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Abstract: Proteins expressed during the cell cycle determine cell function, topology, and responses
to environmental influences. The development and improvement of experimental methods in
the field of structural biology provide valuable information about the structure and functions of
individual proteins. This work is devoted to the study of supersecondary structures of proteins and
determination of their structural motifs, description of experimental methods for their detection,
databases, and repositories for storage, as well as methods of molecular dynamics research. The
interest in the study of supersecondary structures in proteins is due to their autonomous stability
outside the protein globule, which makes it possible to study folding processes, conformational
changes in protein isoforms, and aberrant proteins with high productivity.

Keywords: structural motifs of proteins; helical pairs; experimental methods; databases

1. Introduction

Simple structural motifs consisting of several elements of secondary structure with
unique polypeptide chain folding are objects drawing attention. The interest is raised due
to the uniqueness of these structures and their ability to be embryos in protein folding [1].
When modeling a protein structure or predicting its tertiary structure, motifs can be a
starting point in searching for possible folds of polypeptide chains, or used as stable
structures in protein studies. Efimov et al. presented a classification of structural motifs
consisting of α-helices and β-strands having unique folds [1].

The most common structural motifs in homologous and non-homologous proteins
are α-α-corner, β-β-corner, α-α- and β-β-hairpins, β-α-β-motif and 3β-corner [2]. The
α-α-corner is arranged by two α-helices, which are connected by the polypeptide chain.
This is a compact spatial structure with a hydrophobic core and a polar shell. Side chains
of residues completely buried in a hydrophobic core are hydrophobic [2]. The β-β-hairpins
and β-β-corners can be referred to as β-strands containing supersecondary structures. The
β-β-corner can be thought as a long β-β-hairpin folded upright towards itself, so strands
rotate to the right around an imaginary axis as they move from one layer to another. The
β-β-hairpin, which organizes the helical coil structure or β-β-corner, is right-handed when
viewed from the concave side [3]. The β-α-β-motif is a mixed type of SSS (supersecondary
structure) [3]. This motif is more complex in terms of structural organization compared
to α-α- and β-β-hairpins, and consists of two parallel β-strands connected by an α-helix.
Connection between helixes can vary greatly in length and the axis of helix is roughly
parallel to the β-strands; thereby all three elements interact to form a hydrophobic core.

Among all known proteins, many small proteins consist of only one or two known
structural motifs. This indicates that such structural motifs are autonomously stable [4].
The stability of supersecondary structures was indirectly shown in 1993 by Canadian
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researchers F. Tsai and J. Sherman (University of British Columbia, Canada) in an experi-
mental study using the circular dichroism method [4]. In this study, the authors showed,
using the example of a synthetic horse methemoglobin peptide (residues 80–108) with
α-α-corner folding, that the conformation is stable autonomously, outside the protein
structure. Thus, in water, the peptide forms a moderately helical shape and acquires a form
close to its conformation in the protein in the trifluoroethanol solvent, which mimics the
hydrophobic environment of the peptide in the intact protein molecule [4].

In previous studies [5,6], a hypothesis about the autonomous stability of structural
motifs in computational molecular dynamics (MD) experiments was proposed and tested.
In these works, the trajectories obtained using molecular dynamics were studied in detail
from the point of view of the phenomenon of stability, and it was shown that α-α-corners
with a short connection are autonomous structures that are stable in an aqueous medium.
Similar justifications for the stability of SSS for β-β-hairpins and β-α-β-motifs have also
been successfully carried out [7,8].

2. Structural Organization of Proteins

Proteins are the most abundant macromolecules in living cells and are found in all cell
compartments [9]. The types of proteins are diverse and several thousand in number, each
of which is different in size, shape, and biological function [10]. The properties and func-
tionality of a protein depend on its primary structure (sequence of amino acid residues), as
well as its spatial organization (tertiary structure, and in some cases, quaternary structure).

2.1. Levels of Structural Organization

Proteins usually form compact three-dimensional structures. The structural and
functional properties of proteins are determined by the physicochemical properties of the
polypeptide chain. The classification of levels of protein structural organization includes
primary, secondary, tertiary, and quaternary structures.

The primary structure is determined by a linear sequence of amino acid residues in
the polypeptide chain covalently linked to each other by a peptide bond. The lengths of the
bonds between the atoms of the peptide group (Cα, C, O, and N), the angles between them,
and the differences in the polarity of the atoms of the peptide group reflect the distribution
of electron density and possible angles of rotation around atomic bonds, the so-called
torsion angles.

Due to the wide range of methods for sequencing the genomes of living systems, the
amino acid sequence has been established for most proteins of known organisms. The
largest protein knowledge base, including information on protein sequences of known
taxonomic groups of organisms, is UniProtKB (http://www.uniprot.org/, accessed on
8 July 2021) [10]. In July 2021, the knowledge base contained 565,254 proteins of various
origins (from virus proteins to human proteins).

The polypeptide chain of a globular protein is usually folded into a compact form
consisting of fragments with a regular structure. The main regular structures of proteins
are α-helices and β-structures. These elements are connected in various combinations
by irregular sections of different lengths and conformations, which are also called loops,
β-bends, turns, and half-turns.

A generalization of the main geometric parameters of the secondary structure elements
is presented in Table 1.

Table 1. Geometric parameters of the elements of the secondary structures of proteins.

Structure Hydrogen Bond Residue/Coil Displacement/Residue (Å) ϕ ψ

Right α-helix COo–HN+4 +3.6 1.5 −60◦ −45◦

Antiparallel
β-sheet between strands −2.3 3.4 −135◦ +150◦

Parallel β-sheet between strands −2.3 3.2 −120◦ +135◦

http://www.uniprot.org/
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Supersecondary structures (SSS) are a transitional bridge between the secondary
and tertiary levels of protein structural organization. Supersecondary structures include
elements of the secondary structure, linked by a connection and characterized by a certain
spatial geometry [3]. The most common SSS proteins include hairpins formed by α-helix
hairpins, β-hairpins, β-α-β, coiled coils, Greek key, α-loop-α, α-turn-α, and Rossmann
motifs.

The tertiary and quaternary structures of a protein represent the folding of the elements
of the secondary structure of a protein in space. The tertiary structure of a protein is
stabilized through chemical interactions as follows:

• Hydrogen bonds between amino acid residues;
• Electrostatic interactions between the side groups of charged amino acids;
• Hydrophobic interactions between side groups of hydrophobic amino acids;
• Disulfide covalent bonds; and
• Interactions with cofactors.

The quaternary structure combines two or more polypeptide chains with a tertiary
structure in one protein. Proteins with a complex biological function (e.g., hemoglobin)
have a quaternary structure. In some cases, the quaternary structure contains a large
number of polypeptide subunits, such as the capsid of the tobacco mosaic virus.

2.2. Supersecondary Structure

A spatial structural unit repeated in many proteins or within one polypeptide chain
can be considered a structural motif. Structural motifs must be organized by elements of the
secondary structure adjacent to the chain. Each type of structural motive is characterized
by a certain number and secondary structure elements and a certain mutual arrangement
of these elements, both along the chain and in space. Structural motifs of the same type
found in different (both homologous and non-homologous) proteins can vary in the length
of α-helices, β-regions, and conformations of the irregular connecting regions. However,
the general encase of the polypeptide chain in space (that is, the overall stacking of the
chain) must remain unchanged.

Globular proteins acquire simple structural motifs, consisting of two sequential regular
sections along the chain, and complex motifs, comprising of three or more sections. The
most rigorously investigated among the simple ones are α-α- and β-β-corners, α-α- and
β-β-hairpins, and L- and V-shaped structures of two α-helices [2,11]. Of the complex
supersecondary structures, β-α-β-motifs and 3β-corners are largely scrutinized and have
unique spatial folding. The supersecondary structure, also called the structural motif,
is a combination of elements of secondary structures. The structural motif reflects the
arrangement of atoms in space.

A sequence motif reflects a specific pattern in a sequence of amino acid residues.
Structural motifs containing α-helices are organized by the combination of two or more
α-helices and loops or twists connecting them. The difference between “loop” and “turn” is
not always obvious, since the length of the loop/turn between α-helices cannot always be
used as determining parameter [12]. In this regard, motifs with α-helices are distinguished
by the orientation of the helices relative to each other and by their biological functions. For
example, helix–loop–helix supersecondary structures are often found in proteins, some of
which have important biological functions (Figure 1).
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crease of the loop length, the allowed number of conformations is increased. When the 
loop is short, the helices are stabilized relative to each other in space by means of hydro-
phobic bonds between side chains of amino acid residues. The biological role of the α-
helical hairpin is not known, but two α-helical hairpins can arrange a structure of four 
helices, which, in turn, can organize ligand-binding sites in proteins [13]. Aidan Doherty 
et al. suggested that one, two, or four copies of the helix–hairpin–helix motif can act as a 
DNA-binding structure [14]. The authors identified the motif in 14 homologous protein 
families, including rat polymerase β, endonuclease III, AlkA, and 5’-nuclease domain 
Taq.pol I. The motifs are structurally similar and, probably, bind DNA nonspecifically 
through the formation of hydrogen bonds between nitrogen atoms’ protein backbone and 
phosphate groups of DNA [14]. 

The α-α-corner (Figure 1b) contains α-helices, which are packed orthogonally (or 
obliquely relative to each other) and linked by a connection. The corner of the loop is 
formed by a hydrophobic amino acid residue. The biological role of this type of supersec-
ondary structure is not fully understood [13]; however, the α-α-corner is found in many 
DNA-binding proteins. Previously, we have noted that post-translational modification of 
proteins, i.e., phosphorylation of serine and threonine and acetylation of lysine, might be 
specific to oncological diseases [15,16]. In certain cases, modified amino acid residues are 
localized in supersecondary structures of the α-α-corner type. We turned special attention 
to the high stability of α-α-corner motifs, which permits liberation of such motifs from the 
protein structure for molecular dynamics study. Tsai and Sherman indicate that the α-α-
corner motif is found in a large number of proteins and is likely to initiate protein folding. 

Figure 1. Types of helical pairs containing two α-helices, with a unique folding of the polypeptide
chain in space. (a) α-helical hairpin, (b) α-α-corner, (c) L-shaped structure, and (d) V-shaped structure.
Colors indicate α-helixes lying in different planes (layers).

The α-helical hairpin (Figure 1a) consists of two antiparallel α-helices. The loop
between the helices in a hairpin can contain two or more amino acid residues. With an
increase of the loop length, the allowed number of conformations is increased. When
the loop is short, the helices are stabilized relative to each other in space by means of
hydrophobic bonds between side chains of amino acid residues. The biological role of the
α-helical hairpin is not known, but two α-helical hairpins can arrange a structure of four
helices, which, in turn, can organize ligand-binding sites in proteins [13]. Aidan Doherty
et al. suggested that one, two, or four copies of the helix–hairpin–helix motif can act as a
DNA-binding structure [14]. The authors identified the motif in 14 homologous protein
families, including rat polymerase β, endonuclease III, AlkA, and 5’-nuclease domain
Taq.pol I. The motifs are structurally similar and, probably, bind DNA nonspecifically
through the formation of hydrogen bonds between nitrogen atoms’ protein backbone and
phosphate groups of DNA [14].

The α-α-corner (Figure 1b) contains α-helices, which are packed orthogonally (or
obliquely relative to each other) and linked by a connection. The corner of the loop is formed
by a hydrophobic amino acid residue. The biological role of this type of supersecondary
structure is not fully understood [13]; however, the α-α-corner is found in many DNA-
binding proteins. Previously, we have noted that post-translational modification of proteins,
i.e., phosphorylation of serine and threonine and acetylation of lysine, might be specific to
oncological diseases [15,16]. In certain cases, modified amino acid residues are localized in
supersecondary structures of the α-α-corner type. We turned special attention to the high
stability of α-α-corner motifs, which permits liberation of such motifs from the protein
structure for molecular dynamics study. Tsai and Sherman indicate that the α-α-corner
motif is found in a large number of proteins and is likely to initiate protein folding. Using
the circular dichroism method, high stability and ability to initiate protein folding has been
confirmed on the methemoglobin motif of 80–108 residues in a length [4].
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Meanwhile, V- and L-shaped structures are often found in ligand-binding proteins,
such as calcium-binding proteins (Figure 1c,d). For example, parvalbumin is a muscle
protein containing three helix–loop–helix motifs, two of which bind calcium ions. The
calcium ion is stabilized by the coordination chemistry between the sidechain carboxylic
groups in the loop region of two helices.

α-α-Hairpins are widespread in globular proteins; some proteins mainly consist of
such a motif. Hairpins differ in the length of helices, and the between-helices connection.
The connection refers to the disordered part of the molecule and, each amino acid within
can have a conformation from the allowed areas on the Ramachandran map. The angle
Ω between the axis of helices can vary within small limits. α-α-Hairpins can be either
right-handed or left-handed, depending on the relative position of the polypeptide chain
regions. Globular proteins are tightly packed and have a hydrophobic core surrounded by
a polar shell, and α-helical hairpins included in their structure should be formed following
these principles. So, one side of the hairpin must be hydrophobic and the other hydrophilic
if the hairpin is on the surface of the protein. A hairpin can have both sides hydrophobic if
it is completely immersed in the hydrophobic core. To deploy a hydrophobic surface of
the α-helix, the hairpin organizes a side-by-side packing according to the “protrusion-into-
cavity” principle. In most cases, especially if helices are long enough, the protrusions in
the cluster of one helix correspond to the trough of the other, thereby ensuring a dense
packing of the structure [17].

One of the most widespread in the SSS inflow is the β-hairpin (Figure 2a) [3]. The
motif consists of two antiparallel oriented β-sheets linked by a short connection of one
to five amino acid residues [18]. The motif is found in the three-dimensional structures
of enzymes, carrier proteins, antibodies, and viral envelope proteins [19]. Several sci-
entific groups showed that short peptides can fold into a β-hairpin motif in an aqueous
environment [20,21]. Synthetic cyclic β-hairpins are attractive peptidomimetics and affinity
reagents with high selectivity to the target phosphorylated peptide in silico [22].
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Figure 2. Types of supersecondary structures containing two β-strands, with unique polypeptide chain folding.
(a) β-hairpin, (b) 3β-corner, (c) βαβ motif. Colors indicate elements of the secondary strictures lying in different planes
(layers).

The 3ß-corner is a structural motif represented as a triple-stranded ß-sheet folded on
to itself so that its two ß-ß-hairpins are packed approximately orthogonally in different
layers and the central strand bends by nearly 90◦ in a right-handed direction when passing
from one layer to the other (Figure 2b) [23]. When viewed from their concave surfaces,
all 3ß-corners observed can be considered as Z-like β-sheets, i.e., the first and second
strands organize a right-turned ß-ß-hairpin and the second and third strands a left-turned
ß-ß-hairpin. The 3β-corners are widespread in both homologous and non-homologous
proteins and positioned at the edges of domains [24].

The βαβmotif is most often found in the α/β class proteins (Figure 2c) [25]. The motif
is formed by two parallel β-sheets linked by an α-helix and stabilized hydrogen bonds,
and constitutes functional and active sites (including nucleoside binding (ADP, FAD, NAD)
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in various proteins [26]. In proteins with dehydrogenase activity, two successive βαβ
motifs shape the Rossman fold [27]. In general, it is worth noting that double-stranded
supersecondary structures are quite stable and, probably, can be used as a seed in protein
folding.

Typically, proteins containingβ-motifs are soluble, whereasβ-hairpins, 3β-corners and
other SSS containing β-strands are prone to aggregation due to hydrophobic interactions
and hydrogen bonding. In this regard, terminal sites of such SSSs are screened by large
unstructured loops or charged amino acid residues that provide electrostatic repulsion of
hydrophobic β-strands’ nuclei. In addition, the design of β-hairpin forms is a right screw
by twisting, which limits possible interactions with adjacent β-strands [28].

2.3. Methods for Experimental Analysis of the Secondary Structure of a Protein

Modern analytical approaches enable the experimental detection of secondary struc-
ture elements in a protein. The most popular method for studying the three-dimensional
structure of a protein molecule is X-ray diffraction (XRD) analysis. The methods still
prevails in structural biology and contributes most of the structure entries into the protein
databank (PDB) with a wide margin from other experimental methods (cryoEM, NMR) [29].
To date, more than 150,000 spatial protein structures have been identified by X-ray diffrac-
tion analysis [30]. XRD provides a resolution of less than one angstrom (1Å) and numerous
structural models with a subatomic resolution are now available in the PDB, including
rubredoxin (0.68 Å, 2DSX) [31], aldose reductase in complex with NADP+ and the inhibitor
IDD594 (0.66 Å, 1US0) [32], high-potential iron-sulfur protein from (0.70 Å, 3A38) [33],
small protein crambin (0.48 Å, 3NIR) [34], and triclinic lysozyme (0.65 Å, 2VB1) [35]. The
complexity of obtaining a protein crystal is the main limitation of X-ray structural analy-
sis. Furthermore, collecting the X-ray diffraction data and building a three-dimensional
structure are painstaking and time-consuming processes.

In the past three decades, methods for solving the spatial structure of proteins using
nuclear magnetic resonance (NMR) have been developed. NMR makes it possible to
analyze the protein structure in solution under conditions close to native ones in compar-
ison with X-ray structural analysis [36,37]. Moreover, NMR allows the determination of
non-rigid regions of a protein as a probabilistic distribution of their coordinates, which is
especially important in determining the structures of membrane proteins. Membrane pro-
teins, which account for approximately 30% of the human proteome, assume their native
conformation only under the conditions of a lipid bilayer; therefore, obtaining crystals is
difficult [38].

NMR also has limitations, and the most critical one is the ability to study the spatial
structure of small proteins, i.e., those less than 25 kDa [39]. Moreover, the resolution of NMR
analysis is inferior to that of XRD and averages 1.5 Å. The final atomic coordinates of the
protein or its secondary elements are also stored in the PDB and account for approximately
10,000 protein structure entries (Table 2) [40].

Table 2. Composition of annotated protein structures in the Protein Data Bank database (https://www.rcsb.org/stats/
growth/growth-xray accessed on 5 October 2021).

Research Method Total Number of Entries
Available

Number of Protein
Structures

The Number of Structures of Complexes of
Proteins and Nucleic Acids

X-ray 160,277

159,817 9715
NMR 13,500
EM 8870

Mixed 193

In addition, there is a set of small proteins annotated in the PDB, which are comprised
exclusively of three elements of secondary structures and resemble supersecondary motifs
in their three-dimensional structure. This set includes 322 proteins (1a7w, 1b2e, 1dph,
1gjt, 1ij0, etc.) organized by three alpha-helices, 97 proteins (1b13, 1cre, 1fhh, 1io6, 1jbd,

https://www.rcsb.org/stats/growth/growth-xray
https://www.rcsb.org/stats/growth/growth-xray
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1kbe, 1p9g, 1qh2, 1r0f, etc.) shaped by beta-strands, and 80 proteins of mixed secondary
structure elements (1b4o, 1d5q, 1g6x, 1jv9, 1k51, 1nag,1px9, 2ab3, etc.). The existence of
such small proteins, structurally close to SSS, is evidence of the autonomous stability of
supersecondary structures.

The high-throughput circular dichroism (CD) method plays an important role in de-
termining the secondary structure [41,42]. The CD method aims to identify conformational
changes of proteins’ secondary structure, globule stability due to mutations (amino acid
substitutions), and protein interactions. One of the advantages of CD is the small amount
of protein required for preparation (less than 20 µg per measurement) compared to NMR
and XRD, consuming 200 µg or more of protein [13,37]. The CD method is based on
the detection of differences in the absorption of right- and left-handed light in helices of
different twists. Differences in the absorption of plane-polarized light are translated into
elliptically polarized light [40]. However, unlike XRD or NMR, the CD method does not
provide information on the coordinates of specific amino acid residues [37].

Cryoelectron microscopy (cryoEM) is another experimental method purposed for
the determination of proteins’ 3D structure. In 2017, the Nobel Prize in Chemistry was
awarded to Jacques Dubochet, Joachim Frank, and Richard Henderson for their work
on cryogenic electron microscopy (cryoEM). The method superseded the protein crystal-
lization procedure, which is especially promising for resolving structures of poorly or
non-crystallizable proteins (membrane proteins) [43]. Currently, cryoEM includes single-
particle techniques, tomography, two-dimensional crystallography, and electron diffraction
by microcrystals (microED) [29]. The first two methods are based on obtaining images
of either many identical copies of a molecule (one particle) or one sample at different
angles (tomography). The diffraction method traditionally provides the highest resolution
of highly ordered single- or multilayer protein assemblies [44]. Based on the diffraction
from highly ordered three-dimensional biomolecular assemblies and using approaches
borrowed from the crystallography of macromolecules, microED has extended the cryoEM
resolution to sub-angstroms (Å).

Recently, there has been a rapid increase in the number of specific structures of
macromolecular complexes using cryoEM in the Electron Microscopy Data Bank (EMDB)
(https://www.ebi.ac.uk/pdbe/emdb/statistics_main.html; accessed on 27 July 2021). Most
of the resolved protein structures have a resolution of 3–4 Å, while some are determined
with a resolution of less than 2 Å [45]. Ka Man Yip’s work annotated the structure of
apoferritin 3 (EMD-9865, 6Z9F) with a resolution of 1.54 Å, where all atoms, including
hydrogen atoms, can be visualized [45]. Other protein models with a resolution of less
than 2 Å, determined by cryoEM, were deposited in the PDB with the following access
codes: glycolyl-CoA carboxylase with bound CoA (1.96 Å, 6YBQ) [46], glutamate dehy-
drogenase (1.80 Å, 5K12) [47], beta-galactosidase (1.90 Å, 6CVM) [48], adeno-associated
virus (1.56 Å, 7KFR) [49], gamma-aminobutyric acid receptor (1.70 Å, 7A5V) [50], and
streptavidin (1.77 Å, 7EFD), etc.

2.4. Protein Conformational Stability

Today, the classification includes more than 12 types of protein supersecondary struc-
tures [3]. Despite many authors noting the key role of SSS in protein folding (folding of the
nucleoli), the issue of SSS stability outside the protein globule has not yet been rigorously
scrutinized [15,17,51]. The most common methods for studying of conformational stability
are molecular dynamics (MD) and the Ramachandran plot. Using a randomly generated
set of SSS (PDB DB) from 163 proteins, Léo Degrève showed that about 30% of the amino
acid sequence of globular proteins is involved in the organization of SSS [51]. The structural
stability of the selected motifs was further confirmed by the molecular dynamics (MD)
approach. In our studies, we have also shown the high stability of SSS for 4 types of
helical pairs accessed by the MD [15–17]. The β-hairpin motif is also characterized by
high autonomous stability, which makes this motif popular for producing artificial protein
structures with desired properties (hydrogels, antimicrobial peptides) [52–55].

https://www.ebi.ac.uk/pdbe/emdb/statistics_main.html
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Ramachandran’s map has been one of the central concepts in structural biology over
the past 60 years [56]. Conformational analysis of proteins using torsion angles remains
practically unchanged and is an integral tool in structural biology [57]. One of the basic
rules for constructing a map of forbidden and allowed conformations of amino acid residues
is to consider atoms as impenetrable spheres [58]. In this version, it becomes possible to
determine the conformations of alanine-like amino acid residues (except for glycine and
proline), which can occupy one of three “allowed” regions in space (see Figure 3). These
include two large regions known as the α- and β-regions for the conformation of α-helices
and β-strands, respectively, and a much smaller αL-region, which is a mirror image of
the main conformations of the α-region. “Allowed” areas are highlighted in Figure 3
with a dashed line. In these regions, the atoms of the peptide do not experience steric
hindrance [59,60].
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Figure 3. Model of an alanine dipeptide showing the possible rotation planes, which are determined
by the torsion angles ϕ and ψ (a). Ramachandran map with highlighted contours of the allowed
regions (dashed lines), the core is the most probable conformational states (solid lines), and the
extremely admissible limit of conformational states (dotted lines) for the alanine dipeptide (alanine–
alanine) (b). The gray specks show the 63-149 Ala-like (non-Gly, non-Pro) residues from a diverse set
of crystal structures (1.2 A resolution). The zones of conformational states for α-helix (α), 310-helix
(3), π-helix (π), left α-helix (αL), polyprolium (II), collagen (C), parallel β-sheet (↑ ↑), and anti-parallel
β-sheet (↑ ↓). Figure adapted from [57].

The construction of maps of forbidden and allowed conformations of more than
150,000 amino acid residues experimentally obtained using X-ray structural analysis of
protein structures with a resolution of 1.2 Å and less, confirmed the validity of Ramachan-
dran maps [61,62]. Most of the observations fit into three main groups located in the α-,
β-, and αL-regions (Figure 3). To date, Ramachandran maps have been used for stereo-
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chemical assessment of the quality of resolved crystal structures in the ProCheck [63] and
MOLEMAN2 [64] programs, and in the newer MolProbity [65] program.

3. Protein Families

The three-dimensional structure of the protein contains a limited set of folding nuclei,
which can be admitted as structural motifs with unique chain folds [1]. Eight types of
root structural motifs are currently described: α-α-corner, 3β-corner, s-like β-sheet, z-like
β-sheet, 5-segment α/β-motif, 7-segment α/β-motif, abcd-unit, and abCd unit [66]. SSS
are universal for various proteins, regardless of their origin and homology [1]. They can
also be used as initial structures in protein modeling [67,68].

The availability of structural information about proteins supported the development
of several structural classifications:

• SCOP (structural classification of proteins) [69],
• PCBOST (protein classification based on structural trees) [70,71],
• PROSITE (database of protein families and domains) [72], and
• CAZy (carbohydrate-active enzymes) [73];
• CATH (classification of protein structures) [74].

Early work on protein structures’ classification revealed regularities between the con-
tent of secondary structure elements in proteins [75] and protein topology [76–78]. Such
patterns became apparent when scientists Ptitsyn O.B. and Finkelstein A.V. created a new
direction in structural biology—the physics of proteins [79]. The most extensive bibliogra-
phy of studies on the structural classification of proteins and the structural determinants
of proteins is presented in the SCOP database (http://scop.berkeley.edu; accessed on
4 August 2021) [80,81].

The SCOP database contains the following protein classes and their composition
(including SSS):

• α proteins (46,456 protein structures and 289 folds);
• β proteins (48,724 protein structures and 178 folds);
• α/β proteins (51,349 protein structures and 148 folds);
• α + β proteins (53,931 protein structures and 388 folds);
• multidomain α and β proteins (56,572 protein structures and 71 folds); and
• membrane proteins, surface proteins, and peptides (56,835 protein structures and

60 folds).

The structural classification of proteins presented in the SCOP reflects the hierarchy of
protein structures through the analysis of evolutionary and structural similarities.

Another method for the classification of proteins was recently developed by the group
of A.V. Efimov (Institute of Protein Research of the Russian Academy of Sciences). Taking
into account supersecondary structures as folding nuclei, the method is based on the
spatial similarity and the generality of protein folding pathways [2]. This classification,
namely PCBOST, is based on the structural trees of proteins, and not on the similarity of
their evolution and biological function. The structural tree of a protein is a set of allowed
intermediate and final spatial structures that can be obtained from the starting structure by
the sequential adding (or extension) of other elements of the secondary structure. Currently,
the PCBOST classification has been developed for 18 structural protein trees (according to
the PCBOST web service, http://strees.protres.ru/help.htm; accessed on 9 August 2021).

Supersecondary structures have a unique spatial folding of polypeptide chains. As
a rule, α-helices and/or β-strands in a supersecondary structure have the same location
wherever these structures are found, regardless of whether proteins are homologous or
not. It has been shown that the α-α-corner structure is found in proteins more frequently.
The first and second helices in the α-α-corner are usually referred to as the A and B helices,
respectively. A short bridge between the helices allows their arrangement in orthogonal
orientation. However, regardless of the length and conformation of the connection, α-α-
corners almost always organize as a left superhelix.

http://scop.berkeley.edu
http://strees.protres.ru/help.htm
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The amino acid sequence corresponding to the α-α-corner with a short connection can
be characterized by the following features:

1. Hydrophobic amino acid residues should be at positions essential for the organization
of hydrophobic clusters of A- and B-helices.

2. There should be a 1-3-8 gap between clusters.
3. The last position of the A-helix should be occupied by small or flexible residues, such

as glycine, arginine, and lysine.
4. The first position of the B-helix should be occupied by a polar uncharged amino acid

residue (according to the Kyte–Doolittle scale [82]) or residue with small side group
(glycine, alanine, and proline).

Almost all positions necessary for clusters in the A and B helices are hydrophobic
and conserved. Polar uncharged serine and threonine are found in invariant clusters
because their side groups form hydrogen bonds with the main chain of the polypeptide.
Amino acid residues lysine, arginine, glutamine, and glutamate occupy border positions in
hydrophobic clusters since their polar NH2-and COOH-groups are remote from the main
chain of the polypeptide.

As noted above, α-α-corners are widespread in protein globules [83]. Furthermore, α-
α-corners are found in various proteins of almost all known living organisms, for example:

• In cytochrome C, a protein of the respiratory electron transport chain involved in
electron transfer;

• In papain, an enzyme of unripe papaya fruit that is used for the development of
enzyme-linked immunosorbent assays;

• In hexokinase, which catalyzes the transfer of a phosphoryl group from ATP to glucose;
• In the lambda repressor, a protein that affects transcription from the RM and R

promoters.

In summary, the α-α-corner is a structure depending on the rest of the protein molecule
and can act as a folding nucleus in the process of folding a domain or a whole protein [84].

4. Methods for Bioinformatical Analysis of Protein Structure

Methods of bioinformatic analysis of protein structure are quite extensive due to the
availability of experimental data on proteins’ structure (Figure 4). Bioinformatic analysis
works under a wide range of scientific problems, which are attained by two main directions:

• Functional tasks→ presentation, storage, and dissemination of experimental data.
• Analytical tasks→ development of data analysis tools to generate new knowledge.
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Functional tasks are associated with the exchange of available knowledge and experi-
mental biological data. The information accumulated to date about proteins is summarized
and arranged in public databases and repositories. The adaptation of standard computer
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science methods for storing and processing of user requests is not a trivial task but involves
processing of large amounts of data and operating with rank descriptors. It is necessary if
handled data are obtained by multiple research groups, in several technical repeats, using
different analytical equipment with different resolutions, and the final results can vary.

4.1. Protein Amino Acid Sequence Databases

Today, researchers have access to various databases of protein amino acid sequences.
The variety of databases encompasses repositories of amino acid sequences with rigorously
annotated records (UniProtKB, NCBI), including a description of structural elements,
post-translational modifications (PTMs), and the biological function of the protein.

The knowledge base UniprotKB (http://www.uniprot.org/; accessed on 10 August
2021) [86] consists of two sections:

• Swiss-Prot—protein database containing manually curated and verified records [87].
• TrEMBL—protein database of automatically annotated entries.

The UniProtKB knowledge base is by far the largest and arranges almost all available
information about proteins. This knowledge base realizes cross-references to a numerous
tools aimed at processing with amino acid sequences (for example, search for homologs
and amino acid sequence alignment, or BLAST) [88].

The NCBI database is popular in biomedical research (National Center for Biotech-
nology Information, http://www.ncbi.nlm.nih.gov/; accessed on 8 July 2021) [89]. The
database is accessible via the Entrez search engine. The NCBI database provides infor-
mation on protein domain databases, DNA (GenBank) [90], RNA, databases of scientific
literature (PubMed) [91], and taxonomic information (TaxBrowser), providing a search
for data on a specific biological species (taxonomy). It also contains various standard
bioinformatics programs (BLAST).

The NCBI database (http://www.ncbi.nlm.nih.gov/; accessed on 8 July 2021) was
created to solve the following tasks:

• Design of automated systems for data storing and analysis for molecular biology,
biomedicine, and genetics tasks;

• Computer processing of biological data; and
• Popularization of databases and software for researchers.

4.2. Databases on Protein Structure

Protein DataBank (PDB) is the most important public and accessible database of pro-
tein structures. Data on the protein/peptide structures are stored in the text format “*
.PDB” and available for use. The “* .PDB” format is comprised of mandatory and optional
records, in which calculated coordinates of each atom are presented along with the experi-
mental details regarding the target protein/peptide. To handle PDB files’ visualization and
analysis, RasMol [92,93], PyMOL [94] and several other programs have been developed.

Alignment of Amino Acid Sequences

One way to describe the evolution of a protein sequence is to compare sequences
of homologous proteins, where homology depends on the sequence of a common an-
cestor. Using comparative analysis, models of protein evolution were elucidated using
the frequency of occurrence of various amino acid residues at specific positions among
homolog sequences. Such models enable the detection of point mutations that are fixed in
the evolutionary process since they have a neutral meaning or a positive meaning for the
biological function of a protein (rare events). Evolutionary models are typically used to
identify or align homologous proteins and act as a source of conformation about the protein
evolution. The alignment of evolutionarily related amino acid sequences is the most crucial
bioinformatic task since it enables the understanding of evolutionary events and pathways.
In addition, sequence alignment reveals common features of proteins’ structure or function.

Modern bioinformatics is a powerful tool for amino acid sequence alignment. All
alignment methods can be divided into two groups.

http://www.uniprot.org/
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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• Sequential pairwise alignment of sequences; and
• Multiple alignments.

Pairwise and multiple alignments can be global (for an entire amino acid sequence) or
local (for specific regions of the amino acid sequence). Global alignment is indispensable
for determining the relationship between proteins, and local alignment is indispensable
for identifying conserved regions in the polypeptide chain. The alignment algorithm is
defined by two mechanisms:

• A ranking function to assess the effectiveness of the alignment; and
• An alignment strategy with the ability to identify amino acid substitutions, insertions,

and deletions.

Many factors are involved in the evolutionary selection and fixation of amino acid
mutations. Mutations can be caused by internal factors, such as errors in reading the genetic
code at the level of transcription, errors in biosynthesis, and other external environmental
factors. To date, the problem of an adequate scheme of searching for mutations within
aligned sequences, including of unrelated proteins, remains. The most commonly used
alignment involves permutation matrices and is based on statistical observation of amino
acid substitutions in homologous proteins.

The use of sequential pairwise alignment methods is limited by the prerequisite length
identity of the analyzed sequences. If one of the analyzed sequences is significantly shorter,
then the smaller sequence will be supplemented with gaps to equalize their total length. In
this case, the alignment results are significantly distorted.

5. Methods for Predicting Protein Structure

As has been touched on before, the supersecondary structure is a motif of special
geometry, consisting of several elements of the secondary structure. Supersecondary
structures are the bridge between the secondary structure and the tertiary structure [3].
Several efficient computational prediction methods for SSS have been recently announced.

Prediction of the protein spatial folding from its amino acid sequence is challenging.
There is also a counterpart issue when the prediction of an amino acid sequence with a
given three-dimensional structure is of special interest in biotechnology [95]. However,
methods for protein structure prediction and design have advanced significantly over the
past decade. New algorithms for constructing protein spatial structures are employed to
design fluorescently labeled proteins with new or improved properties and to construct
signaling proteins with therapeutic potential [95,96].

Currently, two approaches are used to predict the structure: template-based modeling
(TBM), in which the known structure of homologous protein is used as a template for
the unresolved protein structure; and modeling without a template, which uses energy
functions to characterize the most advantageous conformations. These two approaches are
not self-excluding and can be combined: for example, prediction of protein structure from a
template and subsequent refinement of the conformation using energy functions. Machine
learning methods and high performance of modern computing resources encourage the
successfully combination of these methods [97]. Both approaches can be used to predict
the SSS.

5.1. Template-Based Modeling

Template-based modeling (TBM) is based on the observed similarity of the modeled
sequence with the empirically characterized (NMR, cryoEM, or X-ray structural analysis)
protein structure [98,99]. In other words, if the structure of one protein within a proteins
family has been determined empirically, other family members can be modeled based
on comparison with the known structure. The PDB database remains a reliable source
of templates for predicting protein structure [100]. TBM is based on the fact that a small
variation in the amino acid sequence of a protein usually leads to an insignificant change
in its three-dimensional structure [101]. The success of TBM is limited to the selection of a
homologous template in the PDB. If the evolutionary relationship between the query and
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the template is distant (the so-called “twilight zone” with homology below 30% between
the compared sequences), the prediction accuracy is sharply reduced [100,102]. However,
the three-dimensional structure of proteins within one family is rather conservative [103].

The discrepancy between the number of protein sequences (Uniprot/ TrEMBL, more
than 55,000,000 records) obtained by virtual translation from annotated genes annotated
and the number of structures stored in the PDB database (more than 150,000) is obvious.
However, any known amino acid sequence contains at least one domain that can be matched
with a template [104]. Thus, exact matching of a template with a request and selection
of a template is a difficult task, especially for proteins, where only distant homologs are
available [99]. Thus TBM was designed to bridge the gap between the number of amino
acid sequences and resolved protein structures [99,105,106].

Comparative modeling usually relies on the knowledge of structure of a homologous
protein, which is considered as a template for constructing an unknown target protein
with acknowledged amino acid sequence. This process can be divided into several stages
(Figure 5) [107]:

• The choice of a template(s) for the sequence of the modeled protein as a query and PDB
as a database using a basic local alignment (BLAST, blast.ncbi.nlm.nih.gov, accessed
on 20 September 2021);

• Initial alignment and correction of amino acid sequences of the modeling structure
and the template(s). Usually performed using the blocks substitution matrix (e.g.,
BLOSUM80, BLOSUM62 and BLOSUM45) [99];

• Backbone generation, or determination of the structure of conservative areas and
structurally variable areas. The stage ends with the construction of a three-dimensional
reference structure using a position-specific scoring matrix (PSSM) [108] or hidden
Markov model (HMM) [108];

• Copying structurally variable regions of the template(s);
• Construction of structurally variable regions; for example, using CODA runs two

programs for the prediction of the structurally variable regions of protein structures:
FREAD, a knowledge-based method using a database of fragments taken from the
PDB and PETRA, an ab initio method using a database of computer-generated con-
formers [109];

• Side-chain modeling; for example, using the SCWRL software designed specifically
for predicting side-chain conformations taking into account a fixed skeleton derived
from the experimental structure of the PDB [110,111]; and

• Model optimization, including optimization of stereochemistry energy minimization,
molecular dynamics, and estimation of prediction errors for homologous proteins
using the support vector machine (SVM) regression method [112];

• Validation (experiment) is the final step of the theoretical model. Experimental data
ranging from ligand binding to spectroscopy or X-ray crystallography can be used for
the evaluation. The method for validating a three-dimensional structure of homology
according to its experimental analog is the root-mean-square deviation (RMSD), which
gives the average value of the distances between all atoms for two three-dimensional
structures [107].

As has been mentioned above, the basis of all algorithms for comparative modeling is
a successful choice of the most evolutionarily close template sequence. The selection of
template sequences is generally carried out automatically by the SWISS-MODEL program
in accordance with the following criteria:

• Level of similarity between the target sequence and the template,
• The presence of an experimentally solved structure with high resolution, and
• The presence of ligands or cofactors.

blast.ncbi.nlm.nih.gov
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Ideally, the target sequence should be provided with one high-quality template; how-
ever, in practice, the template cannot be found for the entire target sequence, but only for a
separate structural domain (see Figure 5) [107].

Simulations, like all other stages, are carried out automatically. If the alignment be-
tween the target protein and the template shows high identity, a fully automated structural
modeling approach could be applied, then the user is required to enter only the amino
acid sequence itself or the UniProtKB identifier of the target protein. Typically, this method
works for more than 50% of identical sequences. If several available templates are found
for the target protein, then the program will select the template with the highest quality
score in the “default” mode. If desired, the user can select any other template from the
proposed list (semi-automatic mode).

The sequence alignment between the target protein and template can be performed in
a semi-automatic mode using several tools: BLAST, PSI-BLAST, and HMM-HMM.

In turn, PSI-BLAST offers templates with less sequence identity to the target protein.
The selectivity and sensitivity of the search can also be adjusted by changing the e-value
threshold. This method increases the chance of proper pattern detection, but the proportion
of false-positive patterns would also increase [113].

Validation of the obtained structural model is one of the most important steps in this
algorithm, as the quality of the model determines the biological capabilities of the protein
and depends on the evolutionary distance between the target protein and the template. In
addition, TMB programs generate a large number of three-dimensional protein models
and rank them according to different assessment methods. A more reliable result can be
provided by combination of several assessment methods, divided into several groups.

First, methods based on the calculation of force field parameters, or a set of stan-
dard parameters and equations that describe bond lengths, bond angles, dihedral angles,
improper planes, electrostatic and van der Waals forces, and optimal stereochemistry.

For this purpose, researchers use the MolProbity web service, as a model checking
system for protein and nucleic acid structures (http://molprobity.biochem.duke.edu; ac-
cessed on 2 July 2021) [114]. The service is based on previously developed systems such
as the PROCHECK [63] and WHATCHECK [115], which calculate the conformations of
amino acid residues and account for structural functions (bond lengths and torsion angles).
The MolProbity service allows for contact analysis of all atoms, including hydrogen atoms
(atomic conflicts), analysis of allowed conformational states of amino acid residues using
Ramachandran maps, and Cβ-rejection criteria (backbone emissions) [114].

http://molprobity.biochem.duke.edu
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Second are methods for evaluating the interaction energy. For example, the QMEAN
algorithm is a composite estimate using the statistical potentials of the Cβ interaction, the
pair energy of all atoms, the torsion angle energy, and the solvation energy [116].

Further, a machine learning-based approach is essential for the predicting of er-
rors in homologous models and employs a support vector machine (SVM) regression
method [112]. The deep residual neural network ThreaderAI is also widely utilized for
model improvement [99]. The model uses deep learning to predict the residual-residual
alignment probability matrix by integrating the sequence profile, predicted sequential
structural features, and predicted residual–residual contacts for the subsequent pattern-
simulated structure matching by applying a dynamic programming algorithm to the
probability matrix [99]. The NDThreader (new deep-learning threader) method is also used
to solve TBM problems [99] and uses DRNFs (deep convolutional residual neural fields)
to match the template/modeled protein request, and ADMM (variable direction multi-
plier method) and DRNF to improve template/modeled protein alignment by exploiting
predicted distance potential.

The final stage of TBM is experimental validation of the theoretical model. Experi-
mental data from a variety of analytical measurements from ligand binding detection to
spectroscopy or X-ray crystallography can be used. The comparative analysis of similarity
between the empirical and simulated protein structure can be performed by estimating the
root mean square deviation (RMSD) of the distances between all atoms, the mean distance
between the Cα atoms, scaled by the template modeling distance parameter [117], the
similarity of interatomic contact areas’ (all atoms or their subsets) contact area difference
score (CAD-score) [118], and other points of estimate.

5.2. Template-Free Modeling

Protein structure modeling without the use of templates can be applied to proteins
without analyzing the global structural similarity to proteins in the PDB database. In
the absence of a structural template, this approach requires a strategy for the selection of
conformational samples to create probable models and ranking criteria [95]. The patternless
structure prediction process can be described in four steps. In the first stage, multiple
alignments of the sequences of the simulated protein and target sequences are constructed.
Further, target sequences are used to predict local structural features, such as secondary
structure and twisting angles of the main chain, possible interactions of amino acid residues,
etc. For example, PSIPRED Protein Analysis Workbench is a world-renowned web ser-
vice providing a diverse toolset for the prediction and annotation of proteins, including
predicting the secondary structure of a protein based on position-dependent scoring matri-
ces (PSIPRED 4.0), predicting disordered regions with annotated protein binding activity
(DISOPRED3), prediction of helix transmembrane packing location using residual contacts
and directional action algorithm (MEMSAT-SVM), combination of coevolution methods for
accurate prediction of contacts and long-range hydrogen bonds in proteins (MetaPSICOV
2.0), prediction of hot spot remnants at protein–protein interfaces using support vector
machines (HSPred), and other services [119].

Libraries of protein backbone fragments can also be integrated into the model building.
Prediction of the local structure and contacts aids in the construction of a 3D model using
gradient-based optimization, distance geometry, or fragment reassembly methods [95].
The 3D model is usually constructed with inaccurate detail and requires subsequent
refinement using the energy function of all atoms, identifying clusters of similar low-energy
conformations, from which the representative model is selected as the final prediction.

Template-free modeling reconstructs the protein structure from three to nine fragments
extracted from proteins annotated in the PDB database [120]. Such fragments are selected
with the similarity of local sequences and the similarity between the known and predicted
secondary structure, and then assembled using the search strategy with simulated Monte
Carlo annealing [120]. Another method for fragments assembling is C-QUARK, which
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integrates multiple deep-learning and coevolution-based contact maps to guide the replica-
exchange Monte Carlo fragment assembly simulations [121].

The non-template approach has more scope for modeling the target of a new style
that is not typical for templates. However, proteins with a length of more than 150 amino
acid residues still present a major challenge for non-template modeling methods due to the
exorbitant computational requirements and low accuracy of the force field. The prediction
of the contact map based on the coevolution approach has recently demonstrated the
promise of overcoming this limitation of the folding length of structures ab initio [121].

The first computational method, AlphaFold, is becoming a revolutionary approach
and is designed to predict the protein structure with atomic precision, even if a pattern
cannot be detected [122]. In most cases (95%), this computational approach predicts protein
structures with an accuracy close to the experimental one. The AlphaFold neural network
is included in the CASP14 assessment (critical assessment of methods of protein structure
prediction, May–July 2020; AlphaFold2) [123].

The high accuracy of AlphaFold prediction is due to the inclusion of new neural
network architectures and learning approaches based on the evolutionary, physical, and
geometric constraints of protein structures. To obtain an accurate and precise domain struc-
ture (average backbone accuracy of 0.96 Å), AlphaFold can create highly accurate sidechains
when the backbone is highly precise and significantly improved over the template-based
method, even when reliable templates are available. The full atomic accuracy of AlphaFold
can achieve 1.5 Å with a standard deviation (CI 95%) within a 1.2–1.6 Å range versus
accuracy of 3.5 Å with a standard deviation (CI 95%) of 3.1–4.2 Å among other alternative
methods. Finally, the model is capable of providing accurate estimates of its reliability from
residuals, which should ensure that these predictions are used with confidence [122].

5.3. Algorithms for Predicting Some Supersecondary Structures

In the prediction of supersecondary structures, some TBM methods, including MOD-
ELLER [124], ModBase [125], I-TASSER [125], Rosetta [126], and QUARK [127], can be
utilized. Homology modeling is a reliable method for predicting the structure of a protein
molecule from an amino acid sequence. The disadvantage of this method is the need for an
experimentally established tertiary structure of the protein that is closest to the amino acid
composition.

The researcher has access to specialized services designed for specific types of super-
secondary structures of proteins; for example, the predictors the SpiriCoil, LogiCoil, and
MultiCoil2 predictors predict only coiled coils [128]. The support vector machine algorithm
can be used to identify the β-hairpin in enzymes, where it participates in the formation of
ligand binding sites [129]. The chemical shift function and quadratic discriminant analysis
of experimental NMR data are robust algorithms for predicting the beta hairpin [130].
The HTHquery web service (http://www.ebi.ac.uk/thornton-srv/databases/HTHquery;
accessed on 21 July 2021) can be used to predict helical pairs. This TBM takes into account
the availability of a putative structural motif and the positive electrostatic potential of the
immediate environment of the SSS. The score set is calculated based on each template using
a linear predictor [131].

The prediction of the βαβ-motif, a structure that is more complex than those described
above, can be carried out using the support vector machine algorithm [26]. The algorithm
takes into account the amino acid composition and the position of amino acids in the motif,
information on the secondary structure of amino acid residues. StackSSSPred (from the
English “stack supersecondary structure prediction”) is a specialized tool for predicting
supersecondary structures from a sequence, based on machine learning [3]. The creation
of specialized methods for predicting individual types of SSS seems to be a promising
direction in the field of protein engineering. Small and simple protein structures with
desired properties can be obtained by de novo protein design [128].

http://www.ebi.ac.uk/thornton-srv/databases/HTHquery
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6. Study of the Geometric Parameters of Supersecondary Structures in Proteins

Molecular dynamics modeling (MD) has been used by researchers to study the folding
dynamics of peptides and small proteins, their stability, and their biomolecular aggrega-
tion [132].

In calculating the MD force fields, special attention is paid to the consistent and correct
parameterization of atomistic interactions. Research continues to improve the accuracy
of the force fields AMBER [133], CHARMM [134], GROMOS96 [135], and OPLS [136]
by refining the parameters of the torsion angles of the protein backbone and achieving
conformational equilibrium between extended and helical structures [132]. In the study by
Manuel Rueda, a comparative analysis of the force fields AMBER, CHARMM, GROMOS96,
and OPLS [137] was carried out, and similar results were obtained for 30 protein structures
under conditions close to the native ones.

6.1. Revelation of Supersecondary Structures

The secondary structure is a key element in the architectural organization of proteins.
Accurate determination of secondary structure elements is a crucial step in the analysis
and modeling of the protein structure. Because supersecondary motifs are a collection of
secondary structural elements, mathematical algorithms are used to identify such elements,
among which the most popular are DSSP [138], DSSPcont [139], STRIDE [140], P-SEA [141],
and KAKSI. The defined secondary structure of proteins (DSSP) algorithm determines eight
states of the secondary structure based on the analysis of hydrogen bonds with energies
below −0.5 kcal/mol, stabilizing the structure. In turn, DSSPcont is a modification of the
DSSP for the analysis of probable structural changes by considering the thermal motion of
the molecule.

The STRIDE algorithm uses the calculated hydrogen bond energies and rotation angles
ϕ/ψ to determine the secondary structure. The torsion angles were determined according
to the area of the Ramachandran map. P-SEA defines the secondary structure based on
the coordinates of the Cα atoms. The predictive assignment of linear secondary structure
elements (PALSSE) describes three states of the secondary structure in a vector form based
on the coordinates of the Cα atoms. STICK finds a set of line segments independent of
the definition of the outer secondary structure, which allows the segments to be used as a
new base for defining the secondary structure. This is accomplished by determining the
average increment along each axis to characterize the segment. In this case, elements of
the secondary structure are described by a continuous value and, therefore, are not limited
by the usual classes of structures. It allows encoding of structures among the “classical”
secondary structures as line segments that can be used in structure comparison algorithms.
Finally, the KAKSI algorithm determines the secondary structure based on measurements
of the distance Cα of atoms and angles ϕ/ψ. The algorithm detects bends in spirals.

6.2. Analysis of the Geometries of SSS and Tertiary Protein Structures

The main measure for representing the set of ϕ/ψ angles is the Ramachandran map.
The map shows the relationship between angles and the conformation of a protein molecule,
allowing the correlation of the amino acid residues to the secondary structure, to track
allowed and forbidden conformations. Molecular dynamics is the main method used to
model and analyze conformations of protein molecules. Many programs are available
today, but AMBER, GROMACS, NAMD, TINKER, OpenMM, CHARMM, and DESMOND
are the most applicable for biomolecular modeling. Each program includes the functionality
of calculating MD, analyzing modeling data with built-in utilities: torsion angles, hydrogen
bonds, conformations, physical and physicochemical characteristics, etc. In addition to
built-in utilities, specialized programs have been developed, mainly in Python.

MDTraj is a modern, lightweight, and fast software package for MD simulation anal-
ysis. MDTraj reads and writes track data in a wide variety of formats. It provides a
wide range of trajectory analysis capabilities, including calculating the minimum stan-
dard deviation, assigning a secondary structure, and extracting general order parameters.
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The package focuses on interacting with the broader scientific ecosystem in the Python
programming language, bridging the gap between MD simulation data and the rapidly
growing set of standard statistical analysis and visualization tools in Python.

Most of the codes generate output trajectories in their own formats, so the develop-
ment of new trajectory analysis algorithms is limited to specific user communities, and
widespread adoption and further development are delayed. MD analysis solves this prob-
lem by abstracting access to the raw MD modeling data and presenting the user with
a single object-oriented Python interface. Thus, it allows users to write codes that are
portable and immediately usable in virtually all biomolecular modeling communities. The
UI and modular design work equally well in complex scripted workflows, as the basis for
other packages, and interactive and fast prototyping work in IPython/Jupyter notebooks,
especially when combined with molecular imaging provided by nglview and timing anal-
ysis of the rows using Pandas. MDAnalysis is written in Python and Cython and uses
NumPy arrays for easy interoperability with the wider scientific Python ecosystem.

MDPlot is an R library that can handle the output of various programs and provides
plotting functions to automate the visualization of molecular dynamics simulation results.
This is especially useful in cases where graph generation is quite tedious because of
complex file formats or when many graphs are generated. Supported plots range from
standard plots such as RMSD/RMSF (root mean square deviation and root mean square
fluctuation, respectively) to less standard plots, such as thermodynamic integration analysis
and monitoring of hydrogen bonds over time. Thus, working with data and integrating
additional file formats is straightforward. The download functions currently support the
GROMOS, GROMACS, and AMBER file formats.

7. Conclusions

This paper shows the possibility of analyzing the autonomous stability of structural
motifs. The supersecondary structures are compactly organized and stable elements of
proteins that can be studied as independent motifs. Dense spatial packing of α-α-corners
and high stability are provided by a multitude of hydrogen bonds and van der Waals
interactions of polar and charged side radicals with each other and within the immediate
environment. The MD study of the supersecondary motif, which is small in terms of the
number of atoms, in comparison with the whole protein molecule, is distinguished by high
performance, lower requirements for computing resources, and low cost of the experiment.

Isolated supersecondary structures are of interest for the study of structural changes
caused by amino acid substitutions and by PTMs. The study of diseases associated with
the appearance of modified aberrant proteins (proteinopathies) is the most accelerating
direction of structural biology [142]. The most significant breakthroughs are expected in
diagnostics of aberrant protein forms of amyloid-beta isomers in Alzheimer’s disease [143],
osteopontin b and c splice isoforms in prostate cancer [144], amino acid substitution in
protein C7 in type-2 diabetes [145], and amino acid substitution of the Ras protein in
pancreatic cancer and colorectal cancer [146]. Post-translational modifications specific to
serological proteins in patients with colorectal cancer are localized in helical pairs, including
α-α-corners. It is likely that the identified PTMs modulate the biological function of the
protein, and that the proteins themselves are associated with oncogenesis [15].
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