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Abstract: Trans-ferulic acid (FA) is a derivative of 4-hydroxycinnamic acid, which is found in many
food products, fruits and beverages. It has scientifically proven antioxidant, anti-inflammatory and
antibacterial properties. However, its low ability to permeate through biological barriers (e.g., the
blood–brain barrier, BBB), its low bioavailability and its fast elimination from the gastrointestinal tract
after oral administration limit its clinical use, e.g., for the treatment of neurodegenerative diseases,
such as Alzheimer’s disease. Therefore, new nanotechnological approaches are developed in order
to regulate intracellular transport of ferulic acid. The objective of this review is to summarize the
last decade’s research on biological properties of ferulic acid and innovative ways of its delivery,
supporting pharmacological therapy.
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1. Introduction

Phenolic compounds are an important group of natural substances of plant origin.
The health-promoting properties, such as anticancer, anti-inflammatory, etc., are pos-
sessed mainly by antioxidant compounds, and among them are flavonoids and phenolic
acids [1–3]. For this reason, new methods of their functionalization are developed so as to
increase their application in medicine [4,5].

Ferulic acid (FA) is found, among other, in the borage seeds, along with polyphenolic
compounds, such as quercetin, galangin and naringenin. Seed extracts of various Borago
species have high antiproliferative activity to HT-29 human colon cancer cells [6]. It is
also an ingredient of wheat bran, where it is found in the form of esters with sugars, such
as arabinose [7]. Meanwhile, in the form of glucosides, it is present, among others, in
Nitraria sibirica [8]. Bioavailability of ferulic acid is dependent on thermal treatment of
food products. It was observed that boiling of whole-grain barley varieties enhanced
extractability of phenolic acids [9]. Free ferulic acid, including in the form of esters, is
also found in the Persian walnut Juglans regia [10]. Additionally, it is the main ingredient
of foxtail millet phenolic extracts, which are highly active α-glucosidase inhibitors [11].
Moreover, it was identified in the marine brown seaweed Padina tetrastromatica, which may
be used for development of functional food with antidiabetic and antioxidant activities [12]
and in oleoresin from the Curcuma plant, which is a food industry waste [13]. In addition,
ferulic acid is found in pectin from sugar beet (Beta vulgaris) pulp obtained by extraction
with subcritical water [14] and in propolis [15].

From a medical point of view ferulic acid plays an important role in treatment of
neurodegenerative diseases, diabetes, cardiovascular diseases, inflammation, and also
bacterial and viral infections (Figure 1). It imposes an effect on structures and properties of
digestive enzymes, such as pepsin; thus, it may be an important ingredient in formulations
of food products for special medical purposes [16].
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tions of food products for special medical purposes [16]. 

 
Figure 1. Biological activity of ferulic acid. 
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zyme that is responsible for deamination of the central nervous system (CNS) neurotrans-
mitters, such as serotonin (5-HT), for which decreased levels lead to depression and dis-
orders of the satiety center [18]. According to earlier reports, increased levels of serotonin 
and norepinephrine in the hippocampus and frontal cortex were observed in mice treated 
with ferulic acid [19]. The compound shows antithrombotic activity [20] and anti-inflam-
matory properties and has a protective function in eye diseases, such as retinal degenera-
tion (observed after supplementation of mice diet with 50 mg/kg of FA) [21]. It also alle-
viates acute lung injury through inhibiting the TLR4/NF-κB signaling pathway [22]. Fer-
ulic acid amide derivatives demonstrated in vivo antidiabetic and hypolipidemic effects 
[23]. In addition, topical application of ferulic acid and its structural analogues may be an 
efficient and safe method of skin protection against photodamage. FA may be used as an 
antioxidant to prevent damage from ultraviolet (UV) radiation and skin carcinogenesis 
[24]. The chemical structure and, resulting from it, physicochemical properties, such as 
the intercalation into cell membranes, determine the biological activity of ferulic acid [25]. 
The compound is well soluble in fats and ethanol, whereas its solubility in water is low. 
Thus, so as to attain the optimal pharmacological activity, new formulations with ferulic 
acid must be well soluble in water and body fluids. Taking into account the interesting 
biological properties of ferulic acid and limitations in its medical use, the aim of this re-
view is to sum up the most recent research on pharmacological activity of this compound 
and new ways of its delivery based on nanocarriers, so as to increase the physiological 
role of phenolic acids and their derivatives. We summarized the research concerning fer-
ulic acid, its properties and innovative functionalization methods that have been reported 
over the last decade, in order to facilitate further study on using natural antioxidants, in-
cluding phenolic acids, in pharmacology and clinical trials. The recent advances in syn-
thesis of some FA prodrugs were also analyzed. 

Figure 1. Biological activity of ferulic acid.

Ferulic acid and its structural analogues have high antioxidant activity [17]. Being
an ingredient of green coffee, it inhibits the activity of monoamine oxidase (MAO)—the
enzyme that is responsible for deamination of the central nervous system (CNS) neu-
rotransmitters, such as serotonin (5-HT), for which decreased levels lead to depression
and disorders of the satiety center [18]. According to earlier reports, increased levels of
serotonin and norepinephrine in the hippocampus and frontal cortex were observed in
mice treated with ferulic acid [19]. The compound shows antithrombotic activity [20]
and anti-inflammatory properties and has a protective function in eye diseases, such
as retinal degeneration (observed after supplementation of mice diet with 50 mg/kg of
FA) [21]. It also alleviates acute lung injury through inhibiting the TLR4/NF-κB signaling
pathway [22]. Ferulic acid amide derivatives demonstrated in vivo antidiabetic and hy-
polipidemic effects [23]. In addition, topical application of ferulic acid and its structural
analogues may be an efficient and safe method of skin protection against photodamage.
FA may be used as an antioxidant to prevent damage from ultraviolet (UV) radiation and
skin carcinogenesis [24]. The chemical structure and, resulting from it, physicochemical
properties, such as the intercalation into cell membranes, determine the biological activity
of ferulic acid [25]. The compound is well soluble in fats and ethanol, whereas its solubility
in water is low. Thus, so as to attain the optimal pharmacological activity, new formula-
tions with ferulic acid must be well soluble in water and body fluids. Taking into account
the interesting biological properties of ferulic acid and limitations in its medical use, the
aim of this review is to sum up the most recent research on pharmacological activity of
this compound and new ways of its delivery based on nanocarriers, so as to increase the
physiological role of phenolic acids and their derivatives. We summarized the research
concerning ferulic acid, its properties and innovative functionalization methods that have
been reported over the last decade, in order to facilitate further study on using natural
antioxidants, including phenolic acids, in pharmacology and clinical trials. The recent
advances in synthesis of some FA prodrugs were also analyzed.

2. Main Pharmacological Properties of FA
2.1. Detoxification and Hepatoprotective Effects

Naturally occurring methoxylated phenolic acids, including FA, are thoroughly stud-
ied with respect to their detoxifying properties, because they may be used for treatment
of drug-induced side effects and for preventing toxicity caused for example by polyun-
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saturated fatty acids, carbon tetrachloride, arsenic or cadmium tetrachloride. Ferulic acid
inhibits liver fibrosis progression in non-alcoholic steatohepatitis (NASH) [26]. One of the
mechanisms of the activity of FA and its derivatives is also their ability to decrease the levels
of proinflammatory cytokines, indicating that FA is beneficial to the immune system [27].

Ferulic acid mitigates arsenic-induced developmental cardiotoxicity [28], ameliorates
lead-induced cognitive deficits in vivo [29] and shows protective effect against cadmium
chloride–mediated reproductive toxicity [30]. Additionally, it protects the male reproduc-
tive system from arsenic-induced toxicity [31] and protects liver cells from the tetrachloride-
induced injury [32].

Moreover, ferulic acid has protective effect against cardiac toxicity caused by doxoru-
bicin in rats [33]. Bami et al. [34] demonstrated that treatment with ferulic acid prevents
oxidative stress and regulates the levels of BUN (blood urea nitrogen), creatinine, MDA
(malondialdehyde), MPO (myeloperoxidase), TOS (total antioxidant status) and PtNT (pro-
tein nitrotyrosine) in rats treated with cisplatin. The cardioprotective effect of FA against
isoproterenol-induced cardiac toxicity in rats was described by Jain et al. [35].

The studies on the alleviation of arsenic-induced cardiotoxicity have also been
documented [28].

The antioxidant activity of ferulic acid leads to the reduction of harmful effects caused
by lead acetate, which is an ingredient of many cosmetics, hair dyes and plant protection
chemicals [36]. Moreover, the oral administration of ferulic acid to rats fed with a high-fat
diet alleviated development of non-alcoholic fatty liver disease (NAFLD) by reducing
the deposition of triglycerides and cholesterol in the liver [37]. The compound protects
AML-12 hepatocytes against palmitate-induced lipotoxicity by reducing ROS (reactive
oxygen species) accumulation and decreasing activation of proinflammatory cytokines,
i.e., IL-6 and IL-1β [38]. Therefore, the development of new forms of functional foods
enriched with ferulic acid is reasonable in the case of metabolic diseases. The in vivo study
with TAC (total antioxidant capacity assay) mice showed that FA exerts a positive effect on
gut microbiota, and, in this way, it improves cardiac functions [39]. It also has a modulatory
effect on dysregulated redox balance in ferric-induced pancreatic oxidative injury [40].

Ferulic acid can prevent acute liver injury by ameliorating inflammation and regulat-
ing GSK-3β/NF-κB/CREB pathway. It also decreases the activity of MPO, aspartate amino-
transferase (AST) and alanine aminotransferase (ALT) [41] and alleviates lipopolysaccharide-
induced inflammation and acute lung injury in mice [22].

2.2. Anticancer Activity

The anticancer activity of natural ferulic acid arises mostly from its capability to sup-
press reactive oxygen species that protects cellular components, such as DNA, peptides
and lipids, from oxidative damage. Moreover, the activity is due to the regulatory effect of
FA on intracellular signaling pathways, proliferation, apoptosis and metastasis [42–45]. In
the future, ferulic acid may be an important ingredient of multicomponent formulations, al-
leviating adverse effects of common chemotherapeutics used in treatment of drug-resistant
cancers [46].

It is known that ferulic acid has antitumor activity and that, at high doses, it is less
toxic to normal cells than to cancer ones. At a single dose of 300 µg/mL for 10 min, it did not
cause any toxicity to platelets (103/mL), leukocytes (103/mL) and erythrocytes (106/mL)
from blood samples that were drawn from healthy rodents [20]. There is also evidence that
high concentrations of FA (500 and 1000 µM) do not influence the cell viability in 786-O
human renal cancer cells [47]. Nevertheless, FA has proven anticancer activity against the
cells of human renal adenocarcinoma (ACHN) [48], human urinary bladder carcinoma
(T24) [49], human breast cancer (MDA-MB-231) [45] and human osteosarcoma (143B and
MG63) [50]. After a 48-h exposure of breast cancer cells (MCF-7) and liver cancer cells
(HepG2) to ferulic acid, the measured half-maximal inhibitory concentration values (IC50)
were 75.4 and 81.38 µg/mL, respectively. Additionally, the observed elevated levels of
caspase-8 and -9 indicated induction of apoptosis in the tested cancer cell lines [51]. More-
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over, FA at the concentration of 2 mM inhibits proliferation of human cervical cancer cells
HeLa and Caski by 88.3 and 85.5%, respectively, inducing cell cycle arrest [52]. Moreover,
ferulic acid at a dose of 200 µM inhibits the adhesion and migration of human lung (A549)
and colon adenocarcinoma (HT29-D4) cancer cells by 77.9 and 79.8%, respectively [53].
Combination of ferulic acid (10 µM) with drugs, such as epirubicin (1 µM), is a promising
therapeutic option for the treatment of breast cancer (MDA-MB-231) [54]. Moreover, the
compound enhances the effects of radiotherapy in lung (A549) and liver (HepG2) cancers
in later stages of treatment and protects normal lung fibroblasts (WI38) and peripheral
blood mononuclear cells (PBMCs) from radiation damage [55]. Moreover, derivatives of
FA, due to their strong histone deacetylase inhibitory activity, offer a promising strategy
for cancer therapy [56].

2.3. Other Properties of Ferulic Acid

Among other significant activities of FA, it is worth noting that it has antimicrobial,
photoprotective and anti-inflammatory properties [57,58]. For this reason, the compound is
found as an ingredient of dermocosmetic formulations against aging, hyperpigmentation
and acne [59]. There are also known neuroprotective [60]) and antidiabetic [61] properties
of ferulic acid, including the synergistic interaction of FA with hypoglycemic drugs [62].

Ferulic acid has antimicrobial activity, e.g., towards pathogenic bacteria E. coli O157:H7
ATCC 43888 and L. monocytogenes ATCC 7644 [63]. For this reason, it finds application
as an ingredient of antibacterial packaging materials based on natural polysaccharides.
Composite bacterial cellulose–chitosan membranes grafted with ferulic acid may find
applications in the food industry as a packaging material to extend the shelf life of food
and as dressing materials for slow-healing wounds [64]. Moreover, Liu et al. [65] used
ferulic acid for the preparation of innovative composite films used as a packaging material
for the preservation of shrimps. Moreover, it was shown that ferulic acid may ameliorate
sepsis-induced multi-organ failure. In the in vivo study in rats, the treatment with FA
decreased the levels of malondialdehyde (which is an oxidative stress marker), while
increasing both the levels of glutathione and the activity of superoxide dismutase and
glutathione peroxidase, which protect the organism against the damages of oxidative stress
in sepsis [66]. The increased level of oxidative stress may also have an impact on the activity
of tyrosinase, the enzyme belonging to the oxidase family. Ferulic acid, in combination
with 4-hydroxycinnamic acid, effectively inhibits tyrosinase activity (inhibition rate of
90.44%) [67].

3. Novel Strategies for Ferulic Acid Drug Delivery

Phenolic antioxidants, such as ferulic acid, have low toxicity and many important
physiological functions; therefore, they are widely used in pharmaceutical, food and
cosmetic industries. They are free radical scavengers, have affinity for lipid substrates and
may be important factors for antioxidant activity. However, their application is limited due
to their hydrophobic character and fast decomposition after oral application. For this reason,
new ways of its delivery, characterized by sustained release, are being developed (Figure 2).
The most common base materials used for the production of novel nanoformulations with
FA comprise dendrimers, polymers, certain enzymes, lipids, polysaccharides and also
noble metal ions, such as gold.

Qi et al. [68] proposed a novel oxygen delivery system based on hemoglobin modified
with ferulic acid that has the capacity to reduce oxidative side reactions and may be used
for production of red-blood-cell substitutes.

There is also research on new methods for the functionalization of ferulic acid in
order to improve its hydrophilicity. Yao and Sun [69] studied the possibility to use li-
pases: Candida antartica lipase-B, Candida antartica lipase-A and Thermomyces lanuginosus
(Lipozyme TL 100L) for preparation of glyceryl ferulate, which is an easily absorbable
form of ferulic acid that is used in cosmetology for the production of dermocosmetics that
protect skin from UV irradiation.
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An interesting way of simultaneous delivery of antioxidants of different lipophilicity
are solid-lipid nanoparticles. Oehlke et al. [70] used the method of hot homogenization to
prepare solid-lipid nanoparticles loaded with ferulic acid and tocopherol. The formulations
proved to have high antioxidant activity.

One of the innovative methods in modern aesthetic medicine is laser-assisted drug
delivery (LAD), which is used to improve the penetration of drugs into the skin, for
example, in treatment of scars [71]. A laser-assisted method of delivery of ferulic acid
together with vitamins C and E was developed by Waibel et al. [72]. Transdermal delivery
of ferulic acid by using microneedle arrays was studied by Yang et al. [73]. The group
of Bai et al. [74] prepared transdermal hydrogel patches with ferulic acid on the basis of
glycerin, dihydroxyaluminum aminoacetate and tartaric acid. Important for dermatology
and cosmetology is the development of innovative triptolide gels with ferulic acid, with
potential clinical importance [75]. Meanwhile, aerosol delivery of ferulic acid–loaded
nanostructured lipid carriers is a promising approach for the treatment of the respiratory
disorders [76].

Del Olmo et al. [77] performed the reaction of amidation-obtained first-generation car-
bosilane dendrimers functionalized with ferulic acid. These new polyphenolic compounds
exhibited higher antioxidant properties than free ferulic acid. The analogous reaction with
caffeic and gallic acids gave compounds that inhibited the growth of Gram-positive (+)
and Gram-negative (−) bacteria.

Anbazhagan et al. [78] prepared ferulic acid (FA) and paclitaxel (PTX) co-loaded
polyamidoamine (PAMAM) dendrimers G 4.5 conjugated with arginyl-glycyl-aspartic acid
(RGD) to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). Ferulic
acid delivered in the form of the RGD–PAMAM nanoaggregate enhanced intracellular
availability of the medication and induced apoptosis in P-gp-overexpressing multidrug-
resistant cells.

A more sophisticated method of increasing FA delivery in topical applications is
the development of polymeric nanocarriers. The size of nanoparticles ranges from 10
to 1000 nm, and, most often, they are based on poly(lactic-co-glycolic acid) PLGA. The
FA-encapsulated PLGA/PEO nanofibers showed high proapoptotic activity against human
breast carcinoma cells (MCF-7) [79].

Rajendran et al. [80] synthesized gold nanoparticles containing ferulic acid as a stabilizing
agent (FA-AuNPs), which was next tested for cytotoxicity on human skin cancer cells (A431)
and normal keratinocytes (HaCaT). The results confirmed that FA-AuNPs can be used in
dermato-oncology in the future, because they induce apoptosis in A431 cells.
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Johnson et al. [81] incorporated an FA molecule into fructo-oligosaccharide in order
to develop an oral prodrug active against colorectal cancer cells. Additionally, biocom-
patible hydrogels based on poly-(N-isopropylacrylamide) (PNIPAM) and copolymers
crosslinked with N,N-methylenebisacrylamide (BIS) were proposed as scaffold materials
for antioxidants [82].

A new way to improve the deficiency of phenolic acids is using a vesicular drug
delivery system. Rezaeiroshan et al. [83] designed and prepared niosomes—the vesicles
composed of non-ionic surfactants. Recent developments in therapeutic and nutraceutical
applications of p-methoxycinnamic acid from plant origin formulations with ferulic acid.
Then, the new preparation was evaluated for the in vivo anti-inflammatory activity in
rats, using the carrageenan-induced rat paw oedema test. The tested biogel inhibited the
oedema by over 20%.

Hassanzadeh et al. [84] designed a nanoformulation based on the silk fibroin as
a biomimetic substance coated with neutrophil-membrane-modified ferulic acid. The
prepared nanoparticles improved the pharmacological profile of FA and afforded selective
delivery of FA into the inflammatory pancreas lesion.

Thermosensitive chitosan/gelatin-based hydrogel containing encapsulated ferulic
acid was designed by Wang et al. [85]. The new preparation provided the sustained
release of FA. Moreover, it decreased endogenous reactive oxygen species production,
improved flow of blood, improved muscle regeneration and decreased inflammation in
veins. Therefore, it may be useful in therapy of peripheral arterial disease.

An excellent way to increase the delivery of FA after oral administration was the
development of a new nanocarrier system based on chitosan nanoparticles loaded with
phospholipid complex (FAPLC CNP) [86]. Another method to improve therapeutic efficacy
of ferulic acid may be using aerosolized chitosan nanoparticles, which are supposed to be ef-
fective in treatment of asthma [87]. Chitosan–ferulic–bovine serum albumin microcapsules,
obtained by the spray-drying technique, demonstrated high thermal stability and in vitro
sustained release; thus, they may find application as carriers in novel functional foods, as
well as in drug delivery systems [88]. Dermal absorption of ferulic acid delivered in the
form of stable w/o/w emulsions with antioxidant properties was developed by the team
of Mancuso et al. [89]. The formulation proved capable to treat UV-B-induced erythema.

Amphiphilic polymers of chitosan with ε-caprolactone and covalently bonded fer-
ulic acid were prepared for the targeted delivery of antitubercular drugs by
Praphakar et al. [90]. Poornima and Korrapati [91] developed innovative nanofibers
based on the polycaprolactone-grafted chitosan for the simultaneous delivery of ferulic acid
and resveratrol.

Phenolic acids, due to their antioxidant properties, represent an attractive research topic
in the field of innovative nutraceuticals. Stable lipid-core nanocapsules based on poly(ε-
caprolactone) polymer and loaded with ferulic acid were prepared by Granata et al. [92].

Panwar et al. [93] used an ionic gelation method to prepare chitosan–tripolyphosphate
pentasodium (CS–TPP) nanoparticles (NPs) with ferulic acid. The obtained formulation
exerted a high antiproliferative effect on human cervical carcinoma cells ME-180.

A promising solution seems to be using a free-radical-induced grafting procedure
(ascorbic acid/hydrogen peroxide pair as radical initiator) to prepare chitosan–ferulic acid
nanocapsules with application potential [94]. Moreover, ferulic acid in combination with
aspirin shows chemopreventive potential towards pancreatic cancer when delivered using
chitosan-coated solid-lipid nanoparticles [95].

There is also known a method of preparation of new pharmaceuticals with the use of
cellulose acetate as a polymeric matrix for ferulic acid. One of the methods is to prepare
a cellulose acetate membrane impregnated with a lipid solution, aiming to mimic skin-
barrier function for ferulic acid release [96].

The obtained formulation ensures the sustained release of the active substance [97].
Attempts have also been made to immobilize FA in the solid porous resin Lewatit®, which
provides the nanoparticles with narrow size distributions [98].
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The antioxidant activity of ferulic acid was an inspiration for designing an innovative
ophthalmic insert composed of hyaluronan nanofibers and ε-polylysine for the treatment
of eye diseases [99]. Similarly, Varela-Garcia et al. [100] designed innovative polymeric
contact lenses for the controlled delivery of ocular drugs with ferulic acid. Hydrogels were
prepared from the mixtures of 2-hydroxyethyl methacrylate (HEMA), glycidyl methacrylate
(GMA) and ethyleneglycolphenylether methacrylate (EGPEM). The proposed solution may
be used for the treatment of several eye diseases, including age-related ones. Furthermore,
Romeo et al. [101] proposed ferulic acid delivery through polymeric nanoparticles (NPs)
consisting of polylactic acid (PLA) and poly(lactic-co-glycolic acid) (NPB) as an effective
system for the treatment of eye problems.

A new way of oral FA delivery aiming to reduce the rate of its metabolic conversion
and renal elimination, along with increasing its distribution in the brain and improving
hypnotic efficacy, was proposed by Liu et al. [102].

In the search for effective ways to control the delivery of antioxidants, whey protein,
in combination with maltodextrin, is also studied. Zyaitdinov et al. [103] used this method
to encapsulate the polyphenols from oat bran with a high content of ferulic acid. This
technique may be used for the preparation of functional food, rich in nutraceuticals. Zein–
casein–lysine protein nanoparticles were developed by Reference [104] to modulate the
intestinal permeability of ferulic acid and to afford its sustained delivery.

Nanoparticles of ferulic acid and zinc oxide have cytoprotective activity against renal
ischemia, which may be due to the enhancement of cell proliferation, upregulation of
the antioxidant genes expression (e.g., Nrf2, HIF-1α) or their anti-inflammatory activity
(downregulation of TNF-α) [105].

Moreover, in recent years, the development of safe methods of delivery of chemother-
apeutics to cancer cells, with the help of non-toxic carriers, has gained more and more
importance. Polymers based on natural products may serve as such matrices. Nanopar-
ticles of poly (ferulic acid)-containing doxorubicin (PFA–DOX) demonstrated reduced
physical toxicity in vivo compared with free doxorubicin. Additionally, PFA nanocarriers
promoted the accumulation of a chemotherapeutic at the tumor site, which supports tumor
suppression [106].

Conjugates of ferulic acid with carboxylic curdlans had lower thermal stability and
rheological properties than carboxylic curdlans without FA, but their antioxidant activity
was very high. Emulsions containing these conjugates showed good β-carotene stability,
whereas emulsions without FA did not protect β-carotene from chemical degradation [107].

The o/w emulsions stabilized with ferulic acid–grafted curdlan conjugate (Cur-D-
g-FA) were also obtained by Yu et al. [108] in order to improve chemical stability and
bioavailability of β-carotene.

Nanocomposite gels based on alginate and prebiotic arabinoxylan materials con-
taining probiotic bacterial cultures (Lactobacillus plantarum) and ferulic acid (1.78 µg/g
of arabinoxylan oligosaccharides) demonstrated high stability and resistance to gastric
conditions [109]. The new nanosystems for ferulic acid delivery are summarized in Table 1.

Table 1. The new formulations of ferulic acid.

Formulation Physicochemical Characteristic Activity Reference

FA-SLN
Solid-lipid nanoparticles loaded with

ferulic acid

Zeta potential: −25 to −43 mV
Final FA contents in the SLN: 0.56 and

2.80 mg g−1 of dispersion
Stable antioxidant activity [70]

Laser-assisted method of delivery of
ferulic acid together with vitamins C No data ↑Wound healing and

prevents scarring [71]

Transdermal hydrogel patches with
ferulic acid, on the basis of glycerin,

dihydroxyaluminum aminoacetate and
tartaric acid

No data ↑ Release of FA from the paste;
difficult to permeate through the skin barrier [74]
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Table 1. Cont.

Formulation Physicochemical Characteristic Activity Reference

FA-loaded NLCs
Aerosol delivery of ferulic acid-loaded

nanostructured lipid carriers

Particle size: 54.9–148.6 nm
Polydispersity index: 0.15–0.37

Zeta potential: (−19.8)–(−25.3) mV
Entrapment efficiency: 44.3–94.3%

↑ Period of cytotoxicity time against lung
cancer cells (A549);
↑ Pharmacokinetic

profile of FA

[76]

Gn-[Si(CH2)3NHC(O)FA]2 (G1)
Gn-[Si(CH2)3NHC(O)FA]8 (G2)

First-generation carbosilane dendrimers
functionalized with ferulic acid

NMR characterized

No improving the antioxidant activity (DPPH)
Antibacterial activity:

MIC (ppm) > 16 (S. aureus and E. coli)
% Viability of HFF cells:

95.4 (G1)
92.9 (G2)

[77]

RGD-PAMAM-FP
Ferulic acid (FA) and paclitaxel (PTX)
co-loaded polyamidoamine (PAMAM)

dendrimers G 4.5 conjugated with
arginyl-glycyl-aspartic acid (RGD)

Zeta potential: −31.3 mV
Size: 144.6 nm

↑ Release of FA;
↑ effectiveness of

drug therapy, especially in the treatment of
MDR cancers;
↓ P-glycoprotein

expression

[78]

FA-encapsulated PLGA/PEO nanofibers Fiber diameter: 150 ± 47.4 to
200 ± 79 nm

Morphological changes in MCF- 7 cells signs
for antiapoptotic effect;

↓ viability of HEK- 293 cells
[79]

FA-AuNPs Size: 34.2 nm
Polydispersity index (PDI) = 0.137

Antiangiogenic properties; encouraged
programmed cell death in A431 cells.

Proapoptotic:
↓Mitochondrial membrane potential,

Improved the ROS; ↑activation of caspase-3
leading to apoptosis

[80]

Biocompatible hydrogels based on
poly-(N-isopropylacrylamide)

(PNIPAM) and copolymers crosslinked
with N,N-methylenebisacrylamide (BIS)

No data ↑ Antioxidant properties;
↑ time release [82]

Niosomal biogel of TFA
(trans-ferulic acid)

EE = 21.64%
Particle size: 158.7 nm

Anti-inflammatory effect;
inhibited the oedema about 21.37% [83]

FA-SF-NPs
nanoformulation based on the

silk fibroin

Size: 186.3 nm
PDI: 0.17

Zeta potential: −36.4 mV

↓ Levels of enzymes;
prevented the significant enhancement of the
inflammatory cytokine levels IL-1β, TNF-α

and IL-6; and
selective accumulation of FA in the

inflammatory lesions of the pancreas

[84]

FA-gel
chitosan/gelatin-based hydrogel

containing encapsulated ferulic acid

Gelation time: 64.75 ± 3.31 s at
37 ◦C

Antioxidant effect;
decreasing endogenous reactive oxygen

species production, inflammation-related gene
expression and apoptosis level; improves
blood flow and muscle regeneration; and

decreases inflammation in veins

[85]

Chitosan nanoparticles loaded with
phospholipid complex (FA-FAPLC CNP)

Particle size ~123.27 nm,
PDI value ~0.31

Zeta potential: ~32 mV
Spherical-shaped morphology

↑ Aqueous solubility of FA around ~(12-fold),
↑ antioxidant activity and ↑ oral bioavailability [86]

Aerosolized hyaluronic acid decorated,
ferulic acid–loaded

chitosan nanoparticles

Size: 164.2 ± 9.7 nm
Zeta potential: (24.0 ± 0.5 mV)
Entrapment efficiency: (EE%)

(65.0 ± 1.5)
Loading capacity: (LC%) (18.5 ± 0.4)
Mass median aerodynamic diameter

(MMAD) of 1.81 ± 0.15 µm

↑ Interaction and transportation across
mucus barrier [87]

Ferulic acid delivered in the form of
stable w/o/w emulsions

↑ Percutaneous permeation;
possible topical application in

photo-induced erythema
[89]

CS-g-PCL/FA
chitosan with ε-caprolactone and

covalently bonded FA
Average size: 100–210 nm Potential for delivery of hydrophobic

antitubercular drugs [90]
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Table 1. Cont.

Formulation Physicochemical Characteristic Activity Reference

FA-chitosan-polycaprolactone
nanofibers Size: 200–240 nm

Antioxidant activity
Cytocompatible and able to provide sustained
Release of bioactive to support keratinocytes

growth in vitro non-hemolytic activity
Improve keratinocytes migration in vitro

[91]

FA-NC
nanocapsules based on poly(ε

caprolactone) polymer, loaded with FA

Nanoparticles loaded with
hydroxycinnamic acids (HA-NCs)

have diameter of 224–253 nm,
encapsulation efficiency of 53–78%,
and are stable over time (30 days).

Zeta potential: −7 mV
EE: 62%
pH: 4.2

PDI: 0.08
FA loaded amount: 0.62 mg/mL

Protect the HAs in simulated gastric fluid
(SGF) and release them in simulated intestinal

fluid (SIF)
[92]

FA/CS–TPP NPs
chitosan–tripolyphosphate pentasodium

(CS–TPP) nanoparticles (NPs) with
ferulic acid

No data Antiproliferative activity against ME-180 cells [93]

Microencapsulates of BSA with ferulic
acid–grafted chitosan Primary absorption peak at 350 nm ↑ Sustained-release effection [94]

Chitosan-coated solid-lipid
nanoparticles

Particle sizes: 183 ± 46 and
229 ± 67 nm

Encapsulation efficiency of 80 and 78%
Zeta potential of 39.1 and 50.3 mV

Chemopreventive effects on 40-fold decreases
in dose of FA

against human pancreatic cancer cells MIA
PaCa-2 and Panc-1

suppressed the growth of the tumor by 45%;
decrease expression of proliferation proteins

PCNA and MKI67; and also increased
expression of apoptotic proteins p-RB, p21

and p-ERK1/2

[95]

FA-cellulose acetate nanostructures Average diameter of 760 ± 130 nm Drug loading: 71.5% [97]

FA-Lewatit®

Immobilize FA in the solid

Changes in the FTIR-ATR peaks
1685/cm (FA)

1267/cm (C=O)
and 1184/cm (O–C)

Average release of 32 mg FA/g of dry loaded
resin (recovery of 22%) [98]

FA-NA-ε-PL-PVP
Hyaluronan nanofibers and ε-polylysine

mean thickness of 270 ± 21 µm and
273 ± 41 µm

Innovative ophthalmic insert composed of
hyaluronan (HA) nanofibers for the dual

delivery of an antioxidant (ferulic acid, FA)
and an antimicrobial peptide

(ε-polylysine, ε-PL)
antibacterial activity:

Pseudomonas aeruginosa and
Staphylococcus aureus

[99]

FA-loaded G400E200-0
and G400E200-C hydrogels

Hydrogels functionalized with the
nitrogenous base cytosine for the
controlled uptake and release of

transferulic acid (TA)

FRIR
strong band at 1655 cm−1 (amide

carbonyl group)

↑ Accumulation of FA in cornea and
sclera tissues [100]

Polymeric nanoparticles (NPs)
consisting of polylactic acid (NPA) and

poly(lactic-co-glycolic acid) (NPB)

FA-NPAs:
Size: 178 nm

PDI: 0.056
Zeta potential: −33.7 mV

FA-NPBs:
Size: 219 nm

PDI: 0.207
Zeta potential: −23.80

Promising carriers for ocular
drug delivery [101]

Self-microemulsifying drug
delivery system:

FA-loaded SMEDDS
Droplet size: 15.24 nm

Oral bioavailability: 185.96%
Higher distribution in the brain and enhanced

serotonin levels in the brain
Extended the sleep time by 2-fold and has

good stability

[102]
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Table 1. Cont.

Formulation Physicochemical Characteristic Activity Reference

Zein-casein-lysine
protein-FA-nanoparticles

Size: 199 nm
Zeta potential: −26 mV

Modulate the intestinal permeability of FA
Prolonged FA release

safe profile against Caco-2 and
HT29-MTX cells

[104]

Combination FA and ZnO-NPs No data

Significant improvement in the elevated serum
creatinine and BUN and MDA concentrations
and expression of TNF-α, Bax and caspase-3 in

kidney tissues
Rise in the creatinine clearance, the activities
of catalase (CAT) and superoxide dismutase
(SOD) and the expression of HO-1, HIF-1α

genes and proliferation marker (ki67) in
kidney tissues

[105]

PFA–DOX NPs
nanoparticles of poly(ferulic acid)

containing doxorubicin
No data

Accumulation and retention at the tumor site
Superior tumor suppression.

Improving safety
Reduced the physical toxicity of free DOX

[106]

FA-grafted curdlan conjugate
(Cur-D-g-FA)

Zeta potential:
−22.57–(−34.87) mV

Favorable bioaccessibility of BC in vitro
oxidation stability [108]

↓/↑—decrease/increase in activity.

4. Prodrugs of FA

Prodrugs are substances that are administered in a pharmacologically inactive form,
and after administration, they are metabolized in vivo into the active drugs. When de-
veloping prodrugs, researchers focus on the optimization of the absorption, distribution,
metabolism and excretion (ADME) properties. An important feature of biologically active
substances is their ability to permeate across biological barriers, including getting into
the CNS by crossing the blood–brain barrier (BBB). It was observed that amide-based
prodrugs of ferulic acid with an aromatic ring were effectively bound to the L-type amino
acid transporter (LAT1) (Figure 3) and used the transporter for cellular uptake in vitro
and crossed the BBB after in situ perfusion in mice [110]. The amide prodrug with the
promoiety directly conjugated in the meta-position to ferulic acid underwent the bioconver-
sion to the parent drug in mouse brain. It is worth noting that the analogous ester-based
prodrug did bind to LAT1 but did not utilize the transporter for cellular uptake in ARPE-19
cells. However, the presence of an ester linker between the prodrug and the parent drug
promoted favorable bioconversion properties in humans.
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A new amino acid–based prodrug for simultaneous intestinal release of silybin and
ferulic acid was developed by the team of Trombino et al. [111]. The carrier for the synthe-
sized l-phenylalanine-N-(4-hydroxy-3-methoxyphenyl) prop-2-en-O-(2R,3R)-3,5,7-trihydroxy-
2-((2R,3R)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-2,3-dihydro-benzo-(1,4)-dioxin-
6-yl)croman-4-one was 1-phenylalanine, which has an intrinsic chemical reactivity due to
the presence of an amine group, placed on the chiral center, and a carboxylic group. Ferulic
acid is attached to the amine group of the amino acid by the amide bond (Figure 4). The
obtained prodrug demonstrated high antioxidant activity under simulated physiological
conditions; therefore, this method might be used for improving therapeutic potential of
other highly reactive and poorly water-soluble biological substances.
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propenoyl-L-alanyl-L-proline.

Another compound of this group is GAP, a new prodrug of known chemopreventive
agent used in the treatment of colon cancer, namely 3-(4′geranyloxy-3′-methoxyphenyl)-2-
trans-propenic acid (Figure 4), which was investigated by Reference [112]. The results of
this study clearly indicate that GAP effectively inhibited colitis-related colon carcinogenesis
in mice with no side effects. Dietary GAP had a modulatory effect on cell proliferation
by alleviating the oxidative stress (lowering tissue expression and urinary level of 8-
OHdG) and enhancing expression of the antioxidant enzyme HO-1. The prodrug of
4′-geranyloxyferulic acid was designed to be hydrolyzed by the intestinal exopeptidase,
which specifically hydrolyzes the last peptide bond in tripeptides in which + -Ala (or Gly)
and L-pro occupy the second last and last positions, respectively.

Tan et al. [113] designed new PtIV prodrugs of oxoplatin (cis,cis,cis-[PtCl2(NH3)2(OH)2]),
[PtIVCl2(NH3)2(O2C-FA)2] (Pt-2) and [PtIVCl2(NH3)2(O2C-RH)2] (Pt-3), by conjugating ox-
oplatin with ferulic acid and rhein, which have well-known biological activities. Antitumor
activity of the new complex compound towards lung cancer cells (A549) and lung cancer
xenograft mice model cells (A549/DPP) was higher (67.45% of inhibition) than that of
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cisplatin (33.05% of inhibition). What is more, the highest concentration of the prodrug was
observed in the mitochondria; thus, the proposed anticancer strategy may be a promising
approach to personalized anticancer therapy.

There is also research on new phenolipids with amphiphilic properties. Ferulic acid
was esterified with butanol to produce butyl ferulate, which was further dihydroxylated,
followed by esterification with butyric anhydride to produce a phenolipid containing
butyric acid. The obtained phenolipid showed higher antioxidant activity than the substrate
(evaluated by the linoleic acid oxidation method) [114].

5. Conclusions

Ferulic acid demonstrates multiple pharmacological activities, evaluated both in vitro
and in vivo. It has anti-inflammatory and antitumor properties, as well as antidepressant
and hepatoprotective ones. Its strong antioxidant activity is used, among others, in the food
industry, dermatology and cosmetology. Nevertheless, due to the low lipophilicity, clinical
and industrial applications of ferulic acid are limited. Therefore, there is a search for new
forms of its delivery in order to increase its bioavailability and a possibility of practical use.
The methods of functionalization of ferulic acid include the preparation of prodrugs of FA
and development of innovative ways of its delivery. Polysaccharide-based matrices and
polymeric nanoparticles are tested as the delivery vehicles. There are developed hydrogels
and encapsulates with ferulic acid based on cellulose acetate, hyaluronates, glycerin,
dihydroxyaluminum aminoacetate, tartaric acid, lipid nanoparticles and nanoparticles of
precious metals, such as gold, which have interesting therapeutic properties.
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