the attention mechanism are rep-
resentative [47]. 

GNNs are widely used in many ways; however, they stand out primarily in three 
applications. The first is to predict the properties of compounds using representation 
learning. Yang et al. claimed that the GNN method that they employed has better property 
prediction performance than the existing methods [21]. According to this trend, recently, 
the GNN is widely applied for property prediction [81]. The second is to learn relationship 
information between different domains such as heterogeneous and bipartite [82,83]. For 
example, it is possible to learn the relationship between patients and diseases, and be-
tween genes and drugs, making it possible to utilize comprehensive meta data [83]. Lastly, 
in the field of de novo design, compounds are generated or optimized by the GNN [84]. 

3.4. Recurrent Neural Network 
If sequential data are put into the recurrent neural network (RNN) one by one in 

order, it is influenced by the previous input value to derive the next output value. When 
the RNN was first introduced, AI performance in the natural language field, which was 
difficult to achieve previously, was greatly improved, and it became one of the famous 
models of DL. In addition, it can be used to embed structural information as a kind of 
representation learning by extracting the weight of the hidden layer and treating it as a 
feature with sequence information. However, the naive RNN has a simple structure, and 
there are performance limitations for application in various situations. The most im-
portant problem is the vanishing gradient problem, which exhibits poor performance for 
long-length data such as large proteins and large compounds because the length of the 
input sequence exponentially reduces the impact of items far from the currently entered 
item [85]. Moreover, since the same operation is executed repeatedly as the length of the 
input sequence, the length of the sequence increases the training time. Even when the 
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items in sequential data have complex intrinsic relationships, their characteristics are not 
well learned. 

Long short-term memory (LSTM) was invented in the 1990s and began to be widely 
used in the late 2000s [86]. LSTM was introduced to address the fast-vanishing problem 
of naive RNNs. The LSTM can be used with good performance even on longer sequential 
data compared to the RNN. Since its introduction, various modifications of the LSTM 
have been proposed [87], and recently, gated recurrent units (GRU) with a simpler inter-
nal structure [88] has also been widely used. It can simply be used for the de novo drug 
design, which randomly generates short-length compounds, and can generate an appro-
priate candidate drug by inputting a target protein sequence [89]. The LSTM and GRU 
have exhibited significant improvements over the RNN and are widely used to replace 
the RNN in drug discovery [31,90,91]; however, the vanishing problem still persists, 
which makes it difficult to use very long sequence data. 

3.5. Attention-Based Model 
The self-attention technique is a method that was first proposed by the transformer 

model to introduce machine translation in the field of natural language processing. Self-
attention is a technique that calculates the association between the elements included in a 
sequence and extracts features for each element based on the calculated result. Unlike the 
RNN, which uses a single hidden state in which all time step values are implied, the at-
tention technique handles past data in parallel; therefore, the correlation with distant to-
kens can be used without reduction. Furthermore, bidirectional encoder representations 
from transformers (BERT), introduced by Devlin et al. [92] in 2018, has dramatically im-
proved natural language presentation using DL and has been actively introduced in drug 
discovery. 

In DTI, the transformer model was naturally absorbed into the traditional QSAR 
modeling using the RNN. Karpov et al. [77] used a model applying CNN to a transformer 
with SMILES as an input to predict drug activity. Shin et al. [23] proposed a molecular 
transformer DTI (MT-DTI) model that predicts drug-target binding affinity by embedding 
the protein sequence using the CNN and embedding the molecule structure using the 
BERT. Lennox et al. [93] also proposed a model with a concept similar to MT-DTI; how-
ever, it used BERT for both protein and chemical structures and was based on GCN. Len-
nox et al. evaluated that their model performed better in predicting binding affinity than 
MT-DTI. 

3.6. Generative Adversarial Network 
Generative adversarial network (GAN), first published in 2014 [94], is the most rep-

resentative generative model in the field of DL. The GAN is only used in the de novo drug 
design and not in the DTI. Two DL modules, generator and discriminator, are included in 
pairs, and these two modules are trained adversarially with each other, and finally, the 
generator produces fake results that cannot be distinguished from the real ones by a dis-
criminator. Although the GAN is used as a very powerful method for some data types 
such as image data, it has difficulty in generating large molecules compared to other gen-
erative models. In addition, the technical difficulty for training is somewhat higher than 
that of other models, and it involves problems such as mode collapse. 

The GAN, combined with reinforcement learning (RL), is considered a very success-
ful model for novel molecules generation. There are various GAN architecture applica-
tions used in drug discovery [95], however, we introduce only two very simple models. 
Objective-reinforced generative adversarial networks (ORGAN) [90], introduced by 
Guimaraes et al., and molecular GAN (MolGAN) [91], introduced by Cao and Kipf, are 
frequently cited successful models. Since ORGAN uses SMILES data as input, sequence 
GAN (seqGAN) [96] is used as the basic framework and RL is added. ORGAN showed 
good performance in drug likeliness and synthesizability except solubility compared to 
the naive RNN. The MolGAN is a similar concept to the ORGAN, but it applied the GCN 
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based on molecular graph representation and showed better performance than the OR-
GAN and the naive RNN. 

3.7. Autoencoder 
AE is a DL structure for basic unsupervised learning that consists of an encoder that 

compresses data and a decoder that reconstructs the data to their original shape. In this 
symmetric process, the dominant characteristic that distinguishes the data from each other 
is automatically extracted. A set of abstracted points compressed by the encoder, called a 
latent space, can be used in other models as new features. At the training stage, the en-
coder and decoder are trained simultaneously; however, after the training stage, only the 
encoder is separated and used for data embedding, dimension reduction, and visualiza-
tion, or only the decoder is separated and used as a generation model. Because dimension 
reduction is possible without the need for data labels, it is good to use in combination with 
other DL models [97]. 

The points in the latent space created by the AE are very sparsely distributed; how-
ever, there is no continuous meaning between the points. Variational autoencoder (VAE) 
limits the latent space to a Gaussian-shaped stochastic fence. This increases the density of 
the latent space and makes the data continuous and smooth. Gómez-Bombarelli et al. 
showed that continuous search from one compound to another is possible in a smooth 
chemical latent space constructed using the SMILES [98]. AE is excellent in data compres-
sion and is used for the DTI, whereas VAE has lower compression performance than AE 
and is used for the de novo drug design due to the continuous and limited latent space 
characteristics described above. 

Adversarial AE (AAE) [99] is a DL model that adds the GAN structure to the VAE, 
whose purpose is feature compression and generation. The VAE can compress the prop-
erties of compounds well; however, it exhibits inadequate performance to generate valid 
results. Conversely, the GAN can produce valid compounds and produce plausible re-
sults but can be biased with a single mode and have low diversity scores. Insilico Medicine 
first published the AAE [100,101] for the identification and generation of new compounds 
in 2016 [101], followed by an improved model named druGAN [102] in 2017. The AAE is 
a method that can show good performance in the generation of new compounds while 
compressing the data to the latent space. Polykovskiy et al. generated new compounds by 
changing the lipophilicity (logP) and synthetic accessibility of the input compound by 
adding the function to control the condition to AAE [103]. 

4. Deep Learning Methods for Drug–Target Interaction Prediction 
DTI prediction using DL techniques incorporates both the chemical space of the com-

pound and the genome space of the target protein into a pharmacological space, which is 
called as a chemogenomic (or proteochemometric, PCM) approach. This approach would 
ideally solve the DTI problem by building a chemogenomic matrix between the whole 
compounds and their biological proteins. Advances in the high-throughput screening 
(HTS) technology have enabled hundreds of thousands of compounds to be tested on bi-
ological targets in a very short time; however, it is practically impossible to obtain a com-
plete chemogenomic matrix for a vast chemical space of 1060. 

As DL models predicting DTIs continue to apply state-of-the-art algorithms, combine 
multiple algorithms, and gradually shorten development periods, DL-based DTI predic-
tion models have become so diverse that it is difficult to divide groups into appropriate 
categories [104]. Previous review papers have categorized the DTI prediction models into 
various groups [104–107]; however, none of these reviews have established a clearly dis-
tinguished classification scheme for DL methods. Another review categorized ML-based 
DTI prediction methods into docking simulation methods, ligand-based methods, GO-
based methods and so on; however, this also did not provide detailed classification of the 
DL methods [108]. Therefore, we summarized the recent works using deep neural net-
works as prediction models for the DTIs. We describe the works by grouping them into 
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three branches according to their input features: (1) ligand-based approach, (2) structure-
based approach, (3) relationship-based approach (Figure 2). Appendix A Tables A1–A3 
summarize the studies involving each approach. 

 
Figure 2. Deep learning-based drug–target interaction prediction. DL-based DTI prediction methods can be grouped based 
on their input features into three branches: (a) ligand-based approach, (b) structure-based approach, (c) relationship-based 
approach. 

4.1. Ligand-Based Approach 
The ligand-based approach is based on the hypothesis that a candidate ligand will be 

similar to the known ligands of the target proteins. It predicts the DTI via the ligand in-
formation of the target of interest. This approach includes similarity search methods that 
follow the assumption that structurally similar compounds usually have similar biological 
activities [6,109,110]. For decades, these VS methods have either prioritized compounds 
in large compound libraries through tremendous computing tasks or solved problems us-
ing manual formulas. The DL technology can shorten these cumbersome steps and man-
ual tasks, and the difference between in silico prediction and empirical investigation is 
gradually narrowed through deep neural network models (Appendix A Table A1). Re-
searchers have developed deep-learning-based VS for exploring compounds with desired 
characteristics, which has led to the revival of new drug designs, which will be detailed 
in the “De Novo Drug Designs” section.  

With the development of benchmark packages such as MoleculeNet [111] and Deep-
Chem [112], researchers can easily apply deep neural networks for analyzing ligands and 
predicting ligand-related properties, including bioactivities and physicochemical proper-
ties. Therefore, a number of ligand-based DL methods have adopted simple neural net-
works such as MLP and CNN [12,21,27,113]. In particular, ADMET studies tended to focus 
more on the representation power of the molecular descriptors than the model itself 
[27,34,35,114]. Hirohara et al. applied the SMILES string to a CNN model and detected 
motifs with important structures for protein-binding sites or unknown functional groups 
from learned features [25]. Wenzel et al. investigated multi-task deep neural networks 
using atom pairs and pharmacophoric donor–acceptor pairs as descriptors for predicting 
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microsomal metabolic liability [115]. Gao et al. employed several ML algorithms, includ-
ing random forest, single-task deep neural network, and multi-task deep neural network 
models, in order to conduct comparisons of six types of 2D FPs in the protein–ligand bind-
ing affinity prediction [33]. Matsuzaka and Uesawa developed a CNN model that predicts 
agonists for constitutive androstane receptors by training 2D images of 3D chemical struc-
tures [109]. They optimized the best performance in snapshots at different angles or coor-
dinates of a 3D ball-and-stick model, and as a result, the approach outperformed the pre-
dictions of typical 3D chemical structures. 

Several studies applied state-of-art techniques such as graph convolution network 
and graph attention network for bioactivity or physicochemical property prediction. Since 
the introduction of the GCN was introduced, GCN models in drug-related applications 
constructed graph representations of a molecule that included information about the 
chemical substructures by summing up all the features of all the adjacent atoms [116]. 
Many studies have applied the GCNs as 3D descriptors instead of SMILES strings and 
evaluated that these learned descriptors outperformed in the prediction tasks and are 
more interpretable than the existing descriptors [23,24,86]. Chemi-net utilized the GCN 
models for molecular representation and compared performances between single-task 
and multi-task deep neural networks on their internal QSAR datasets [81]. Yang et al. 
proposed an advanced model, the directed message passing neural network (D-MPNN), 
by adopting a directed message-passing paradigm. They extensively compared their 
models on 19 public and 16 internal datasets and found that the D-MPNN models per-
formed better or exhibited similar performance in most of the datasets [21]. They under-
performed compared to traditional 3D descriptors in two datasets and were not robust 
when the dataset was small or extremely imbalanced. Then, another study group also 
practically used this D-MPNN model and successfully predicted an antibiotic, called 
halicin, which showed bactericidal efficacy in mice animal models [22]. This became the 
first case that led to antibiotic discovery by exploring a large-scale chemical space with 
DL methods that cannot be afforded by the current experimental approaches.  

Another promising recent approach is the applications of attention-based graph neu-
ral networks [79]. Because the edge features can vary the graph representations for a mol-
ecule, the edge weights can be jointly learned with the node features. Thus, Shang et al. 
proposed an edge attention-based multi-relational GCN [11]. They built a dictionary of 
attention weights for each edge (i.e., individual bonds in the molecule), and as this dic-
tionary is shared across the entire molecule, the model becomes robust to various input 
sizes. Consequently, the model can efficiently learn pre-aligned features from inherent 
properties of the molecular graph, and they evaluated that the performance of this model 
is better than that of the random forest model in Tox21 and HIV benchmark datasets. 
Withnall et al. [21] introduced a further augmentation with an attention mechanism to the 
MPNN model, called attention message passing neural network (AMPNN), which takes 
the weighted summation in the message passing stage [117]. They also extended the D-
MPNN model (the reference by Yang et al. mentioned in the previous paragraph [21]) by 
attention mechanism in the same way as the AMPNN and called it the edge memory neu-
ral network (EMNN). This model outperformed other models on the standardized miss-
ing data from the maximum unbiased validation (MUV) benchmark set, although it is 
computationally more consumptive than other models. 

4.2. Structure-Based Approach 
Contrary to the ligand-based VS, structure-based VS uses both protein targets and 

their ligand information. Typical molecular docking simulation methods aimed at esti-
mating geometrically feasible binding of ligands and proteins of a known tertiary struc-
ture [110]. While many ML methods for the DTI prediction utilize a variety of structural 
descriptors of ligands and targets as input features, several reviews separated these ML 
methods from typical structure-based approaches in methodology classification and clas-
sified them as feature-based methods [2,117,118]. However, we believe that the recent 
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studies incorporating DL of feature-based methods utilize the same method because the 
training is essentially performed with structural features [17,40,59,119,120]. Appendix A 
Table A2 shows the recent applications of structure-based DL methods for the DTI pre-
diction. 

One of the most commonly used DTI prediction methods in recent years is the use of 
1D descriptors for drug and target [26,33,37,42,121]. As described in the previous repre-
sentation section, drug and target can be expressed as sequences of atoms and amino acid 
residues, respectively, and the sequence-based descriptors have been preferred because 
DL models can be applied immediately without any tricky preprocessing of input fea-
tures. DeepDTA proposed by Öztürk [24] applied only sequence information of the 
SMILES string and amino acid sequences to a CNN model and outperformed moderate 
ML methods such as KronRLS [122] and SimBoosts [123] on the Davis kinase binding af-
finity dataset [113] and KIBA dataset [114]. Wen et al. chose the common and simple fea-
tures, such as ECFPs and protein sequence composition descriptors, and trained the fea-
tures by a semi-supervised learning through deep belief-network [37]. This study sug-
gested that in a problem where a very sparse set of total DTI pairs is used for the training, 
even a small dataset can be predicted more accurately by unsupervised pre-training. An-
other work called DeepConv-DTI constructed a deep convolution neural network model 
using only a type of RDKit Morgan FP and protein sequences [31]. They additionally cap-
tured local residue patterns of target protein sequences from the pooled convolution re-
sults, which can give high values to important protein regions such as actual binding sites. 

A keystone of the structure-based regression model is the score function that ranks 
the binding potential of the protein–ligand 3D complexes and parametrizes the training 
data to predict the binding affinity values or binding pocket sites of the target proteins. 
AtomNet incorporated the 3D structural features of the protein–ligand complexes to the 
CNNs [124]. Their understanding is that the interactions between the chemical groups in 
the protein–ligand complexes are predominantly constrained in a local space; therefore, 
the CNN architecture is appropriate to learn local effects such as hydrogen bonding and 
π-bond stacking. They vectorized fixed-size 3D grids (i.e., voxel) over the protein–ligand 
complexes, and then each grid cell represents the structural features in that location. Since 
then, many researchers have investigated deep CNN models using voxels for binding af-
finity prediction or binding pocket site prediction [17,40,59,60,120], and these models have 
shown improved performance compared to the popular docking methods such as Auto-
Dock Vina [125] or Smina [126]. This is because the CNN models are relatively resistant 
to noise in the input data and can be trained even when the input size is large. 

Similar to the trends in the ligand-based methods, many DTI studies based on the 
structure-based methods using the GCNs have been published [8,127,128]. Feng et al. 
adopted both the ECFPs and GCNs as ligand features [8]. Compared to previous models 
such as KronRLS [122] and SimBoost [123], their models showed better performance on 
the Davis [113], Metz [129], and KIBA [114] benchmark datasets. However, they 
acknowledged that their GCN model could not beat their ECFP model because of 
difficulties in applying the GCN due to time and resource constraints. Another DTI pre-
diction study by Torng et al. built an unsupervised graph-AE to learn the fixed-size rep-
resentations of the protein-binding pockets [118]. Then, they used the initialized protein-
pocket GCN in the pre-trained GCN model, while the ligand GCN model was trained 
using the automatically extracted features. They concluded that this model effectively cap-
tured the protein–ligand binding interactions without relying on the target–ligand com-
plexes. 

Attention-based DTI prediction methods have emerged because the attention mech-
anism-implemented models have key advantages that make the model interpretable 
[25,128,130]. Gao et al. used encoded vectors using the LSTM recurrent neural networks 
for the protein sequences and the GCN for ligand structures [119]. In particular, they fo-
cused on explaining the ability of their approach to provide biological insights to interpret 
the DTI predictions. To this end, two-way attention mechanisms were used to compute 
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the interaction of the drug–target pairs (DTPs) interact, enabling scalable interpretability 
to incorporate high-level information from the target proteins, such as GO terms. The 
Molecule transformer DTI (MT-DTI) method was proposed by Shin et al. using the self-
attention mechanism for drug representations [23]. The pre-trained parameters from the 
publicly available 97 million compounds (PubChem) were transferred to the MT-DTI 
model, and it was fine-tuned and evaluated using two Davis [113] and KIBA [114] bench-
mark datasets. However, they did not apply the attention mechanism to represent the 
protein targets because the target sequence length was long, which takes a considerable 
amount of time to calculate, and there is not enough target information to pre-train. On 
the other hand, AttentionDTA presented by Zhao et al. combines an attention mechanism 
for the CNN models to determine the weight relationships between the compound and 
protein sequences [120]. They demonstrated that the affinity prediction tasks by the MLP 
model performed well on these attention-based drug and protein representations. 

4.3. Relationship-Based Approach 
According to polypharmacology, most compounds have more effects not only on 

their primary targets, but also on other targets. These effects depend on the dose of the 
drug and the related biological networks. Therefore, in silico proteochemometric model-
ing turned out to be useful, particularly when profiling selectivity or promiscuity of the 
ligands for proteins [121]. Moreover, multi-task learning neural networks are well suited 
for learning aspects of these different types of data simultaneously [131]. There are many 
applications of DL models that utilize relational information for multiple perspectives 
such as DTI-related heterogeneous networks and drug-induced gene-expression profiles. 
A network-based approach uses heterogeneous networks that integrate more than two 
types of nodes (drugs, target proteins/genes, diseases, or side effects) and various types 
of edges (similarities between drugs, similarities between proteins, drug–drug interac-
tions (DDIs), PPIs, drug-disease association, protein-disease association, etc.) [132,133].  

The key point of this approach is the use of local similarity between the nodes in the 
networks. For example, when a similarity network with drugs as nodes and drug–drug 
similarity values as the weights of the edges is considered, the DTIs can be predicted by 
utilizing their relationships and topological properties. It is based on the “guilt-by-associ-
ation” theory that interacting entities are more likely to share functionalities [13]. Various 
ML methods that incorporate heterogeneous networks have been used as the prediction 
frameworks, e.g., support vector machine [134,135], regularized least square model (RLS) 
[127,128,136], and random walk with the restart algorithm [122,137]. 

With growing interest in the use of DL technologies, network-based DTI prediction 
studies using DL have been shown to improve the existing association prediction methods 
for measuring the topological similarities of bipartite (drug and target networks) and tri-
partite linked networks (drug, target, and disease networks) [15,69,73,74,104]. Zong et al. 
exploited the tripartite networks through the application of the DeepWalk method [130] 
to obtain the local latent information and compute topology-based similarities, and they 
demonstrated the potential of this method as a drug repurposing solution [13].  

Some network-based DTI prediction studies used relationship-based features that 
were extracted by training the AE. A DTI-CNN prediction model devised by Zhao et al., 
used low-dimensional but rich depth features in a heterogeneous network trained by the 
stacked AE algorithm [68]. Moreover, in vivo experimental validation on atherosclerosis 
found that tetramethylpyrazine could attenuate atherosclerosis by inhibiting signal trans-
ductions in platelets. Other two studies [59,97] also applied the AE to capture the global 
structure information of the similarity measures. A study by Wang et al. applied a deep 
AE and introduced positive pointwise mutual information to compute the topological 
similarity matrix of drug and target [59]. Meanwhile, another study by Peng et al. utilized 
a denoising AE to select network-based features and reduce the dimensions of represen-
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tations [97]. The denoising AE adds noise to high-dimensional, noisy, and incomplete in-
put data and enables the encoder to learn more robustly by making the self-encoder learn 
to denoise. 

However, these approaches have a limitation in that it is difficult to predict new 
drugs or targets, which is well known as the “cold start” problem of the recommendation 
systems [138]. These models are strongly influenced by the size and shape of the network; 
thus, if the network is not sufficiently comprehensive, they do not capture the properties 
of all the drugs or targets that may not appear in the network [13,139].  

The other approach is using transcriptome data for DTI predictions, which measures 
the biological effect of drug action in in vitro experimental conditions. After the first re-
lease of the CMAP [69], a large-scale drug-induced transcriptome dataset, there have been 
many studies that succeeded in the identification of the drug repositioning candidates for 
a variety of diseases or the elucidation of the drug mode of action [140–143]. A number of 
studies have also employed the gene-expression profiles as the chemogenomic features 
for predicting DTIs. These studies are based on the assumption that drugs with similar 
expression profiles affect common targets [144,145]. 

Recent studies incorporated the updated version of CMAP, LINCS-L1000 database 
[70] into the DL DTI models [67,77,146]. Xie et al. built a binary classification model using 
a deep neural network based on the LINCS drug perturbation and gene knockout results 
[71]. On the other hand, Lee and Kim used the expression signature genes as the input 
drug and target features. They trained the rich information considering three distinct as-
pects of protein function, which included pathway-level memberships and PPI extracted 
using node2vec [63]. DTIGCCN by Saho and Zhang used a GCN model to extract the 
features of drug and target, respectively, from the LINCS data and CNN model to extract 
the latent features to predict DTPs [147]. In this hybrid model, they found that the Gauss-
ian kernel function was helpful in building high-quality graphs; thus, their model showed 
better performance on classification tasks. The relationship-based DL methods described 
above are provided in Appendix A Table A3. 

5. Deep Learning Methods for De Novo Drug Design 
In general, when classifying the de novo drug designs, studies are classified based 

on the DL models [87]. However, in the case of actual implementation, it may be an ap-
propriate classification; however, it may not be enough to understand the purpose of the 
model. In reflection of the recent trend changes, purpose, and usability, drug design using 
DL has been newly classified (Figure 3). 
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Figure 3. Deep learning-based de novo drug design. DL-based de novo drug design can be classified into five types ac-
cording to function and method. (a) Classification according to the presence or absence of chemical latent space using 
manifold learning. (b) Classification according to the existence of condition control function. (c) Classification based on 
sequential generation. (d) Classification based on whether the molecule is produced in fragments or atoms. (e) Classifica-
tion according to genetic algorithm using DL. 

5.1. Chemical Latent Space 
The manifold hypothesis states that there exists a low-dimensional subspace that ex-

plains specific data well within the original data space [148]. The latent space is mapped 
with a relatively low-dimensional vector space. The latent space created through manifold 
learning expresses the potential characteristics of the input data well. A representative 
model that performs manifold learning is the AE. Dimension reduction methods based on 
mathematical algorithms such as principal component analysis (PCA), t-distributed sto-
chastic neighbor embedding (t-SNE), and singular value decomposition (SVD) have sim-
ilar functions; however, they have limitations in determining complex manifolds com-
pared to the ML methods. 

Converting to a latent vector as an input feature has several advantages. First, the 
dimension of input data is reduced. Reducing the dimension reduces the risk of overfit-
ting the module and makes learning easier with less data. Second, it becomes possible to 
search or optimize molecules in the latent space [149–152]. Since similar compounds or 
proteins are more densely expressed in a well-trained latent space [153,154], it is also pos-
sible to compare properties or calculate compounds according to compound structures 
[98]. A model named GENTRL proposed by Zhavoronkov et al. [7] generated compounds 
reflecting the latest trends that are indirectly extracted from patent dates using self-organ-
izing map (SOM) from the chemical latent space. Instead of learning the encoder sepa-
rately, if it is connected to a DL model and learned simultaneously during the training 
process, a latent space is produced that is more suitable for the purpose. 

However, since the latent space is also data-dependent, it is produced differently 
each time, and it may be constructed differently or in an incomprehensible form unlike 
human intention. Recently, pre-trained encoders such as X-MOL [46] are provided as in-
dependent modules. By using transfer learning, described in Section 7.2, the performance 
can be improved by fine-tuning the latent space trained for a universal situation according 
to an appropriate purpose. 
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5.2. Condition Control of Compounds 
There are two methods for studying new drug candidates in the de novo drug design 

using DL. The first method is generating as many arbitrary compounds as possible and 
filtering them through several steps according to the purpose and finally determining a 
small number of candidate drugs [7]. The second method is forcing conditions or proper-
ties to meet the purpose of the generation [45]. It cannot be said that either one is better; 
however, many random generation methods were used in the relatively early days, and 
recently there are many studies on controlling the condition. Condition-controllable mod-
els are useful when creating new drugs or optimizing the existing drugs because the con-
dition control model can modify properties such as binding affinity, logP, molecular 
weight, side effects, and toxicity while maintaining the main structural characteristics of 
the molecule. 

There are various locations and methods of applying the condition (Figure 4). Lim et 
al. [45] manipulated the properties of the compound to be produced using conditions in 
the VAE (Figure 5). This simple model is trained by adding molecular properties (MW, 
logP, HBD, HBA, topological polar surface area (TPSA)) to both the encoder and decoder 
of the VAE. When creating a new compound, the researcher only needs to add the desired 
property to the latent vector that determines the structure of the compound. The differ-
ence between the input value and the output value is approximately 10%. Lim et al. con-
ducted an interesting experiment to observe the change in the condition. The first was to 
create a set of compounds with similar properties but different structures by putting the 
properties of aspirin in a random latent vector. Second, several compounds similar to as-
pirin were generated by adding the properties of aspirin to a latent vector near aspirin. 
Finally, similar to the second experiment, the properties of Tamiflu were added to the 
latent vector near Tamiflu; however, the structural change was observed while changing 
the logP to various values. Kang et al. [155] made a model almost similar to Lim et al.’s 
model [45]. However, while Lim et al.’s model can use only compounds with known prop-
erties, Kang et al.’s semi-supervised VAE (SSVAE) can use more compounds for training 
by inputting the predicted results from the property predictor. Hong et al. [156] suggested 
different structures in their two previous studies. They used the AAE model instead of 
the VAE and connected the property predictor from the latent vector to refine the latent 
space, and then they put the compound properties (logP, SAS, and TPSA) together with 
the latent vector in the decoder in the training process. 

 
Figure 4. Three types of conditional de novo model using VAE. z is a latent vector and p is a molecular property. (a) Basic 
model for property control [45]. Concatenate the molecular property with the input value to the encoder and decoder. (b) 
Model with the property predictor [155] added to (a). It is possible to train even for molecules without the property data. 
(c) Model with condition control applied to the AAE [156]. Modify the latent space by predicting properties from the latent 
vector. This model does not add any properties to the encoder. 
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Figure 5. Generated compounds from conditional VAE. (a) Compounds created by adding aspirin condition to random 
points (compound structure) in the latent space. Although the form is different, they have similar properties (MW, logP, 
HBD, HBA, and TPSA). (b) Compounds produced by controlling the properties of aspirin at random points close to aspirin 
in the latent space. It looks very similar to aspirin. (c) Compounds produced by changing log P while maintaining the 
structure and other properties of Tamiflu. Only the desired properties in the reference compound can be controlled and 
improved. This figure is modified from [45]. 

5.3. Generation at Once or Sequentially 
Basic generative models such as the AE or GAN form a compound from a corre-

sponding input vector by a decoder or generator at once. In the case of the RNN using the 
SMILES, the word with the highest probability of matching the grammar is generated one 
by one from the start token until the end token appears, and finally, a large compound is 
completed. The one-time generation method is a method to create a new compound di-
rectly in the latent space, whereas the sequential method can start from nothing or a spe-
cific substructure and gradually complete the compound. The one-time method is simple 
and can provide more diverse results. Since the sequential method is generated while 
maintaining the active site or core scaffold with core characteristics, it can improve the 
binding score or properties; therefore, it can be used for fine lead optimization. Grisoni et 
al. [157] generated novel compounds using the SMILES and RNNs and Bongini et al. [158] 
using the GNNs. Lim et al. [84] created a graph-based sequential generative model from 
a specific scaffold rather than an atom, which has a property (MW, TPSA, logP) control 
function. 

5.4. Fragment-Based Generation 
A typical structure-based molecular representation, such as the SMILES or graph, 

consists of atoms and their junctions. However, compounds have more similar properties 
at the scaffold level than at the atomic level. The advantage of the fragment-based DL 
models is that when generating relatively large molecules, they output a product that is 
likely to exist in the natural state. For example, in the case of an atom-based model, the 
produced compound may include a ring consisting of 10 carbons, or a very long linear 
compound consisting of carbons, which are rare in nature. However, first, if the scaffold 
is used as a reference instead of the atom, it can be trained and created while maintaining 
the main substructure of the compound [84,146]. Second, it is easy to interpret and give 
feedback on the results based on the experts’ existing knowledge [159]. For example, beta-
lactam has a characteristic scaffold (Figure 6) [160] so when developing a new antibiotic, 
various types of drugs can be created while maintaining the scaffold. Jin et al. [161] used 
molecular graphs to generate compounds from fragments (they called them motifs), and 
Arús-Pous et al. [146] used the SMILES to model adding fragments (they called them dec-
orators) from a core scaffold. 

Fragment-based generation has a limitation in that it becomes difficult to find a new 
molecular entity because only compounds similar to the existing scaffold structure are 
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generated. In addition, there are very few types of atoms and bonds that are used in mol-
ecules, whereas the scaffolds have many types if not restricted by certain criteria. 

 
Figure 6. Chemical structures of the selected examples from six β-lactam structural categories. The 
core scaffolds (highlighted in red) are similar. Figure modified from [160]. 

5.5. Genetic Algorithm 
Genetic algorithm is a method inspired by biogenetics, which has been traditionally 

used before DL [162], and it is mainly used to address optimization problems. The algo-
rithm generates a random set of data called the initial generation and combines them to 
create a new generation. It repeats the process of intersecting some data with the highest 
score to create the next generation to obtain the most optimal result. If each data can be 
expressed in the form of a gene, and if there is a titration function that can be evaluated 
as a continuous value, it can be introduced relatively easily and produces a sufficiently 
acceptable result, although not perfect. De novo drug design using a genetic algorithm 
has been studied until recently [163,164], and the genetic algorithm method combined 
with DL [165] has been proposed in recent years. 

6. Evaluation Method 
6.1. Benchmarking Datasets and Tools 

Over the decades, large amounts of repositories on the bioactivity, structure, and 
protein targets of small molecules have been accumulated in public databases such as 
PubChem [163], ChEMBL [164], and BindingDB [166]. These big datasets enable us to 
build predictive models for drug–target relationships via computational methods. To 
compare the performance of the models by evaluating their reproducibility for the predic-
tion results, several datasets have been used. Appendix A Table A4 shows the list of 
benchmark datasets. These datasets consist of known active data and inactive compounds. 
In many datasets, an inactive compound is presumed to be inactive unless it is identified 
as active in an experimental biological assay, also referred to as “decoys” [167]. There are 
several benchmarking databases that provide refined decoy compounds [166,168]. They 
rationally selected inactive compounds to avoid false negatives because the false negative 
(i.e., active compounds are considered as inactive in the decoy sets) can underestimate the 
performance of the prediction methods. DUD-E [166], a gold standard dataset used for 
the evaluation of the VS methods, selected decoys based on the concept that the decoy 
compounds must be structurally different from the known ligands to reduce the false neg-
ative, whereas it must be similar to the known ligands with respect to physicochemical 
properties to reduce bias. 

Chen et al. argued that the hidden bias in the widely used dataset (DUD-E database) 
may lead to misleading performance of the CNN models during the structure-based VS 
[169]. There were two remaining biases [170]. One is the limitation of exploring the decoy 
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restricted in the chemical space of reference compounds including active compounds (i.e., 
analogous bias). The other is the limitation of artificially good enrichment in evaluation 
because the physicochemical properties of the active compounds and decoy compounds 
(i.e., artificial enrichment bias) can be clearly distinguished. To overcome these limita-
tions, the MUV datasets [168] and the demanding evaluation kits for objective in silico 
screening (DEKOIS) [171] were proposed. Until recently, fine-tuned benchmarking da-
tasets have been consistently presented. Xia et al. proposed the unbiased ligand set (ULS) 
and unbiased decoy set (UDS) [172] for the G protein-coupled receptors. Another group 
used an asymmetric validation embedding procedure to design a novel dataset called LIT-
PCBA dataset [173] for some PubChem bioassays. 

Candidate drugs created using the de novo drug design cannot be measured for ef-
ficacy unless they are actually synthesized. The de novo drug design using DL has devel-
oped significantly in recent years [19], and designing a good generative model rather than 
generating an effective drug is a major evaluation criterion in the de novo drug design 
research field. MOlecular SEtS (MOSES) [174] and GuacaMol [175] are the most popular 
benchmarking tools. These two tools score and compare the performance of new DL mod-
els based on the base models. Both the tools use post-processing databases based on ZINC 
or ChEMBL, and include general representations such as FP, SMILES, and molecular 
graphs. The features and issues of both the tools for benchmarking in the de novo drug 
design are described in detail by Grant et al. [176] in their review paper. 

6.2. Evaluation Metrics for DTI Prediction 
The DTI prediction can be grouped into two types: 1) DTP prediction by a classifica-

tion model that assigns a positive or negative (i.e., active or inactive) label to the DTP and 
2) drug–target affinity (DTA) prediction by a regression model that estimates the binding 
affinity value between the drug and target. Because the evaluation metrics are different 
for each type, this section describes the performance metrics for each type of model. 

6.2.1. Classification Metrics 
The DTP prediction studies have adopted several common evaluation indicators in-

cluding accuracy, precision, recall (also known as sensitivity), and specificity. These met-
rics are calculated from the confusion matrix. The most straightforward metric for classi-
fier performance is accuracy. However, the accuracy metric does not work well in prob-
lems with skewness or class imbalance. For example, a prediction with a target that only 
affects less than 1% of all drugs is very easy to achieve 99% accuracy by obtaining the 
correct negatives even when few correct positives are predicted. For this reason, precision 
and recall are often quantified by many DL studies, which measure that the correctly pre-
dicted DTI with activity in practice is classified as positive repeatedly. Precision and recall 
can be measured simultaneously using two scores: F-score and precision–recall area un-
der curve (AUPR). F-score (also called F measure) is a balance between precision and re-
call. For example, an F1 score is the weighted average value of precision and recall. The 
PR-AUC can show the tradeoff between precision and recall and reduce the impact of 
false positives. There are other useful metrics when the classes are imbalanced. Balanced 
accuracy applies the average of the sensitivity and specificity [177]. Matthews correlation 
coefficient (MCC) measures the correlation of the true classes with the predicted labels. 
Chicco and Jurman [178] showed that MCC is more informative in evaluating binary clas-
sifications than accuracy and F1 score. 

Another commonly used evaluation indicator for DL methods is the area under the 
curve (AUC). The AUC means the area underneath a receiver–operator characteristic 
(ROC) curve that compares the performance of classifiers by distinguishing the two types 
of errors: false positives or negatives. The ROC curve is the plot of true positive rate (TPR, 
or sensitivity) against false positive rate (FPR, or 1-specificity), and the best classifier that 
will achieve perfection is the top-left of the plot (FPR = 0, and TPR = 1). The AUC value in 
the DTI prediction indicates how well the positive DTIs are ranked in the prediction. The 
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AUC is sensitive to the imbalanced DTI dataset, which are prone to a large number of false 
positives (i.e., few positive DTIs relative to negative DTIs) [179]. 

6.2.2. Regression Evaluation Metrics 
Binding affinity scores such as IC50 and pKd predicted by DTA prediction models 

can be assessed by several evaluation indicators: mean square error (MSE), root mean 
square error (RMSE), Pearson’s correlation coefficient (R), and squared correlation coeffi-
cient (𝑅𝑅2). These metrics have been implicated to determine the quality of predictive 
QSAR models. The MSE is defined as the average squared difference between the pre-
dicted and ground-truth binding affinity scores. The RMSE, as its name suggests, is the 
squared RMSE. 𝑅𝑅2 measures how well the predicted values match the real values (i.e., 
goodness of fit). Some studies [23,120] applied the modified 𝑅𝑅2 (𝑟𝑟𝑚𝑚2) to the test set predic-
tion, which was introduced by Roy and Roy [180]. 

Other metrics such as concordance index (CI or C-index) and Spearman’s correlation 
coefficient (ρ) quantify the quality of rankings by comparing the order of the predictions 
and the order of the ground truths. A frequently used ranking metric in the DTA predic-
tion is the CI [25,130,181]. When predicting the binding affinity values of two random 
DTPs, the CI measures whether those values were predicted in the same order as their 
actual values. The other metric, Spearman’s correlation coefficient, measures the strength 
and direction of the association between two ranked variables. Several studies utilized 
Spearman’s correlation coefficient with other metrics [17,59,60,182]. 

6.3. Evaluation Metrics for De Novo Drug Design 
6.3.1. Generation Metrics 

The generation index is meaningful in evaluating the performance of the DL genera-
tor model through the set of generated molecules rather than evaluating the generated 
compounds as drugs. This does not mean that models with better generative metrics make 
better drugs. The four generation indices are commonly used in the de novo drug design 
studies, and in the case of the SMILES data, an open library such as RDkit [119], GuacaMol 
[175], or MOSES [174] can be used to quickly measure the generation index (Figure 7). 

 

Figure 7. Generation metrics for de novo drug design. The four generation indices are commonly used in the de novo drug 
design studies: (a) validity, (b) novelty, (c) uniqueness, and (d) diversity. Unlike other metrics, a training dataset is re-
quired to measure novelty. 
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Validity index evaluates whether a generated compound can exist or not. For exam-
ple, in the case of the SMILES expression method, if the grammar is not learned suffi-
ciently, the valid molecules are not generated, or the parentheses do not match. Validity 
is the ratio of compounds that grammatically exist among all the compounds, and the 
closer to 1, the better the model. A higher validity may indicate a better model; however, 
from an industrial point of view of new drug development, low validity is not necessarily 
a problem. Even a model with low validity can increase the absolute number of valid 
compounds by securing a large population. This is because the additional cost of generat-
ing more compounds and filtering valid compounds in the VS stage is relatively low com-
pared to the time and cost in other stages. Rather, if the novelty and uniqueness perfor-
mance is lowered to increase the validity, it may not be suitable for the creation of new 
drug candidates. 

Uniqueness is a number that determines whether the generator creates a new com-
pound without duplication. Compared to other types of data such as images and sounds, 
a compound is a very discrete type of data. For this reason, even if a small change or noise 
is added to the input condition, the generated compound does not reflect the change, and 
the same compound may be created repeatedly. Uniqueness is evaluated by the number 
of generated products and the ratio of unique compounds with duplicates removed. If the 
uniqueness is 1, it means that all the generated compounds are different without dupli-
cates. 

While uniqueness measures the absence of overlap within the generated compound 
set, novelty measures the non-overlapping property by comparing the generated set with 
the existing dataset. That is, it evaluates whether the generator has created a new com-
pound that does not exist in the training dataset. It is evaluated by the ratio of the subset 
with the training dataset compared to the generated compound. The closer the novelty is 
to 1, the more completely new compounds are created, and although it is used as an im-
portant indicator in the field of de novo drug design, it is not important if the existing 
compounds are also allowed. 

Validity(𝑁𝑁) =  # 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐 𝑣𝑣𝑐𝑐 𝑁𝑁
# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐 𝑣𝑣𝑐𝑐 𝑁𝑁

, (1) 

Uniqueness(𝑁𝑁) =  # 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑣𝑣𝑢𝑢𝑐𝑐𝑢𝑢 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐 𝑣𝑣𝑐𝑐 𝑁𝑁
# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐 𝑣𝑣𝑐𝑐 𝑁𝑁

, (2) 

Novelty(𝑁𝑁,𝑇𝑇) =  # 𝑜𝑜𝑜𝑜 𝑣𝑣𝑐𝑐𝑖𝑖𝑢𝑢𝑖𝑖𝑐𝑐𝑢𝑢𝑐𝑐𝑖𝑖𝑣𝑣𝑜𝑜𝑐𝑐 𝑏𝑏𝑢𝑢𝑖𝑖𝑏𝑏𝑢𝑢𝑢𝑢𝑐𝑐 𝑁𝑁 𝑣𝑣𝑐𝑐𝑣𝑣 𝑇𝑇𝑐𝑐

# 𝑜𝑜𝑜𝑜 𝑐𝑐𝑜𝑜𝑚𝑚𝑐𝑐𝑜𝑜𝑐𝑐𝑐𝑐𝑣𝑣𝑐𝑐 𝑣𝑣𝑐𝑐 𝑁𝑁
. (3) 

𝑁𝑁 = generated compounds set, 𝑇𝑇 = Training dataset, 𝑇𝑇𝑐𝑐 = Complement set of 𝑇𝑇 
Diversity or dissimilarity (or distance) is an indicator to determine how dissimilar 

and diverse the produced compounds are when only a few scaffolds or a small number of 
atoms are changed. Chemotype diversity can be measured as a value between 0 and 1 
using scaled Shannon entropy. Similarity can also be measured using the distance be-
tween compounds the expressed in the FP or SMILES. As shown in Equations (4)–(6), the 
average distance within a set can be calculated using the Tanimoto coefficient. [183] 

Tanimoto (𝑥𝑥,𝑦𝑦) = � 𝑥𝑥∙ 𝑦𝑦𝑇𝑇

𝑥𝑥∙ 𝑥𝑥𝑇𝑇+ 𝑦𝑦∙ 𝑦𝑦𝑇𝑇−𝑥𝑥∙ 𝑦𝑦𝑇𝑇
�,  (4) 

Soergel (𝑥𝑥,𝑦𝑦) = 1 − Tanimoto (𝑥𝑥,𝑦𝑦),  (5) 

Distance (𝑁𝑁) =  2
𝑁𝑁𝑢𝑢2

 ∑ ∑ Soergel �𝑥𝑥𝑣𝑣𝑐𝑐, 𝑥𝑥𝑗𝑗𝑐𝑐�
𝑁𝑁𝑢𝑢
𝑗𝑗=𝑣𝑣+1

𝑁𝑁𝑢𝑢−1
𝑣𝑣=1 .  (6) 

Controllability is mainly used in the de novo models with the condition control func-
tions [155,156]. It indicates how precisely the property value of the output compound is 
distributed for the input condition. Unlike other metrics, it is not expressed as a specific 
value, but is usually visualized using a histogram to evaluate the distribution compared 
to the target value. The smaller the variance, the better the performance. 
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6.3.2. Pharmacological Indicators 
The pharmacological index measures whether the produced compounds have phar-

macological effects, through a hypothetical method. Quantitative estimate of drug-like-
ness (QED), a representative pharmacological index, was introduced by Bickerton et al. 
[184], and it measures how similar the chemical properties of eight types of drugs are to 
those of the existing drug groups [185]: molecular weight (MW), lipophilicity (logP), num-
ber of hydrogen bond donors (HBD), number of hydrogen bond acceptors (HBA), polar 
surface area (PSA), number of rotatable bonds (ROTB), number of aromatic rings 
(AROM), and count of alerts for undesirable substructures. QED was inspired by 
Lipinski’s rule and was standardized more quantitatively by including the insight. QED 
is widely used in the de novo drug design; however, usually, researchers evaluate only 
some of its metrics. Typically, the distributions of the MW and logP are often compared, 
and HBD and HBA are sometimes used. In particular, the MW and logP are often used to 
evaluate the control performance of a controllable de novo model [45] and can be consid-
ered to produce good performance when the variance is small. 

Moreover, synthetic accessibility is measured to enhance the validity of real medi-
cines from a practical industrial perspective. When building a model, synthetic accessibil-
ity can be optimized, or it can be filtered by removing compounds that are difficult to 
synthesize after being randomly generated. Currently, research is underway not only to 
measure composition difficulty through DL but also to propose suitable synthesis order. 
If this can be integrated, optimal drugs can be created from the early stages of new drug 
design considering molecular synthesis. 

7. Limitation and Future Work 
7.1. Current Challenges 
7.1.1. Data Scarcity and Imbalance 

The lack of labeled data is a major limitation to the use of DL-based drug discovery 
[186]. Data volumes resulting from drug discovery studies are small-scale because it re-
quires expensive experiments and a long time to generate DTI data. For example, the most 
frequently used benchmark dataset for the DTI prediction is the Yamanishi_2008 dataset 
[187]. The dataset not only presents data on less than 1000 drugs, but also contains very 
limited DTI information with an average sparse rate of 3.6% [67]. 

Besides, the labeled data in drug discovery are extremely imbalanced. Since the HTS 
technique itself does not presuppose a high frequency of active responses, the HTS data 
consist of significantly fewer active responses than inactive responses. Consequently, 
there are often only a few validated drugs available for positive DTIs. In the PubChem 
Bioassay dataset, an active to inactive ratio of 1:40.92 (a hit rate of 2.385% of the total la-
beled activity values) indicates that most of the test results are inactive [188]. 

7.1.2. Absence of Standard Benchmark 
In reality, the total number of drugs and proteins tested during the experiment is 

limited, making it imprecise to guarantee how a specific drug or target protein can work 
under the same experimental conditions. This problem is prominent in public databases 
that have accumulated data from the experimental results of numerous researchers 
around the world. However, big pharmaceutical companies can collect a large amount of 
data points by analyzing of constant conditions and well-characterized quality [133]. One 
research group built a model using the company’s private data and the public ChEMBL 
[189] data and found that the predictive quality of the company model was higher than 
that of the public data model [115]. This demonstrates that the experimental conditions in 
the standardized datasets can affect the DNN prediction quality. Therefore, the necessity 
of data standardization and curation prior to building a predictive model are indispensa-
ble. Many public databases, including PubChem [190], ChEMBL, and ExCAPE-DB [191], 
aimed to standardize and integrate multiple-sourced datasets to facilitate computational 
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drug discovery. However, many DTI prediction models use only a small benchmarking 
dataset and use the train data and test data from the same source. This shows that many 
DTI models do not properly validate their generalization performance, demonstrating 
their inability to predict new DTIs in practical drug development. 

7.2. Promising Method 
7.2.1. Transfer Learning 

As mentioned in the previous section, one of the biggest problems in drug discovery 
using AI is the lack of data. When targeting a specific disease or newly discovered target, 
the amount of data is so small that it is difficult to train. Moreover, it is difficult to easily 
apply augmentation to all the data. In such a situation, transfer learning is an excellent 
alternative [186,192]. Transfer learning, as part of lifelong learning, is inspired by how 
quickly humans acquire new knowledge from other similar experiences in the past. Trans-
fer learning can improve many problems of insufficient data by fine-tuning a pre-trained 
model with a large dataset in another or a general field to an actual small-scale dataset 
[181]. Bonggun et al. [23] imported a molecule representation model learned from the 
PubChem database and applied it to their DTI model to improve performance. Panagiotis 
et al. reported that the transfer learning method exhibited improved performance in 
CHEMBL25 or DRD2 in the de novo study using conditional RNN [182]. 

Multi-task learning is also frequently used in drug discovery [186]. If transfer learn-
ing is to take the weights of a well-initialized DL model using a large dataset and use it 
for the target model, multi-task learning trains multiple tasks with many common parts 
at the same time (Figure 8). With multi-task learning, intrinsic features that are difficult to 
train with small datasets can be trained using different tasks. Steven et al. showed that 
using multi-task learning increased the AUC compared to the conventional random forest 
method or logistic regression method. When using multi-task learning, some datasets ex-
hibited slightly decreased AUC, but for most datasets, AUC increased significantly. In 
particular, it is noteworthy that the performance of the datasets with a relatively smaller 
amount of data improved significantly. Using a pre-trained model improves the perfor-
mance [47]; however, it has the advantage of significantly reducing the training time and 
computing power from an industrial and practical point of view. Therefore, we recom-
mend using transfer learning for representation learning. 

 
Figure 8. Simple example of transfer learning and multi-task learning.  



Int. J. Mol. Sci. 2021, 22, 9983 24 of 37 
 

 

7.2.2. Data Augmentation 
There is a method of supplementing the data by incorporating small modifications 

in the existing data or changing the expression rule, which is called data augmentation. 
Data augmentation reduces model overfitting and improves the general performance. For 
data such as the voxel, a common image data augmentation method called geometric 
transformations can be applied [193]. Alternatively, there is a data augmentation method 
that adds a small amount of noise that does not affect the performance of the data. Isidro 
et al. [194] improved the predictive performance of the model by adding Gaussian noise 
to bioactivities and compound descriptors. 

Another popular data augmentation method in drug discovery is randomized 
SMILES [146,182]. One compound can be written in various SMILES according to the 
starting point and direction. In the early stage of drug discovery using DL, a canonical 
SMILES was used for consistent expression; however, in the field of de novo drug design, 
randomized SMILES is used in a more general way [195]. Josep et al. [182] revealed that 
the quality of the generative model was better when using randomized SMILES than 
when using canonical SMILES. Randomized SMILES is mainly used for the de novo drug 
design [146]; however, Esben [30] showed that randomized SMILES trained more reliably 
and performed better than the canonical form even when predicting IC50. Unlike de novo, 
where the number of possible representations of a molecule is important, DTI requires 
information on the relationship between the ligand and target; therefore, it is not widely 
used. 

7.2.3. Uncertainty and Interpretation 
DL is a very powerful tool. It gives us hope that problems that were difficult to ad-

dress using the classical ML methods can be solved with good performance if high-quality 
data are supplied abundantly. However, problems arose as the field of application of DL 
was expanded to a specialized area rather than an easy task. Since the parameters in the 
model are fixed and the operation process can be known, it is not actually a black box; 
however, it is treated as a black box because it is difficult for a human to interpret the 
process of deriving the result [196]. The non-transparency of this interpretation makes it 
difficult to accurately understand the reasoning process or an obstacle to decision-making. 
In particular, in areas such as drug discovery or disease diagnosis, where a wrong decision 
is costly and time consuming, sufficient evidence is needed to accept the result. Therefore, 
there is a growing need for explainable AI. An explainable AI review paper in the field of 
drug discovery by Jiménez-Luna et al. describes this well [197]. 

Although ‘explainable’ is defined in many ways, we will describe only two of the 
most commonly used concepts [198]. The first is ‘uncertainty estimation’. Uncertainty can 
be thought of as the opposite of reliability of AI. In the case of the classification model, the 
weight for each class is output in the last layer, and the class with the highest value is 
selected using a function such as softmax. However, sometimes, the model outputs com-
pletely different results even with very small changes in the weight of the data or hidden 
layer. From this point of view, uncertainty can be interpreted as a measure of robustness 
against noise in the training process or model parameters when a certain result is output. 
Uncertainty leads researchers to make safer and more efficient decisions by estimating 
risks that will occur during drug development [199]. The second is ‘interpretation’. Inter-
pretation is often used interchangeably with ‘transparency’ depending on the paper 
[3,198]. Xuhong et al. [64] redefined ‘interpretability’ as follows in their paper: “The model 
interpretability is the ability (of the model) to explain or to present in understandable 
terms to a human.” The initial concept of an interpretable DL model was to create class 
activation maps [200] from the convolution layer of the CNN to visualize the reason for 
prediction by matching the input result. In the recent drug discovery field, attention-based 
explainable models dominate. The increased use of attention-based models such as the 
transformer is also because the performance is better than the other methods at sequential 
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data; however, the reason can be inferred indirectly from attention. Gao et al. [119] created 
an attention matrix from the results of embedded protein (LSTM) and molecule (GCN). 
The attention matrix visualized contributing weights of atoms in molecule and residues 
that affect the DTI, thereby helping researchers to understand the process in a transparent 
manner and gain new insights. As a solubility prediction method, but not that of DTI, 
Karpov et al. [77] used a transformer-CNN model from the SMILES data, and Liu et al. 
[201] used the GCN from a molecule graph to predict the positive or negative contribution 
of the atoms to solubility. Chen et al. created a model to interpret the atoms contributing 
to the interaction in the prediction of the DDI [80]. 

The advantage of interpretability is that it gives the researchers confidence in the re-
sults. When the reason for drawing a conclusion is consistent with prior knowledge, the 
expert can accept the decision with high confidence [3]. It can also provide new inductive 
inspiration to experts [198]. Finally, it can provide another channel to discover problems 
when the performance of the DL models is poor. 
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Abbreviations 
AI Artificial Intelligence 

ADMET 
Absorption, distribution, metabolism, excretion, and 
toxicity 

AUC Area Under the Curve 
AUPR Area Under the Precision–Recall Curve 
AE Autoencoder 
CNN Convolutional Neural Networks 
CI Concordance Index 
DDI Drug–Drug Interaction 
MAE Mean Absolute Error 
MCC Matthews Correlation Coefficient 
ML Machine Learning 
MLP Multi-Layer Perceptron 
DL Deep learning 
DTA Drug–Target Affinity 
DTI Drug–Target Interaction 
DTP Drug–Target Pair 
FP Fingerprint 
FPR False Positive Rate 
HBA Hydrogen Bond Acceptor 
HBD Hydrogen Bond Donor 
HTS High-Throughput Screening 
GAN Generative Adversarial Networks 
GCN Graph Convolutional Networks 
GO Gene Ontology 

LINCS 
Library of Integrated Network-based Cellular Signa-
tures 

LSTM Long Short-Term Memory 
PPI Protein–Protein Interaction 
QSAR Quantitative Structure-Activity Relationship 
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RMSE Root Mean Square Error 
RNN Recurrent Neural Networks 
SMILES Simplified Molecular-Input Line-Entry System 
TPR True Positive Rate 
TPSA Topological Polar Surface Area 
VAE Variational AutoEncoder 
VS Virtual Screening 

Appendix A 

Table A1. Ligand-based DL methods for DTI prediction. 

Reference Models Input Drug 
Type Datasets Algorithm 

Type Year Evaluation 
Metrics 

Gao et al. [33] 
MLP; Multi-

task 

Fingerprint 
(ECFP; FP2; Es-
tate1; Estate2; 
MACCS; ERG) 

PDBbind Regression 2019 

Pearson corre-
lation coeffi-

cient (R); 
RMSE 

Wenzel et al. 
[115] 

MLP; Multi-
task 

Atom pair; 
pharmaco-

phoric donor–
acceptor pairs; 

ChEMBL Regression 2019 𝑅𝑅2  

Xie et al. [32] MLP; LSTM 
Fingerprint 

(MACCS+ECFP
) 

DrugBank; ChEMBL; 
PDBbind 

Regression 2020 

Pearson corre-
lation coeffi-

cient (R); 
RMSE 

Hirohara et al. 
[25] CNN 

SMILES convo-
lution finger-

print 
Tox21 Classification 2018 AUC 

Matsuzaka et 
al. [109] CNN 2D image Tox21 Classification 2019 

AUC; Bal-
anced accu-

racy; F-score; 
MCC 

Rifaioglu et al. 
[19] CNN 2D image ChEMBL; MUV; DUD-E Classification 2020 

AUC; Accu-
racy; Preci-
sion; Recall; 

F1-score; MCC 

Liu et al. [81] 
GCN; Multi-

task 
3D molecular 

graph 
Amgen’s internal dataset; 

ChEMBL Regression 2019 𝑅𝑅2; Accuracy 

Yang et al. [21] GCN SMILES 
PDBbind; ChEMBL; Pub-

Chem Bioassay; MUV; 
Tox21; ToxCast; SIDER etc. 

Classifica-
tion; Regres-

sion 
2019 MAE; RMSE; 

AUC; AUPR 

Shang et al. [11] 
GCN; Atten-
tion-based 

Molecular 
graph 

Tox21; HIV; Freesolv; Lipo-
philicity (MoleculeNet) Regression 2018 AUC; RMSE 
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Table A2. Structure-based DL methods for DTI prediction. 

Reference Models 
Input Drug 

Type 
Input Target 

Type Datasets 
Algorithm 

Type 
Evaluation Met-

rics Year 

Wen et al. 
[37] 

MLP 
Fingerprint 

(ECFP) 

PSC (protein se-
quence compo-
sition descrip-

tor) 

DrugBank 
Classifica-

tion 
TPR; TNR; Accu-

racy; AUC 2017 

Chen et al. 
[57] 

MLP 
Fingerprint 

(Pub-
ChemFP) 

Various protein 
features * 

DrugBank; 
Yamanishi 

Classifica-
tion 

AUC; AUPR 2020 

Öztürk et al. 
[24] 

CNN SMILES Sequence Davis; KIBA Regression CI; MSE 2018 

Shin et al. 
[23] 

CNN; atten-
tion 

SMILES Sequence Davis; KIBA; Regression CI; RMSE; 𝑟𝑟𝑚𝑚2 ; 
AUPR 

2019 

Zhao et al. 
[120] 

CNN; atten-
tion SMILES Sequence Davis; KIBA Regression 

CI; RMSE; 𝑟𝑟𝑚𝑚2 ; 
AUPR 2019 

Gonczarek et 
al. [202] CNN Atom pair Atom pair DUD-E; PDBBind Regression AUC 2016 

Ragoza et al. 
[203] CNN Voxel Voxel DUD-E; CSAR 

Regres-
sion; Clas-
sification 

AUC 2017 

Jiménez et al. 
[204] 

CNN Voxel Voxel PDBbind; 
CSAR2012 

Regression RMSE; 𝑅𝑅2 2018 

Kwon et al. 
[75] CNN Voxel Voxel CASF-2016 [205] Regression MAE; RMSE 2020 

Pu et al. [51] 
CNN; multi-
classification Voxel Voxel 

PDB; TOUGH-M1 
[206] 

Classifica-
tion 

MCC; AUC; Ac-
curacy 2019 

Lee et al. [31] CNN Fingerprint Sequence 

DrugBank; KEGG; 
IUPHAR; 

MATADOR; 
PubChem Bioassay; 

KinaseSARfari 
[189] 

Classifica-
tion 

AUC; AUPR; 
Sensitivity; Spec-
ificity; Precision; 

Accuracy; F1-
score 

2019 

Hasan 
Mahmud et 

al. [207] 
CNN 

SMILES; 193 
features by 

Rcpi 

Sequence; 1290 
features by 
PROFEAT  

DrugBank; 
Yamanishi Regression 

AUC; Accuracy; 
Sensitivity; Preci-

sion; F1 score; 
AUPR 

2020 

Wang et al. 
[34] 

LSTM 
Fingerprint 

(Pub-
ChemFP) 

PSSM; Legen-
dre Moment 

[208] 

DrugBank; 
Yamanishi; KEGG; 

SuperTarget 

Classifica-
tion 

AUC; Accuracy; 
TPR; Specificity; 
Precision; MCC 

2020 

Tsubaki et al. 
[209] 

GNN; CNN; 
attention 

Fingerprint 
(Pub-

ChemFP) 

Sequence; Pfam 
domain 

DUD-E; DrugBank; 
MATADOR 

Classifica-
tion 

AUC; Precision; 
Recall 

2019 

Torng and 
Altman [118] GCN 

Molecular 
graph 

Molecular 
graph DUD-E; MUV 

Classifica-
tion AUC 2019 
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Feng et al. [8] GCN 

Fingerprint 
(ECFP); 3D 
molecular 

graph 

PSC (protein se-
quence compo-
sition descrip-

tor) 

Davis; Metz; KIBA; 
ToxCast 

Regression 𝑅𝑅2 2019 

Jiang et al. 
[210] 

GNN 3D molecular 
graph 

3D molecular 
graph 

KIBA; Davis Regression 

𝑟𝑟𝑚𝑚2 ; CI; MSE; 
Pearson correla-
tion coefficient; 

Accuracy 

2020 

* CTD; CT; Pseudo AAC; Pseudo PSSM; NMBroto; Structure feature from SPIDER. 

Table A3. Relationship-based DL methods for DTI prediction. 

Reference Models Relationship Data Type Datasets Algorithm 
Type 

Evaluation 
Metrics 

Year 

Xie et al. [71] MLP LINCS signature  
DrugBank; CTD; 
DGIdb; STITCH Regression 

Accuracy; F-
score; TPR 2018 

Lee and Kim 
[63] 

MLP; 
node2vec 

LINCS signature; PPI (Pro-
tein-protein interaction); 

Pathway 

LINCS; ChEMBL; 
TTD; MATADOR; 
KEGG; IUPHAR; 
PharmGKB; KiDB 

Classification AUC; Preci-
sion 

2019 

Gao et al. [119] CNN; 
LSTM 

LINCS signature; GO term BindingDB Regression Accuracy; 
AUC; AUPR 

2018 

Shao and 
Zhang [147] 

CNN; GCN LINCS signature LINCS; DrugBank Classification Accuracy; 
AUC 

2020 

Thafar et al. 
[67] 

node2vec 
Drug similarity (structure, 
side effects); Target simi-
larity (sequence, GO); PPI 

Yamanishi; KEGG; 
BRENDA; SuperTar-

get; DrugBank; Bi-
oGRID; SIDER 

Classification AUPR; AUC 2020 

Zong et al. [13] 
DeepWalk 

[130] 

Drug-target association; 
Drug-disease association; 
Disease-target association 

DrugBank; Human 
diseasome [211] Classification AUC 2017 

Mongia and 
Majumdar 

[212] 

Multi-
graph deep 
matrix fac-
torization 

Drug similarity (structure); 
Target similarity (se-

quence) 

Yamanishi; KEGG; 
BRENDA; SuperTar-

get; DrugBank 
Classification AUPR; AUC 2020 

Wang et al. [59] AE 
Drug similarity (structure, 
side effects); Target simi-
larity (sequence, GO); PPI 

Yamanishi; KEGG; 
BRENDA; SuperTar-

get; DrugBank; SIDER 
Classification AUPR; AUC 2020 

Zhao et al. [68] CNN; AE 
Drug similarity (structure); 

Target similarity (se-
quence); PPI 

DrugBank; STRING Classification Accuracy; 
AUPR; AUC 

2020 

Peng et al. [97] CNN; AE 

Drug-target association; 
Drug-disease association; 
Disease-target association; 
Drug similarity (structure, 
side effects); Target simi-
larity (sequence, GO); PPI 

DrugBank; Human 
Protein Reference Da-

tabase [2009]; CTD; 
SIDER; 

Classification AUPR; AUC 2020 
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Zhong et al. 
[213] 

GCN LINCS signature; PPI 
ChEMBL; LINCS; 

STRING 
Classification 

Accuracy; F-
score; AUPR; 
Precision; Re-

call; AUC 

2020 

Table A4. Benchmark datasets for DTIs. 

Dataset No. of DTIs No. of 
Target 

No. of 
Drug 

Year Availability* 

PharmGKB [214] 777 1030 4078 2020 https://www.pharmgkb.org/downloads 

Yamanishi [215] 5127 989 932 2008 
https://members.cbio.mines-paris-

tech.fr/~yyamanishi/pharmaco/ 

DrugBank [216] 6566 4844 18,734 2020 https://go.drugbank.com/releases/latest 

IUPHAR [217] 6605 1577 14,981 2020 https://www.guidetopharmacol-
ogy.org/download.jsp 

SuperTarget/MATA-
DOR [218] 8936 1799 719 2008 http://matador.embl.de/ 

DGIdb [219] 11,137 3820 58,555 2020 https://www.dgidb.org/downloads 

CTD [220] 17,814 46,364 2,521,525 2020 http://ctdbase.org/downloads/ 

TTD [221] 18,351 1814 29,388 2020 http://db.idrblab.net/ttd/full-data-down-
load 

Davis [113] 27,621 379 68 2011 https://tdcom-
mons.ai/multi_pred_tasks/dti/#davis 

Tox21 77,946 12 7831 2014 https://deepchemdata.s3-us-west-1.amazo-
naws.com/datasets/tox21.csv.gz 

Metz [129] 103,920 172 3858 2011 
https://www.nature.com/articles/nchem-

bio.530 

KIBA [222] 118,036 229 2068 2014 
https://tdcom-

mons.ai/multi_pred_tasks/dti/#kiba 

MUV [168] 249,886 17 93,087 2009 
https://deepchemdata.s3-us-west-1.amazo-

naws.com/datasets/muv.csv.gz 

BindingDB [223] 456,248 3716 747,066 2020 https://www.bindingdb.org/bind/ 

ToxCast [224] 530,605 335 7675 2007 https://www.epa.gov/chemical-research 

ExCAPE-DB [191] 582,724 1667 1,361,473 2017 https://solr.ideaconsult.net/search/excape/ 

DUD-E [166] 1,167,186 102 22,886 2012 http://dude.docking.org/ 
* Site accessed date: 14 September, 2021. 
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