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Abstract: Ghrelin is an endogenous ligand for the ghrelin receptor, previously known as the growth
hormone secretagogue receptor. This hormone is mainly produced by endocrine cells present in the
gastric mucosa. The ghrelin-producing cells are also present in other organs of the body, mainly in the
digestive system, but in much smaller amount. Ghrelin exhibits a broad spectrum of physiological
effects, such as stimulation of growth hormone secretion, gastric secretion, gastrointestinal motility,
and food intake, as well as regulation of glucose homeostasis and bone formation, and inhibition of
inflammatory processes. This review summarizes the recent findings concerning animal and human
data showing protective and therapeutic effects of ghrelin in the gut, and also presents the role of
growth hormone and insulin-like growth factor-1 in these effects. In addition, the current data on the
possible influence of ghrelin on the carcinogenesis, its importance in predicting the risk of developing
gastrointestinal malignances, as well as the potential usefulness of ghrelin in the treatment of cancer,
have been presented.

Keywords: ghrelin; anti-inflammatory effects; pretreatment; protection; healing; risk of cancer; cachexia

1. Ghrelin and Its Synthesis

Ghrelin, a 28-amino acid peptide, was primary isolated by Kojima et al. from rat and
human stomachs in 1999 [1–3]. The main source of endogenous ghrelin in the body is the
stomach [1,4]. Ghrelin is created from its 117-amino acid precursor, preproghrelin, which
consists of a 23-amino acid signal sequence and the 94-amino acid proghrelin [1,5]. The
proghrelin is further converted into acyl-ghrelin, des-acyl ghrelin, and obestatin [5–7].

Most studies show that the majority of ghrelin in circulation exists in the form of des-
acyl ghrelin [8–10]. On the other hand, Blatnik et al. [11] postulate that these observations
are a result of errors in sampling, handling, collection, and assessment of serum ghrelin.
Blatnik et al. analyzed the acyl ghrelin plasma stability by LC-MS/MS and revealed that
acyl ghrelin is enzymatically and chemically converted to des-acyl ghrelin in the presence
of active serine proteases and HCl. They concluded that that normally all circulating
ghrelin is acylated, and des-acyl ghrelin should not be detectible in healthy human plasma
under optimal sample handling and assaying conditions [11].

Acyl-ghrelin is considered to be an active form of this hormone [6,8,12]. Acylation is
necessary to stimulate the growth hormone secretagogue receptor (GHSR-1a), currently
known as the ghrelin receptor [13]. The ghrelin receptors are mainly expressed in the pitu-
itary gland and hypothalamus, but were also present in other tissues and organs [5,13–15].
Expression of ghrelin receptor is highly sensitive to the level of growth hormone. In growth
hormone-deficient animals, expression of mRNA for ghrelin receptor is increased. On the
other hand, an increase in serum growth hormone level reduces the expression of ghrelin
receptor [16].

Acylation of ghrelin is catalyzed by the ghrelin O-acyltransferase (GOAT), which
was discovered in 2008 [17]. GOAT belongs to a family of hydrophobic membrane-bound
acyltransferases [17,18]. Des-acyl ghrelin does not bind to ghrelin receptor, GHSR-1a, and
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is deprived of growth hormone releasing activity. However, this form of ghrelin may
exhibit some non-endocrinological activity, such as the protection of endothelial cells and
cardiomyocytes in the heart, regulation of food intake, gastric and pancreatic secretion, gut
motility, adipogenesis, stimulation of bone formation, insulin secretion, and prevention of
skeletal muscle atrophy [2,3,19,20].

Acyl-ghrelin acting on ghrelin receptor (previously known as GHSR-1a) strongly and
dose-dependently stimulates synthesis and release of growth hormone in the anterior lobe
of the pituitary gland [1,3]. This effect of ghrelin is mainly related to direct stimulation
of somatotropes. However, ghrelin also stimulates the liberation of growth hormone via
an indirect pathway. Ghrelin, acting on neurons expressing growth hormone-releasing
hormone (GH-RH) in the hypothalamus, leads to the secretion of GH-RH by these neurons.
Subsequently, GH-RH reaches somatotropes in the anterior part of the pituitary and
stimulates them to release the growth hormone [21]. The ghrelin receptor is a G-protein-
coupled receptor and signals via a Gq/11 alpha-subunit, that results in the activation
of phospholipase C and the synthesis of inositol triphosphate (IP3), and releases Ca2+

from the endoplasmic reticulum [12,22]. On the other hand, Ge et al. [23] have reported
that stimulatory effect of ghrelin on ghrelin receptor can be reduced by liver-expressed
antimicrobial peptide 2 (LEAP2), an endogenous antagonist of ghrelin receptor. LEAP2 is
produced in the liver and small intestine. This peptide inhibits ghrelin receptor activation
by ghrelin, leading to reduction in the major effects of ghrelin in the body, such as food
intake, growth hormone release, and maintenance of viable glucose levels during fasting.
Secretion of endogenous LEAP2 is suppressed by food restriction, and this effect leads
to increased reactivity of ghrelin receptor to the action of ghrelin [23]. Moreover, studies
performed on neoplastic cell lines suggest that ghrelin may activate P13K/GTP-Rac [24],
GHSR/P13K/Akt [25], and GHSR/CaMKII/AMPK/NFκB [26] signaling pathways.

Apart from ghrelin receptor, there is another type of growth hormone secretagogue
receptor, GHSR-1b, but this receptor seems to be not biologically active. Its role is un-
known [3].

Ghrelin is mainly synthesized in the gastric oxyntic mucosa, but its presence was also
found in the oral cavity, small and large bowel, pancreas, thyroid, lung, testis, myocardium,
kidney, brain cortex, brain stem, pituitary, hypothalamus, and immune cells [14,15,27,28].
In rats and dogs, ghrelin is produced in the stomach by the neuroendocrine X/A-like
cells [29,30]. These cells are small and round. They have no contact with a stomach lumen.
In the human stomach, ghrelin is produced in endocrine cells called P/D1 cells. In the
small and large bowel, there are two types of ghrelin-secreting cells: closed-type cells
with triangular and elongated shapes, and opened-type cells with their apical cytoplasmic
process contacting to the intestinal lumen [1,30]. In the pancreas, ghrelin is produced by
endocrine and exocrine cells [15,31,32].

In the case of a decrease in the production of ghrelin in the gastric mucosa, a com-
pensatory increase in the production of this peptide in other areas of the body may occur.
Partial resection of gastric mucosa, as a result of bariatric surgery leads to a decrease in
serum ghrelin level in the early postoperative period [33]. Later, however, this level returns
to the initial value [33] or may be even higher than before the operation [34]. In line with
those observation are findings of animal studies performed by Camacho-Ramirez et al. [35],
who found that a severe reduction in gastric secretion of ghrelin leads to an increase in the
islet ghrelin-secreting epsilon cell population, leading to a subsequent recovery of basal
serum ghrelin levels.

2. Physiological Action of Ghrelin

The main physiological function of ghrelin is dose-dependent stimulation of growth
hormone release from the pituitary gland [1,2]. The endocrine effects of ghrelin also include
the stimulation of prolactin, cortisol, and adrenocorticotropic hormone secretion [36,37].

Ghrelin is responsible for a positive energy balance. This hormone increases food
intake and fat deposition [2,38,39]. The increase in appetite, known as orexigenic effect,
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is mediated by stimulation of hypothalamic neurons releasing neuropeptide Y, orexin,
and agouti-related protein (AgRP), as well as by inhibition of hypothalamic proopiome-
lanocortin (POMC) neurons [40–42]. Among orexigenic peptides stimulating appetite,
ghrelin is the only one acting peripherally, whereas all other orexigenic peptides are act-
ing centrally [12]. Besides the stimulation of food intake, ghrelin promotes carbohydrate
oxidation and inhibits fat utilization, leading to positive energy balance [43]. The plasma
level of ghrelin is negatively correlated with BMI and food intake. For this reason, the
plasma concentration of ghrelin is enhanced by anorexia nervosa, starvation, and cachexia,
while obesity leads to the opposite effect [44]. Food intake decreases the plasma ghrelin
levels, however the degree of this reduction depends on the type of nutrients present in
the food. The strongest effect is observed after protein consumption, smaller in case of
carbohydrates, and the smallest after the ingestion of lipids [45] (Figure 1).
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Figure 1. Ghrelin’s effect in the digestive system. Figure legend: NOS–NO—nitric oxide synthase–nitric oxide, G—ghrelin,
NF-κB—nuclear factor kappa-light-chain-enhancer of activated B cells, and IGF-1—insulin-like growth factor-1; (+) means
stimulates, (−) means inhibits.

Ghrelin stimulates gastric motility and gastric emptying [2,46,47]. Impact of ghrelin
on the exocrine secretory activity in the stomach is unclear. Gastric acid secretion is dose-
dependently increased by the ghrelin administrated peripherally, through a mechanism
involving vagal nerve activity and histamine release [46,48–50]. Ghrelin effects on gastric
acid secretion are in synergy with effects of gastrin [12,51,52]. On the other hand, ghrelin
administrated centrally exhibits the opposite effect, inhibiting gastric acid release [12,53,54].

Circulating ghrelin inhibits pancreatic exocrine secretion. Zhang et al. [55] demon-
strated that intravenous administration of ghrelin reduces the 2-deoxy-D-glucose- and
cholecystokinin-stimulated pancreatic exocrine secretion in anesthetized rats. Moreover,
ghrelin inhibits the potassium-stimulated amylase secretion in isolated pancreatic lob-
ules [2,55]. On the other hand, Sato et al. [56] reported, that intracerebroventricular admin-
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istration of ghrelin rises pancreatic exocrine secretion in conscious rats, and the mechanism
of this effect involves the vagal nerves [2,56]. The effect of ghrelin on pancreatic endocrine
secretion was initially unclear. Early studies have shown that ghrelin increases insulin
secretion by pancreatic β-cells [44,57,58], while next studies have reported that ghrelin
inhibits insulin release in the islets of Langerhans [44,59,60]. Currently, it is commonly
accepted that ghrelin inhibits glucose-dependent insulin secretion, acting directly on beta-
cells in pancreatic islets [44,61,62]. Physiologically, this mechanism is mainly related to
ghrelin expressed in pancreatic islets and released into pancreatic microcirculations. Ghre-
lin has been shown to inhibit insulin release in mice, rats, and humans. Ghrelin antagonists
or genetic blockades of islet-derived ghrelin markedly augment glucose-induced insulin
release [63]. Inhibition of glucose-induced insulin secretion by ghrelin involves direct inter-
action of ghrelin with ghrelin receptor coupled to novel cAMP/TRPM2 (cyclic adenosine
monophosphate/transient receptor potential melastatin 2) signaling in β-cells [64]. This β-
cell unique ghrelin receptor with insulinostatic signaling largely accounts for the systemic
effects of ghrelin on circulating glucose and insulin levels. Activation of ghrelin receptor
in β-cells inhibits the glucose-induced cAMP and TRPM2 production, and suppresses the
glucose-induced [Ca(2+)](i) increase in the β-cell, leading to inhibition of insulin release by
β-cells in pancreatic islets [63,64].

There are other functions of ghrelin that are worth mentioning. Vestergaard et al.
demonstrated that acyl-ghrelin infusion increases thirst sensation in humans, without
affecting diuresis and renal sodium excretion [65]. Ghrelin has been reported to exhibit
antidepressant effects [66]. Moreover, Liu et al. showed that ghrelin promotes neural
differentiation of adipose tissue-derived mesenchymal stem cells, through the activation of
β-catenin and AKT/mTOR signaling pathways [66,67].

3. Protective, Anti-Inflammatory, and Healing Effects of Ghrelin in the
Digestive System

Protective and healing effects of ghrelin were found in all parts of the digestive system,
from the oral cavity to the colon. The influence of endogenous ghrelin level on functional
gastrointestinal disorders is unclear. There are studies suggesting that functional dyspepsia
is associated with the higher level of serum acyl- or des-acyl ghrelin; however, there is a
similar number of articles suggesting the opposite relationship between serum level of
acyl- or des-acyl ghrelin and incidence of functional dyspepsia [68].

3.1. The Oral Cavity

Ghrelin is synthesized and released by parotid and submandibular salivary glands. Its
presence was found in the cytoplasm of striated, intercalated, and excretory ducts, as well
as in serous acini of these glands [69]. Ghrelin is also produced and/or present in teeth,
taste buds of the tongue, and gingival epithelium, as well as fibroblasts in the lamina pro-
pria [70–72]. Ghrelin seems to be involved in the tooth development [73]. The concentration
of ghrelin in saliva in similar or even higher than that in plasma or serum, the highest level
of ghrelin is observed in gingival crevicular fluid [71,74,75]. Proinflammatory factors, such
interleukin-1β, increase the expression of mRNA for ghrelin receptor and production of
ghrelin receptor in periodontal cells [76]. On the other hand, exogenous ghrelin inhibits the
production and release of proinflammatory interleukin-8 by oral epithelial cells stimulated
by tumor necrosis factor-α (TNF-α) or lipopolysaccharides [71]. These findings suggest that
ghrelin may be involved in endogenous protective mechanisms limiting local inflammation.
Moreover, previous experimental studies showed that intraperitoneal administration of
exogenous ghrelin significantly accelerate the healing of acetic acid-induced oral ulcers,
and that that effect occurs in rats with intact salivary glands, as well in sialoadenectomized
rats. The beneficial effect of ghrelin is associated with a reduction in mucosal IL-1β concen-
tration and an improvement of mucosal blood flow, cell vitality, and proliferation. These
finding have been confirmed and extended by studies performed on animals [77].
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3.2. The Esophagus

Clinical and experimental studies have shown the expression of ghrelin receptor to be
increased in Barrett’s mucosa in comparison with normal esophageal squamous epithelium.
However, ghrelin administration is without any effect on apoptosis of Barrett adenocarci-
noma cell line, OE-19 in vitro. On the other hand, administration of ghrelin seems to inhibit
Barrett’s carcinogenesis due to suppression of expression of proinflammatory response [78].

Thomas et al. performed a clinical study concerning the relationship between serum
level of ghrelin and Barrett’s esophagus [79]. They found that higher ghrelin concentration
is associated with an increased risk of Barrett’s esophagus in comparison to the control
population, but not when compared with patients with gastroesophageal reflux disease
(GERD). Moreover, they reported that ghrelin concentration is associated with the frequency
of GERD symptoms.

On the other hand, there is a group of articles showing the influence of ghrelin admin-
istration on the inflammatory response in patients with esophageal cancer treated with
esophagectomy. Esophagectomy is a highly invasive procedure leading to extended sys-
temic inflammatory response syndrome (SIRS). Continuous infusion of ghrelin
(0.5 µg/kg/h) for 5 days after esophagectomy led to a reduction in SIRS duration and lower
C-reactive protein and interleukin-6 levels in comparison to the placebo group. Moreover,
ghrelin reduced the incidence of pulmonary complications and the time of the negative
nitrogen balance during postoperative period [80]. The effect of continuous infusion of
ghrelin for 5 days after esophagectomy led to the better therapeutic effect than intermit-
tent infusion for 10 days [81]. In addition, an early drop in plasma level of ghrelin after
esophagectomy may be used as a predictor of prolonged SIRS in postoperative period [82].

Moreover, low level of ghrelin seems to be recognized as a risk factor for the develop-
ment of esophagogastric junctional and gastric adenocarcinomas [83].

The influence of treatment with ghrelin on the healing of esophageal injury is un-
known.

3.3. The Stomach

Gastroprotective effect of ghrelin was shown in different experimental models of
gastric ulcers. In 2003, Sibilia et al. showed that central, as well as peripheral adminis-
tration of ghrelin inhibits the development of ethanol-induced gastric ulcers in rats [84].
The protective effects of ghrelin given centrally were found to be much more pronounced
than the effects of ghrelin given peripherally. Pretreatment with nitric oxide synthases
inhibitor, N(omega)-nitro-L-arginine methyl ester (L-NAME), or deactivation of sensory
nerves by neurotoxic dose of capsaicin abolished the protective effects of ghrelin given
centrally. Sibilia et al. concluded that mechanisms of the gastroprotective effects of ghrelin
involve nitric oxide (NO) release and activity of sensory nerve fibers [84]. Similar gas-
troprotective effect of ghrelin in ethanol-induced gastric ulcer was found by Konturek
et al. [85]. Intraperitoneal pretreatment with of ghrelin led to dose-dependent inhibition of
the development of gastric lesions, and this effect was associated with the improvement
of gastric blood flow and reversion of ethanol-induced increase in TNF-α expression in
gastric mucosa. Indomethacin administered prior to the induction of ulcers increased
gastric mucosa damage and reduced gastroprotective effects of ghrelin [85].

Ghrelin also exhibits a gastroprotective effect in other models of gastric mucosa
damage. Pretreatment with ghrelin inhibits the development of gastric ulcers evoked by
water immersion and restrain stress (WRS) [86,87], gastric ischemia followed by reper-
fusion [88,89], intragastric administration of concentrated hydrochloric acid [90] or alen-
dronate [91].

In addition to its protective effect, ghrelin also exhibits the healing effect in the stomach.
Administration of ghrelin after induction of gastric ulcers accelerates the healing of gastric
ulcers induced by ethanol [92] and acetic acid [93].
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3.4. The Small Intestine

Ghrelin has been found to protect the small intestine against damage evoked by
ischemia/reperfusion [94,95] and this effect was observed after intracerebroventricular,
as well as intravenous, administration of ghrelin. This protective effect was found as
reduction in proinflammatory cytokine release and neutrophil infiltration in the intestine
and lungs. In addition, ghrelin ameliorated intestinal barrier dysfunction, attenuated
intestinal and pulmonary injury, and improved the survival of animals subjected to the
gut ischemia/reperfusion-induced damage [94]. Previous studies have also reported
that the protective effect of ghrelin against intestinal injury is related to improved in-
testinal blood flow [95] and promoting the activation of the mTOR/p70S6K signaling
pathway [96]. Moreover, intravenous administration of ghrelin receptor antagonist in-
creased the ischemia/reperfusion-induced intestinal and pulmonary injury and animal
mortality [94]. This last observation indicates that endogenous ghrelin is involved in
maintaining the integrity of the small intestine.

Administration of ghrelin also inhibits the development of experimental damage in
the small intestine induced by whole body irradiation [97] and attenuates intestinal barrier
dysfunction following intracerebral hemorrhage [98].

Animal experimental studies have also shown that administration of ghrelin exhibits
therapeutic effects in injury of the small intestine. Ghrelin accelerates the healing of
duodenal ulcers induced by acetic acid [93] or cysteamine [99]. Moreover, ghrelin stimulates
intestinal adaptation following a massive resection of the small intestine in parenterally
fed rats [100].

3.5. The Liver

Previous clinical studies have shown that a low fasting level of ghrelin is associated
with increased risk of developing gallstone disease [101], whereas a high fasting serum level
of ghrelin reduces the risk of developing nonalcoholic fatty liver disease (NAFLD) [102]. In
line with this last observation are the results obtained by Ezquerro et al. [103]. They found
that endogenous ghrelin plays a protective role in NAFLD. An increased acylated/desacyl
ghrelin ratio in patients with obesity and NAFLD seems to be related to a compensatory
mechanism to overcome TNF-α-induced hepatocyte apoptosis, autophagy, and pyroptosis.
The protective effects of ghrelin were also shown in animal models of NAFLD. Nagoya et al.
have demonstrated that the fatty liver stimulates the autonomic nervous signal circuits,
suppressing the progression of the disease by activating the gastric ghrelin expression
and the release of IGF-1 from the liver [104]. Moreover, administration of ghrelin in
experimental models of NAFLD was found to exhibit preventive and therapeutic effect
in this disease [105]. Administration of ghrelin reduced the NAFLD-induced histological
changes in the liver, including necrosis, level of apoptotic cells and inflammation foci. This
effect was accompanied by a reduction in serum activity of hepatic enzymes, oxidative
stress, and lipid peroxidation markers, as well as a decrease in proinflammatory cytokines
level. The protective effect of ghrelin on the liver has been also shown in numerous animal
models of liver injury. Treatment with ghrelin reduces the acetaminophen- [106], bile
duct ligation- [107], ischemia/reperfusion- [108], and the carbon tetrachloride-induced
liver injury [107,109,110]. The above articles have shown that the hepatoprotective effect
of ghrelin is associated with its antioxidant, anti-inflammatory, and antifibrotic effects.
Moreover, Arıcı and Cetin [110] have shown that administration of ghrelin reduces the
carbon tetrachloride-induced coagulation disorders.

3.6. The Pancreas

Ghrelin exhibits a protective and therapeutic effect on the endocrine and exocrine
pancreas.

In the endocrine pancreas, acyl- and des-acyl-ghrelin have been also found to pro-
mote proliferation and inhibit apoptosis in pancreatic β-cells and human pancreatic
islets [111,112]. In addition, des-acyl ghrelin increases islet cell mass and prevents
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stretozotocin-induced diabetes in newborn rats [113]. A similar protective effect of ghrelin
on pancreatic β-cell has been reported by Wang et al. [114]. Exposure of β-cells to palmitate
led to a significant increase in β-cells apoptosis. Administration of ghrelin promoted
survival and attenuates the palmitate-induced apoptosis in β-cells [114]. An antiapoptotic
effect of ghrelin in pancreatic β-cells was also found by other researchers. Diaz-Ganete
et al. performed studies on β-cell line and isolated rats’ pancreatic islets. They found
ghrelin has no remarkable effect on β-cells in basal condition without presence of noxious
factors. However, when β-cells are exposed to proinflammatory cytokines, ghrelin reduces
activation of apoptotic mediators and endoplasmic reticulum stress, restores insulin release
in response to glucose, and activates cell survival pathways. They suggested that ghrelin
could potentially be effective in preventing or slowing the transition from a preclinical to
clinical type 1 diabetes by mitigating insulitis-induced β-cell damage [115]. This concept
has been supported by further studies performed with animal models of autoimmune
diabetes mellitus. Administration of ghrelin before induction of insulitis significantly
reduced the development of diabetes, as well as prevented the reduction in the number of
β-cells, islet area, islet number, and β-cell proliferation [116].

In the case of the exocrine pancreas, the protective and therapeutic effect of ghrelin is
mainly related to the development and course of acute pancreatitis. Animal experimental
studies have shown that pretreatment with ghrelin inhibits the development of acute pan-
creatitis evoked by cerulein [117], pancreatic ischemia with subsequent reperfusion [118]
and taurocholate [119,120]. In the case of acute taurocholate-induced pancreatitis, the
anti-inflammatory effects of ghrelin were observed not only in the pancreas, but also in
the liver and lung [119,120]. The protective effect of ghrelin was also found in cellular
models of acute pancreatitis [121–123]. On the other hand, inhibition of ghrelin gene expres-
sion in pancreatic acinar cells, AR42J cells, results in increased expression of intracellular
inflammatory factors after administration of cerulein [124].

As well as the protective effect, exogenous ghrelin was found to exhibit therapeu-
tic effects in experimental acute pancreatitis. Administration of exogenous ghrelin was
found to inhibit the inflammatory process and accelerate the recovery in different animal
models of this disease, including cerulein- [125] and ischemia/reperfusion-induced acute
pancreatitis [126].

There are also clinical studies showing a relationship between endogenous ghrelin
and the course of acute pancreatitis in humans. Some reports suggest that serum ghrelin
levels may be a prognostic factor in the course of acute pancreatitis. Wang et al. [127] tested
serum ghrelin levels in patients with acute pancreatitis. Patients were divided into three
groups: patients with (a) mild; (b) moderate severe; and (c) severe acute pancreatitis. On
the 1st day of hospitalization, fasting serum ghrelin concentration was significantly lower
in patients with pancreatitis in comparison to healthy controls; the serum level of ghrelin
also significantly decreased with increasing severity of acute pancreatitis. During the next
four days, fasting serum level of ghrelin increased in all groups of patients, but was still
lower than in control group. In addition, serum ghrelin was lower in patients with severe
acute pancreatitis than in patients with mild or moderate severe acute pancreatitis [127].
A similar initial drop in ghrelin levels with subsequent increase in the course of acute
pancreatitis was also found by Panek et al. [128]. Moreover, they concluded that rising
serum ghrelin levels in the course of acute pancreatitis may be a marker of recovery and an
indicator of the healing process.

On the other hand, there are also articles reporting that ghrelin affects the course
of acute pancreatitis and plays an important role in the regulation of inflammatory re-
sponse [129], but ghrelin serum level is not a useful predictor of the severity of acute
pancreatitis [129,130]. The differences in data presented in above-mentioned articles may
be the due to the different number of observations, as well as the criteria for collecting the
material and methods for determining ghrelin level. However, it should be stated that all of
the above articles concerning clinical observation suggest the participation of endogenous
ghrelin in anti-inflammatory and regenerative processes in the course of acute pancreatitis.
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The role of endogenous ghrelin was also shown in recovery after pancreatic surgery.
Sasaki et al. [131] have shown that plasma ghrelin suppression after pancreatoduodenec-
tomy is a useful marker for predicting postoperative complications. This finding is in line
with experimental data showing that exogenous ghrelin enhances endocrine and exocrine
regeneration of the pancreas after pancreatectomy [132].

3.7. The Large Bowel

The relationship between ghrelin and inflammatory bowel diseases is not clear. Previ-
ous studies have shown that patients in the acute phase of Crohn’s disease and ulcerative
colitis have higher circulating levels of ghrelin than patients in remission or healthy con-
trols [133–135]. In addition, ghrelin mRNA and ghrelin receptor mRNA in colonic mucosa
are higher in active IBD patients than in healthy control [136,137]. Moreover, in patients
with Crohn’s disease, there is significantly higher percentage of ghrelin-positive peripheral
blood T cells than healthy in individuals [136].

There are experimental studies showing protective and healing effect of exogenous
ghrelin in colitis. Gonzalez-Rey et al. [138] found that treatment with ghrelin significantly
ameliorates the severity of the trinitrobenzene sulfonic acid (TNBS)-induced colitis; as
well as colitis evoked by dextran sulfate sodium (DSS). The study was carried out on
mice. Administration of ghrelin significantly reduced animals’ weight loss, diarrhea, and
inflammation, as well as increased the survival rate of the animals. In line with these
findings were clinical and experimental studies performed by Konturek et al. [137]. In
the clinical study, they found that patients with ulcerative colitis exhibit a significant
upregulation of mRNA for ghrelin and tumor necrosis factor-α (TNF-α) in colonic mucosa
in comparison to healthy controls. The ratio of mRNA expression for ghrelin was found to
be well-correlated with the severity of inflammation and expression of TNF-α. The animal
study showed that treatment with ghrelin accelerates the healing of TNBS-induced colitis
in rats, and this effect is accompanied by an increase in inducible nitric oxide synthase
mRNA expression and synthesis of cyclooxygenase 2 (COX-2) in the colonic mucosa.
These findings suggest that endogenous ghrelin may protect and accelerate the healing of
inflamed colonic mucosa, and that ghrelin could be useful in the treatment of ulcerative
colitis [137]. The therapeutic effect of ghrelin in TNBS-induced colitis was also shown by
Zhang et al. [139].

Similar protective and/or therapeutic effects of ghrelin were also found in other
experimental models of inflammatory bowel disease (IBD). Pretreatment [140] or treat-
ment [141,142] with ghrelin reduces the severity of colitis evoked by acetic acid enema and
accelerates the healing in this model of IBD. Moreover, Ozturk et al. [143] suggested that
protective and therapeutic effects of nesfatin-1 in acetic acid-induced colitis in rats involve
activation of ghrelin receptors.

The beneficial effect of ghrelin administration was also shown in dextran sodium
sulfate (DSS)-induced colitis in rats [144] and mice [139,145]. In addition, Cheng et al. [145]
reported that ghrelin prevented the breakdown of intestinal barrier function in DSS-induced
colitis by inhibiting the activation of nuclear factor kappa B (NFκB). This observation is
supported by the findings of Zhang et al. [139], which show that the beneficial effect of
ghrelin in DSS-induce colitis involves the inhibition of intestinal cell apoptosis.

On the other hand, there are some experimental data suggesting the proinflammatory
effect of ghrelin in DSS-induced colitis in mice. De Smet et al. [146] carried out their study
in two series. In the first series, they induced colitis in ghrelin(+/+) and ghrelin(−/−)
mice. In the second series, they induced colitis in non-inbred Swiss mice by adding 3%
dextran sodium sulfate (DSS) to drinking water and dividing the animals into two groups
to treated intraperitoneally with saline or ghrelin. De Smet et al. found that the signs
of the severity of colitis, such as body weight loss, histological signs of colonic damage,
and colonic level of myeloperoxidase activity and interleukin-1β, were significantly less
pronounced in ghrelin knockout mice compared to ghrelin(+/+) mice. Moreover, they
found that 10 days treatment of non-inbred Swiss mice with exogenous ghrelin enhances
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the severity of colitis and promotes the release of proinflammatory cytokines in the colon.
In conclusion, the authors suggested that endogenous and exogenous ghrelin enhances the
colonic manifestations of dextran sodium sulfate-induced colitis in mice [146]. A similar
effect was observed by Liu et al. [147]. They compared the severity of DSS-induced colitis
in wild mice and ghrelin receptor (−/−) mice. They found that a lack of ghrelin receptor
significantly attenuated the severity of DSS-induced colitis. The concept of proinflamma-
tory effects of ghrelin in colitis is also supported by Tian et al. [148]. They reported that
knockdown of ghrelin-O-acyltransferase, an enzyme necessary for the production of active,
acylated form of ghrelin, attenuates DSS-induce colitis in mice.

The discrepancy between the therapeutic effect of ghrelin in colitis observed by most
authors and the harmful effects of ghrelin presented in the last three articles can be ex-
plained by the specificity of colitis induced by DSS administered in drinking water. It
should be recognized that the severity of colitis most likely depends on the total amount of
DSS taken, as well as the amount of DSS taken per unit of body mass. On the other hand,
ghrelin increases food [38] and water [65] intake. This most likely causes the amount of
DSS ingested to increase. Thus, the greater damage to the colon in animals with active
ghrelin receptors, preserved ghrelin production capacity, and receiving exogenous ghrelin
is most likely not a result of the damaging effects of ghrelin, but of the increased intake
of DSS.

4. Mechanisms of Protective and Therapeutic Effects of Ghrelin in the
Digestive System
4.1. Anti-Inflammatory Effects

Anti-inflammatory effects play an essential role in protective and therapeutic effect
of ghrelin in the gut. Ghrelin exhibits anti-inflammatory effects by the inhibition of proin-
flammatory processes and the stimulation of anti-inflammatory processes [149]. Numerous
experimental studies indicate that administration of ghrelin inhibits the expression, syn-
thesis, and release of proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, IL-8,
and tumor necrosis factor-α (TNF-α). This effect was observed in all parts of the digestive
system, including the oral cavity [71,77,150], esophagus [80,81], stomach [91,92], liver [106],
pancreas [117,118,125], and colon [142]. IL-1-β is a well-known mediator of inflammation
and plays an essential role in the induction of local and systemic acute phase response, and
in the release of other factors of the proinflammatory cytokine cascade [151–154]. IL-1-beta
acts directly, but also induces the release of other proinflammatory factors such as IL-6,
TNF-α, and prostaglandins [151,153,155].

The development and progress of inflammation is related to the activation of the
nuclear factor-κB (NF-κB) proinflammatory signaling pathway [156]. The binding of IL-1β
and TNF-α to IL-1 and TNF receptor, respectively, as well as pathogen-associated molecular
patterns (PAMPs) or damage-associated molecular patterns (DAMPs) to pattern recognition
receptors (PRRs), especially Toll-like receptors (TLRs), leads to the activation of downstream
transcription factor NF-κB and mitogen-activated protein kinase (MAPK) [149,156]. NF-κB
is a protein complex, including, NF-κB2 p52/p100, NF-κB1 p50/p105, c-Rel, RelA/p65,
and RelB. In an activated state, NF-κB is located in the cytosol in complexes with inhibitory
IκB proteins. The PAMPs, DAMPs, proinflammatory cytokines, and antigen receptors
activate an IKK complex (IKKβ, IKKα, and NEMO), leading to activation of IκB kinase
(IKK). Next, IKK phosphorylates IκBα protein, resulting in dissociation of IκBα from NF-κB.
Active NF-κB complexes translocate into the nucleus and induce the expression of target
genes [149].

Previous studies showed that ghrelin inhibits the translocation of NF-κB into the
nucleus, leading to suppression of proinflammatory cytokine production [120,145,149,157].

The anti-inflammatory effect of ghrelin is also related to the inhibition of mitogen-
activated protein kinase (MAPK) signaling. Administration of ghrelin increases expression
of MAPK phosphatase-1, an enzyme providing a negative feedback signal to decrease the
activity of MAPKs [158,159].
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Anti-inflammatory effects of ghrelin were also observed in a histological examination.
Ghrelin reduces pancreatic edema, inflammatory leukocyte infiltration, and vacuolization
of acinar cells in all models of acute pancreatitis and hemorrhages [117,118,120,125]. A
similar reduction in inflammatory leukocytic infiltration in animals treated with ghrelin
was found in experimental models of colitis [140,141]. Activation of leukocytes and release
of proinflammatory cytokines are responsible for local pancreatic damage and development
of systemic inflammatory response syndrome (SIRS) and multiple organ failure [160].

In agreement with the ghrelin-evoked reduction in serum, tissue level of proinflam-
matory cytokines, and tissue inflammatory infiltration, is the reduction in tissue activity of
myeloperoxidase. Myeloperoxidase is a peroxidase enzyme most abundantly expressed in
neutrophil granulocytes. Myeloperoxidase catalyzes production of hypochlorous acid and
tyrosyl radicals; those factors have a strong antibacterial and antiviral effect. However, free
radicals, apart from a protective effect against infectious factors, have a damaging influence
on body cells, leading to destruction of protein, DNA, and lipids [161]. The level of tissue
myeloperoxidase activity is closely related to the degree of tissue inflammatory infiltration
by neutrophils, and ghrelin-evoked reduction in tissue activity is another indicator of
anti-inflammatory activity of this peptide.

4.2. Antioxidative Effects

Oxidative stress was originally defined as the imbalance between pro-oxidants and
antioxidants in biological systems, and is a result of increased production of reactive
oxygen species (ROS) and/or impaired antioxidant capacity [162]. Oxidative stress is
one of the causes of the tissue damage in digestive system [163]. Tissue concentration of
malondialdehyde (MDA) is a biological marker of oxidative stress. Glutathione peroxidase,
superoxide dismutase (SOD), and catalase are the main enzymes responsible for reactive
oxygen species neutralization [164]. Oxidative stress is involved in inducing tissue damage
in the digestive system [165,166]. Induction of tissue damage increases the concentration of
MDA, which is associated with a reduction in tissue SOD activity. Treatment with ghrelin
partly but significantly reverses these changes, leading to a reduction in tissue level of
MDA and an increase in tissue activity of SOD [91,99,105,109,140,144].

In addition, data presented in chapter 4.1. indicate that ghrelin reduces inflamma-
tory leukocyte infiltration and activity of myeloperoxidase [91,109,141]. This is another
mechanism of the antioxidant activity of ghrelin.

The data mentioned above also indicate that ghrelin decreases the oxidative stress in
gastrointestinal mucosa, leading to a reduction in tissue damage and the acceleration of
organ regeneration.

4.3. Antiapoptotic and Proproliferative Effects

Apoptosis, also known as programmed cell death, is a genetically controlled process
occurring naturally during development, but can also act as a defense mechanism if cells
are damaged or in response to immune reactions [167,168]. There are two distinct apoptotic
pathways: extrinsic, or death receptor pathway, and intrinsic, or mitochondrial pathway;
simultaneous activation of both pathways potentiates the apoptotic effect [169]. Both
pathways activate caspases, leading to permeabilization of the mitochondrial membrane,
chromatin condensation, and DNA fragmentation, with the final result in the form of cell
death [170–172].

The influence of ghrelin on apoptosis in the digestive tract is unclear. There are
studies showing that administration of ghrelin inhibits apoptosis in the gastrointestinal
tract, although opposite results in different cell types have also been reported. In animal
studies, the antiapoptotic effect of ghrelin was observed, among others, by Park et al. [173].
They have found that administration of ghrelin suppresses intestinal apoptosis in fasting
rats in a dose-dependent manner. Similar effects were observed by de Segura et al. [174].
They reported that administration of ghrelin reverses gut mucosal hypotrophy-evoked by
feeding with an elemental diet. The elemental diet, containing readily absorbable simple
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nutrients, induces intestinal hypotrophy characterized by decreased proliferation in the
ileum and increased apoptosis in jejunum and ileum. Ghrelin administration restored
cell proliferation in the ileum and reduced apoptosis in the jejunum to a level observed
in normally fed animals. In the ileum, the reversal of the reduction in apoptosis after
ghrelin was only partial. Additionally, studies by Ercan et al. showed that ghrelin has
antiapoptotic effect in the gut [175]. Administration of ghrelin significantly reversed the
sodium metabisulfite-induced elevation of total oxidants status, number of apoptotic cells
and caspase-3 expression in gastric mucosa. These effects of ghrelin were additionally
associated with an improvement of total antioxidant status and Ki67 expression, a cell pro-
liferation index, in gastric mucosa exposed to sodium metabisulfite. The data mentioned in
this paragraph indicate that ghrelin can reverse the damage-induced increase in apoptosis
in animals exposed to harmful agents, but the level of apoptosis after administration of
ghrelin does not increase above that observed in control healthy animals; it can only reach
its value.

A similar effect of ghrelin on apoptosis was observed in studies carried out on normal,
non-neoplastic cells. Slomiany and Slomiany reported that ghrelin protection against
lipopolysaccharide-induced gastric mucosal cell apoptosis involves constitutive nitric
oxide synthase-mediated caspase-3 S-nitrosylation [176]. Ghrelin was also found to protect
salivary gland acinar cells against Porphyromonas gingivalis-induced apoptosis [177].

There are conflicting data regarding the effect of ghrelin in the digestive tract on
apoptosis in cancer cell lines. Ghrelin may act as either antiapoptotic or proapoptotic
factors in different cancer cell lines, suggesting that these effects may be dependent on
cell type or methodological differences. For example, He et al. reported that ghrelin
inhibits 5-fluorouracil-induced apoptosis in HT-29 colon cancer cells by reducing caspase-3
activation and increasing BCL-2/Bax ratio [178]. The opposite effects were observed by
Bonfili et al. [179]. They found that ghrelin induces apoptosis in colon adenocarcinoma
cells by inhibiting the ubiquitin-proteasome system and by activating autophagy, whereas
Konturek et al. reported that ghrelin remained without affecting the apoptosis in Barrett’s
adenocarcinoma cell line [78].

Mucosa in the digestive tract is constantly exposed to mechanical, chemical, and
thermal injures, as well as to the action of infectious agents. Even under physiological
conditions, minor injuries and inflammatory infiltration of the mucosa is observed. In order
to prevent mucosa injury and accelerate the healing of mucosal damage, the gastrointestinal
mucosa exhibits a high cell proliferation rate similar to that seen in the bone marrow. In
humans, mucosal cell renewal takes 4 to 6 days [180].

Studies performed on rats indicate that influence of ghrelin on organ growth in diges-
tive system depends on the age of animals and maturity of hormonal axis: ghrelin-growth
hormone-insulin-like growth factor-1 (IGF-1) [181,182]. In young suckling rats, treatment
with ghrelin increaseds serum levels of growth hormone, but is without effect on serum
concentration of IGF-1. In these rats, administration of ghrelin was without effect on
body weight, whereas pancreatic weight, cell proliferation, and content of amylase were
reduced. On the other hand, administration of ghrelin in peripubertal rats leads to signifi-
cant increase in serum growth hormone and IGF-1, and these effects are associated with
significant increase in daily food intake, pancreatic weight, cell proliferation, and content
of amylase [181]. Similar effects of ghrelin administration and the relationship between
animals age, release of growth hormone and IGF, and organ growth, were observed in the
case of the stomach [182]. In turn, in young mature rats, administration of ghrelin increases
food intake and leads to an increase in body weight, stimulation of cell proliferation in
the stomach and duodenum, and an increase in the weight of these organs, but at the
same time may inhibit the production of digestive enzymes [183]. These findings indicate
that the effects of ghrelin administration on food intake and organ growth may vary in
consecutive periods of life. This conclusion is additionally supported by the observations
of Saito et al. [184]. They found that ghrelin inhibits food intake in neonatal chicks. There
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are also differences in the regulation of endogenous ghrelin secretion in childhood. In
prepubertal children, ghrelin secretion is refractory to the inhibitory effect of feeding [185].

Cell proliferation plays an essential role in the protection and regeneration of the
gastrointestinal tract. Induction of mucosa damage by various harmful factors in animal
models leads to a decrease in mucosa cell proliferation monitored by measurement of DNA
synthesis in the digestive tract [166,186,187]. The same effect is also observed in other parts
of the digestive system in studies performed in animal models [188,189].

Administration of ghrelin prior to mucosal damage or after them leads to the rever-
sion of damage-induced inhibition of cell proliferation, prevents tissue damage, and/or
accelerates mucosa healing [77,93,99,140,141], as well other tissues in the digestive sys-
tem [117,126].

4.4. Improvement of Blood Flow

The digestive system is especially sensitive to hypoxia and a reduction in visceral
blood flow. Mucosal blood flow plays an important role in the protection and healing
of mucosa in the gastrointestinal tract [190–193]. Previous experimental studies have
shown that exposure of gastric mucosa to potentially noxious factors results in little or no
damage, as long as adequate blood flow is maintained [191]. Blood flow protects gastric
mucosa from damage by supplying it with oxygen, bicarbonate, and nutritious substances,
and removing CO2, hydrogen ions, and other metabolic products, as well as toxic agents
diffusing into the stomach wall from the lumen of this organ [190,191,194]. Previous studies
have shown that gastric injury is associated with a reduction in mucosal blood flow [195],
whereas the protection and healing of gastric mucosa is associated with an increase in
gastric blood flow [92,196,197].

The same protective and healing effects of blood flow occurs in other organs of the gut,
such as the oral cavity [77], duodenum [93,99], and large bowel [198,199]. In the pancreas,
clinical [200,201] and experimental [202–206] studies show that a decrease in pancreatic
blood flow always aggravates pancreatic damage, whereas the improvement of pancreatic
blood flow reduces the severity of AP.

Numerous previous experimental studies showed that the protective and therapeutic
effects of ghrelin in the digestive system are associated with the improvement of organ
blood flow. This effect was found, among others, in the oral cavity [77], stomach [92,93],
duodenum [93,99], pancreas [117,125,126], and colon [140,141,144].

4.5. Direct or Indirect Effects of Ghrelin

Numerous studies, presented in earlier chapters of this article, have shown that
treatment with ghrelin produces protective and healing effects in the digestive system.
However, an important question arises as to whether these effects are due to the direct
action of ghrelin on its receptors located on cells in organs where these effects are observed,
or whether they are indirect effects, initiated by the release of growth hormone from the
pituitary. The concept that the effects of ghrelin administration are related to the direct
action of ghrelin on a target organ is supported by findings that ghrelin receptors are
expressed, apart from the pituitary and hypothalamus, in other organs and tissues [5,15],
including pancreatic islets and acinar cells [207,208], as well as different immune cells
involved in the inflammatory process. The presence of ghrelin receptor was found in human
leukemic B, T, and myeloid cell lines, human peripheral lymphocytes and neutrophils [14],
and mouse splenic T cells [209,210]. In the case of isolated cells or cell lines, the effects of
ghrelin on these cells must be related to the direct action of this hormone on its receptors.
For example, the direct effect of ghrelin on its receptor leads to the inhibition of the
potassium-stimulated amylase secretion in isolated pancreatic lobules [55]. Additionally,
later studies have indicated the ghrelin affects insulin secretion in the isolated islets of
Langerhans [59,61,211]. Similarly, ghrelin is able to inhibit exocrine secretion in isolated
pancreatic acinar cells [55], as well as apoptosis in β cells [114]. However, even in the
case of isolated cells, it is not known whether the activity of these cells is modified in the
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presence of growth hormone or insulin-like growth facto-1 (IGF-1). The presence of growth
hormone receptors has been detected in numerous cells in the digestive system, including
pancreatic islets and acinar cells [212–214], as well as in immune cells [215]. Additionally,
receptors for IGF-1 are present in the endocrine [216] and exocrine [217] pancreas and
lymphocytes [218].

On the other hand, there is strong evidence that the biological effects of ghrelin in vivo
are mainly indirect effects related to the release of endogenous growth hormone and other
hormones in hormonal axis activated by growth factor. The release of growth hormone
from the pituitary gland is one of the first effects of ghrelin to be discovered in animals and
humans [1]. The concept of an indirect mechanism of protective and therapeutic action of
ghrelin in the digestive system is supported by four groups of evidence.

First, the administration of ghrelin stimulates release of GH and IGF-1 in mature
individuals [118,182]. Growth hormone is the first step in the GH-IGF-1-hepatocyte growth
factor (HGF) hormonal axis [219–221].

Secondly, treatment with growth hormone [222,223], IGF-1 [118,224], and
HGF [225–227] exhibits protective or/and therapeutic effect in experimental acute pan-
creatitis. These factors were also found to prevent the development of inflammation and
damage, and accelerate the healing in the stomach and colon [228–232].

Third, the removal of the pituitary gland lowers serum growth hormone levels below
detection, and serum IGF-1 concentration to about 10% of those observed in pituitary
intact control animals. In addition, hypophysectomy abolishes the protective and healing
effect of treatment with exogenous ghrelin in oral lesions [150], gastric ulcer [93], acute
pancreatitis [118,233], and experimental colitis [142].

Fourth, administration of exogenous IGF-1 in hypophysectomized rats increases a
concentration of circulating IGF-1 to a level similar to that observed in ghrelin-treated rats
with intact pituitary gland, and produces similar protective effects in acute pancreatitis as
administration of ghrelin in pituitary-intact animals [118].

5. Ghrelin and Cancer

Reports on the relationship between ghrelin and cancer are unclear and controversial.
There are numerous studies showing the expression of ghrelin, and its receptor is observed
in many types of cancer cells [234] (Figure 2).

5.1. Expression of Ghrelin and Its Receptor in Clinical Neoplasms

Local expression of ghrelin has been observed in range of neoplasms, including,
among others, oral, esophageal, gastric, pancreatic, colorectal, breast, ovarian, prostate,
thyroid, lung, endometrial, and renal cancer; adrenocortical tumors; pituitary adenomas;
and endocrine pancreatic tumors [234,235]. Ghrelin expression was also found in metastatic
renal cell carcinoma, and high ghrelin expression is correlated with poor outcome [236].
The presence of ghrelin receptors was shown, among others, in breast, ovarian, and prostate
cancers, pituitary tumors, and astrocytoma [237]. Moreover, analysis of cancer genomics
data with matched clinical observations suggest that ghrelin might be a critical factor in
cancer progression and methastasis [234,238].

On the other hand, the ghrelin is absent in some cases of colorectal cancer, lung cancer,
leukemia, and adrenocortical tumors [237].
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5.2. Effect of Ghrelin on Cell Proliferation and Apoptosis in Tumor Cell Lines

Several factors are involved in cancer development and progression, including cell
proliferation, apoptosis, metastasis, angiogenesis, and drug resistance. The effect of ghrelin
on cancer cell proliferation is controversial and varies with the type of neoplasm [234].
Several studies have reported that ghrelin promotes neoplasm cell proliferation, including,
among others, human colon cancer (HT29 and HCT-15) [239] and (SW-48 and RKO) [240]
cell lines; poorly differentiated (PANC1 and MIAPaCa2) and well-differentiated (BxPC3
and Capan2) human pancreatic cancer cell lines [25]; human gastric carcinoma cell lines
AGS and SGC7901 [241]; estrogen-independent breast cancer cell lines (MDA-MB-435 and
MDA-MB-231) [242]; well-differentiated (Ishikawa), moderately differentiated (HEC1B),
and poorly differentiated (KLE) endometrial cancer cell lines [243]; androgen-dependent
human prostate cancer LNCaP cell lines [244]; and human hepatocellular carcinoma HepG2
cell lines [245].

In contrast to the abovementioned reports, there are also studies showing that ghrelin
may inhibit cancer cell proliferation. Ghrelin-induced inhibitory effects on cell proliferation
were observed, among others, in human gastric carcinoma cell line AGS [246]; in N-PAP
and ARO thyroid carcinoma cell lines [247]; in human breast carcinoma cell lines (MCF7,
T47D, and MDA-MB231) [248]; in ovarian cancer cell line HO-8910 [249,250]; and in human
prostate carcinoma PC-3 cells [251].

There are also studies showing that ghrelin is without effect on cell proliferation in
estrogen-dependent breast cancer cell lines (T47D and MCF-7) [242].

Furthermore, it should be noted that, even in cancer cell lines in which ghrelin pro-
motes cell proliferation, regulatory mechanisms are retained to prevent ghrelin-induced
over-stimulation of these cells. Physiologically, administration of ghrelin increases serum
level of growth hormone and IGF-1 [1,220,221]. In turn, an increase in levels of growth
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hormone [16,252], as well as IGF-1 [253], leads to a statistically significant decrease in
mRNA expression for the ghrelin receptor. Moreover, numerous studies indicate that both
mRNA and protein expression of ghrelin receptor is downregulated by exposure to ghrelin
or synthetic agonists of ghrelin receptor [254,255]. Desensitization of ghrelin receptors
is next mechanism protecting cells against receptor overstimulation. Desensitization is a
result of a combination of the uncoupling of the receptor heterotrimetric G-proteins and
the internalization of cell surface receptors, together with ghrelin to intracellular com-
partments. Kinetic studies suggest that ghrelin receptor is internalized by endocytosis
in time-dependent manner, with a peak at about 20 min after ligand stimulation. After
internalization of the ghrelin–ghrelin receptor complex into intracellular vesicles, ghrelin
receptor is sorted into the endosomes, and then returned back to the membrane [256,257].
In the case of cancer cell lines, numerous authors, including Lien et al. [239], Duxbury
et al. [25], Jeffery et al. [242], and Yeh et al. [244], reported that the administration of ghrelin
at submaximal concentrations leads to the highest increase in cell proliferation. On the
other hand, the administration of ghrelin at a concentration greater than submaximal leads
to a partial reduction in this effect.

Some studies performed on cancer cell lines indicate that ghrelin increases cell migra-
tion and invasion [24,25,236,240,241,258,259] and inhibits apoptosis [178,243,244,258,260].
The observation that silencing ghrelin receptor expression inhibits the growth of endome-
trial cancer cell line is in line with the pro-oncogenic activity of ghrelin. This effect was
found in vitro and in vivo studies [261].

On the other hand, there are studies showing that ghrelin exhibits anticancer effects.
For example, Hu et al. [246] found that overexpression of ghrelin inhibits gastric cancer
cell proliferation, cell migration, invasion, and promotes apoptosis. Those effects are asso-
ciated with the activation of the AMPK pathway, while treatment with D-[lys3]-GHRP-6, a
ghrelin receptor antagonist, reverses these effects, promoting tumorigenesis. The ghrelin-
mediated promotion of apoptosis was also reported, among others, in ovarian cancer cell
line HO-8910 by Bai et al. [250], in human colorectal carcinoma (HCT116) cell line by Bonfili
et al. [179], and in the PC-3 human prostate carcinoma cells by Díaz-Lezama [251]. In addi-
tion, ghrelin administration suppresses inflammation-associated colorectal carcinogenesis
in mice [262].

5.3. Relationship between the Serum Level of Ghrelin and the Risk of Cancer in the
Digestive System

There are numerous clinical observations showing the relationship between serum
level of ghrelin and incidence of cancers in the digestive system (Figure 3).

A study by Murphy et al. suggests that low baseline serum ghrelin concentration
is associated with an increased risk of developing esophageal squamous cell carcinoma,
and this relationship is valid for 10 years after blood collection [263]. The similar rela-
tionship was found between serum ghrelin and risk of colorectal adenocarcinoma. Low
serum ghrelin levels seem to be associated with an increased risk of colorectal cancer [264].
Additionally, in non-cardia gastric adenocarcinoma and gastroesophageal junction adeno-
carcinoma, low serum ghrelin levels are associated with an increased risk of developing
these neoplasms [83]. These observations were confirmed by Pritchett et al. [265] on the
basis of the analysis of data collected during the Linxian General Population Nutrition In-
tervention Trial (NIT) and the Shanghai Women’s Health Study (SWHS). The analysis NIT
and SWHS data led to the conclusion that low serum ghrelin concentration is associated
with an increased risk of developing gastric cardia adenocarcinoma and non-cardia gastric
adenocarcinoma. On the other hand, in contrast to observations obtained by Murphy
et al. [263], low ghrelin concentrations at baseline were associated with a reduced risk of
developing esophageal squamous cell carcinoma in the NIT. It should be noted, however,
that the study by Murphy et al. [263] suggested that high baseline serum ghrelin concentra-
tion is associated with a reduced risk of developing esophageal squamous cell carcinoma
during 10 years after blood collection. In the case of the studies by Pritchett et al. [265]
one-third of esophageal squamous cell carcinoma cases were diagnosed 10 years or later
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after blood collection and measurement of serum ghrelin concentration, and three-fourths
of patients with esophageal squamous cell carcinoma were diagnosed with Helicobacter
pylori infection.
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Figure 3. Supportive effect of ghrelin in cancer disease.

The important role of serum ghrelin in the development of colorectal cancer was also
confirmed by D’Onghia et al. [266]. They have found serum ghrelin levels are significantly
lower in colon cancer patients than in controls. Moreover, serum ghrelin levels decrease in
subsequent stages of cancer development [266].

5.4. Ghrelin and the Postoperative Course after Heavy Surgery in Cancer Disease

Clinical data indicate that the measurement of serum ghrelin concentration may be
useful in prognosis of postoperative courses in patients undergoing esophagectomy with
gastric tube reconstruction due to esophageal cancer. Yamamoto et al. [82] have found
that a drop in the individual ghrelin ratio in relation to preoperative value (IGR) below
34% on postoperative day 1 is well-correlated with prolonged systemic inflammatory
response syndrome (SIRS) after esophagectomy. Similar relationships between plasma
ghrelin suppression and early postoperative complications were found by Sasaki et al.
in patients after pancreatoduodenectomy [131]. These observations led to a concept that
administration of ghrelin may be useful in preventing an early postoperative complication
after severe operations. Takata et al. have presented results of a prospective randomized
phase II trial conducted to evaluate the efficacy of ghrelin administration in reducing
systemic inflammatory response syndrome duration after esophagectomy [80]. They have
found that continuous infusion of ghrelin (0.5 µg/kg/h) for 5 days leads to a reduction in
SIRS duration and a decrease in CRP and IL-6 levels. In addition, treatment with ghrelin
reduced the incidence of pulmonary complications and time of the negative nitrogen
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balance [80]. Similar beneficial effects of ghrelin infusion in postoperative period in patients
with esophageal cancer treated with esophagectomy was observed by Yamashita et al. [81].
Ghrelin also appears to be beneficial in combination with chemotherapy. Short-term
administration of ghrelin during chemotherapy with cisplatin due to advanced esophageal
cancer stimulates food intake and minimizes adverse events of chemotherapy [267].

5.5. Ghrelin and Its Analog in Cancer Cachexia

Approximately 50% of cancer patients exhibit cachexia syndrome, characterized by
anorexia and loss of fat and skeletal mass. Cachexia has a huge impact on patients’ quality
of life, physical and mental abilities, and sense of dignity. Cachexia is a very serious compli-
cation, as the body mass loss in patients with cancer is associated with more frequent and
serious chemotherapy-related side effects, fewer chemotherapy cycles completed, a poorer
post-operative course, and, most importantly, decreased survival [268]. There are clinical
observations indicating that ghrelin and anamorelin are an effective pharmacotherapeutic
option for patients with advanced malignancies and cancer cachexia. The study carried out
by Blum et al. [269] have shown that natural ghrelin given subcutaneously in advanced
cancer patients with cachexia, is safe and well-tolerated without dose-limiting toxicity. In
patients’ opinion, treatment with ghrelin increased their appetite and reduced the negative
symptoms associated with food intake.

Anamorelin is a non-peptide selective ghrelin receptor agonist that stimulates food
intake and exhibits anabolic effects. Anamorelin is administered orally, which makes it
easier to use. There are numerous clinical studies showing the usefulness of anamorelin in
the treatment of cancer cachexia and anorexia.

In 2015, Garcia et al. published an integrated analysis of two phase 2, randomized,
multicenter, placebo-controlled, double-blind trials on effects of treatment with anamorelin
in patients with cancer cachexia [270]. Patients were stratified by weight loss severity
(5–15%, >15%) and randomly allocated (1:1) with a computer-generated randomization
schedule to anamorelin hydrochloride 50 mg or placebo once-daily for 12 weeks. Forty-four
patients were enrolled in the anamorelin group and 38 patients in the placebo group. Over
12 weeks, lean body mass increased in 38 patients in the anamorelin group compared with
a decrease in 36 patients in the placebo group. Forty-two (95%) of 44 patients treated with
anamorelin and 33 (87%) of 38 patients treated with placebo had adverse events. The most
common grade 3–4 adverse events (treatment-related or not) in the anamorelin group were
fatigue, asthenia, atrial fibrillation, and dyspnea; in the placebo group, such events were
pneumonia, anemia, thrombocytopenia, abdominal pain, anxiety, and dyspnea. Garcia et al.
concluded that treatment with anamorelin for 12 weeks has a favorable clinical response
profile in patients with cancer anorexia-cachexia syndrome [270].

Talem et al. published an article in 2016 in which they reported the results of two
randomized, double-blind, phase 3 trials (ROMANA 1 and ROMANA 2) on the effects of
anamorelin administration in patients with inoperable stage III or IV non-small-cell lung
cancer and cachexia [271]. In ROMANA 1, 484 patients were enrolled (323 to anamorelin
and 161 to placebo), and 495 patients were enrolled in ROMANA 2 (330 to anamorelin and
165 to placebo). The authors found that anamorelin significantly increased lean body mass
strength in patients with advanced non-small-cell lung cancer, but not handgrip strength.
There were no differences in grade 3–4 treatment-related adverse events between study
groups. In both trials, the most common grade 3–4 adverse event was hyperglycemia,
occurring in about 1% of patients treated with anamorelin. Talem et al. concluded that, con-
sidering the unmet medical need for safe and effective treatments for cachexia, anamorelin
might be a treatment option for patients with cancer anorexia and cachexia [271].

Similar beneficial effects of treatment with anamorelin were found, among others,
by Takayama et al. [272], Currow et al. [273], and Katakami et al. [274] in patients with
non-small cell lung cancer and cachexia; Hamauchi et al. [275] found similar results in
advanced gastrointestinal cancer patients with cancer cachexia.
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In addition, Malik and Yennurajalingam have suggested that the therapeutic effects
of anamorelin in cancer cachexia could be improved via combination of anamorelin with
prokinetics such as metoclopramide [276].

6. Conclusions

In the gut, ghrelin stimulates food intake, gastric acid secretion, and gastrointestinal
motility. Ghrelin exhibits protective and healing-promoting effects in numerous organs, in-
cluding the digestive system. These effects are due to, among others, the anti-inflammatory
and antioxidative properties of ghrelin. In the case of tumors, the effect of ghrelin on their
development and course appears to depend on the type of tumor. The results of studies
carried out on cancer cell lines are inconclusive. In some cancer cell lines, ghrelin stimulates
cell proliferation and inhibits apoptosis, whereas in others exhibits opposite effects. There
are studies showing that determining the plasma or serum level of ghrelin may be useful
in predicting the risk of cancer development in the digestive system. Clinical data indicate
that the measurement of serum ghrelin concentration may be useful in prognosis of postop-
erative courses in patients undergoing esophagectomy with gastric tube reconstruction due
to esophageal cancer, as well as in patients after pancreatoduodenectomy. In addition56, the
administration of ghrelin may be useful in preventing an early postoperative complication
after severe operations. Infusion of ghrelin led to a reduction in SIRS duration. There are
clinical data showing that short-term administration of ghrelin during chemotherapy with
cisplatin due to advanced esophageal cancer stimulates food intake and minimizes the
adverse events of chemotherapy. There are some reports that a synthetic agonist of the
ghrelin receptor, anamorelin, is useful in the treatment of cancer cachexia and anorexia.
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P.C. Ghrelin accelerates the healing of cysteamine-induced duodenal ulcers in rats. Med. Sci. Monit. 2012, 18, BR181. [CrossRef]

100. Onishi, S.; Kaji, T.; Yamada, W.; Nakame, K.; Machigashira, S.; Kawano, M.; Yano, K.; Harumatsu, T.; Yamada, K.; Masuya, R.;
et al. Ghrelin stimulates intestinal adaptation following massive small bowel resection in parenterally fed rats. Peptides 2018, 106,
59–67. [CrossRef]

101. Mendez-Sanchez, N.; Ponciano-Rodriguez, G.; Bermejo-Martinez, L.; Villa, A.R.; Chavez-Tapia, N.C.; Zamora-Valdes, D.;
Pichardo-Bahena, R.; Barredo-Prieto, B.; Uribe-Ramos, M.H.; Ramos, M.H.; et al. Low serum levels of ghrelin are associated with
gallstone disease. World J. Gastroenterol. 2006, 12, 3096–3100. [CrossRef]

102. Gutierrez-Grobe, Y.; Villalobos-Blasquez, I.; Sánchez-Lara, K.; Villa, A.R.; Ponciano-Rodríguez, G.; Ramos, M.H.; Chavez-Tapia,
N.C.; Uribe, M.; Méndez-Sánchez, N. High ghrelin and obestatin levels and low risk of developing fatty liver. Ann. Hepatol. 2010,
9, 52–57. [CrossRef]

103. Ezquerro, S.; Mocha, F.; Frühbeck, G.; Guzmán-Ruiz, R.; Valentí, V.; Mugueta, C.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Silva,
C.; et al. Ghrelin Reduces TNF-α-Induced Human Hepatocyte Apoptosis, Autophagy, and Pyroptosis: Role in Obesity-Associated
NAFLD. J. Clin. Endocrinol. Metab. 2019, 104, 21–37. [CrossRef] [PubMed]

104. Nagoya, T.; Kamimura, K.; Inoue, R.; Ko, M.; Owaki, T.; Niwa, Y.; Sakai, N.; Setsu, T.; Sakamaki, A.; Yokoo, T.; et al. Ghrelin-insulin-
like growth factor-1 axis is activated via autonomic neural circuits in the non-alcoholic fatty liver disease. Neurogastroenterol.
Motil. 2020, 32. [CrossRef] [PubMed]

105. Li, Y.; Hai, J.; Li, L.; Chen, X.; Peng, H.; Cao, M.; Zhang, Q. Administration of ghrelin improves inflammation, oxidative stress,
and apoptosis during and after non-alcoholic fatty liver disease development. Endocrine 2013, 43, 376–386. [CrossRef] [PubMed]

106. Golestan Jahromi, M.; Nabavizadeh, F.; Vahedian, J.; Nahrevanian, H.; Dehpour, A.R.; Zare-Mehrjardi, A. Protective effect of
ghrelin on acetaminophen-induced liver injury in rat. Peptides 2010, 31, 2114–2117. [CrossRef] [PubMed]

107. Moreno, M.; Chaves, J.F.; Sancho-Bru, P.; Ramalho, F.; Ramalho, L.N.; Mansego, M.L.; Ivorra, C.; Dominguez, M.; Conde, L.;
Millán, C.; et al. Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in
humans. Hepatology 2010, 51, 974–985. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/15213356
http://doi.org/10.1016/j.regpep.2004.02.010
http://doi.org/10.1163/156856005774423971
http://doi.org/10.1016/j.ejphar.2006.02.032
http://doi.org/10.1124/jpet.106.105932
http://doi.org/10.1159/000320110
http://doi.org/10.1677/joe.1.06432
http://www.ncbi.nlm.nih.gov/pubmed/19439811
http://doi.org/10.1371/journal.pone.0002026
http://www.ncbi.nlm.nih.gov/pubmed/18431503
http://www.ncbi.nlm.nih.gov/pubmed/22100844
http://doi.org/10.3892/ijmm.2013.1452
http://doi.org/10.1371/JOURNAL.PONE.0118213
http://doi.org/10.3390/ijms17122032
http://doi.org/10.12659/MSM.882727
http://doi.org/10.1016/j.peptides.2018.06.009
http://doi.org/10.3748/wjg.v12.i19.3096
http://doi.org/10.1016/S1665-2681(19)31679-5
http://doi.org/10.1210/jc.2018-01171
http://www.ncbi.nlm.nih.gov/pubmed/30137403
http://doi.org/10.1111/nmo.13799
http://www.ncbi.nlm.nih.gov/pubmed/31984635
http://doi.org/10.1007/s12020-012-9761-5
http://www.ncbi.nlm.nih.gov/pubmed/22843123
http://doi.org/10.1016/j.peptides.2010.08.009
http://www.ncbi.nlm.nih.gov/pubmed/20727930
http://doi.org/10.1002/hep.23421


Int. J. Mol. Sci. 2021, 22, 10571 23 of 29

108. Qin, Y.; Li, Z.; Wang, Z.; Li, Y.; Zhao, J.; Mulholland, M.; Zhang, W. Ghrelin contributes to protection of hepatocellular injury
induced by ischaemia/reperfusion. Liver Int. 2014, 34, 567–575. [CrossRef] [PubMed]

109. Cetin, E.; Kanbur, M.; Cetin, N.; Eraslan, G.; Atasever, A. Hepatoprotective effect of ghrelin on carbon tetrachloride-induced acute
liver injury in rats. Regul. Pept. 2011, 171, 1–5. [CrossRef]

110. Arıcı, O.F.; Cetin, N. Protective role of ghrelin against carbon tetrachloride (CCl4)-induced coagulation disturbances in rats. Regul.
Pept. 2011, 166, 139–142. [CrossRef]

111. Granata, R.; Settanni, F.; Trovato, L.; Destefanis, S.; Gallo, D.; Martinetti, M.; Ghigo, E.; Muccioli, G. Unacylated as well as acylated
ghrelin promotes cell survival and inhibit apoptosis in HIT-T15 pancreatic beta-cells. J. Endocrinol. Investig. 2006, 29. [CrossRef]

112. Granata, R.; Settanni, F.; Biancone, L.; Trovato, L.; Nano, R.; Bertuzzi, F.; Destefanis, S.; Annunziata, M.; Martinetti, M.; Catapano,
F.; et al. Acylated and unacylated ghrelin promote proliferation and inhibit apoptosis of pancreatic beta-cells and human
islets: Involvement of 3’,5’-cyclic adenosine monophosphate/protein kinase A, extracellular signal-regulated kinase 1/2, and
phosphatidyl inositol 3-Kinase/Akt signaling. Endocrinology 2007, 148, 512–529. [CrossRef] [PubMed]

113. Granata, R.; Volante, M.; Settanni, F.; Gauna, C.; Ghé, C.; Annunziata, M.; Deidda, B.; Gesmundo, I.; Abribat, T.; van der Lely, A.J.;
et al. Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J. Mol.
Endocrinol. 2010, 45, 9–17. [CrossRef] [PubMed]

114. Wang, W.; Zhang, D.; Zhao, H.; Chen, Y.; Liu, Y.; Cao, C.; Han, L.; Liu, G. Ghrelin inhibits cell apoptosis induced by lipotoxicity in
pancreatic beta-cell line. Regul. Pept. 2010, 161, 43–50. [CrossRef]

115. Diaz-Ganete, A.; Baena-Nieto, G.; Lomas-Romero, I.M.; Lopez-Acosta, J.F.; Cozar-Castellano, I.; Medina, F.; Segundo, C.; Lechuga-
Sancho, A.M. Ghrelin’s Effects on Proinflammatory Cytokine Mediated Apoptosis and Their Impact on β-Cell Functionality. Int.
J. Endocrinol. 2015, 2015. [CrossRef]

116. Baena-Nieto, G.; Lomas-Romero, I.M.; Mateos, R.M.; Leal-Cosme, N.; Perez-Arana, G.; Aguilar-Diosdado, M.; Segundo, C.;
Lechuga-Sancho, A.M. Ghrelin mitigates β-cell mass loss during insulitis in an animal model of autoimmune diabetes mellitus,
the BioBreeding/Worcester rat. Diabetes Metab. Res. Rev. 2017, 33. [CrossRef]

117. Dembinski, A.; Warzecha, Z.; Ceranowicz, P.; Tomaszewska, R.; Stachura, J.; Konturek, S.J.; Konturek, P.C. Ghrelin attenuates the
development of acute pancreatitis in rats. J. Physiol. Pharmacol. 2003, 54, 561–573.
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