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Abstract: Glioblastoma multiforme (GBM) is one of the most malignant central nervous system
tumors, showing a poor prognosis and low survival rate. Therefore, deciphering the underlying
molecular mechanisms involved in the progression of the GBM and identifying the key driver genes
responsible for the disease progression is crucial for discovering potential diagnostic markers and
therapeutic targets. In this context, access to various biological data, development of new method-
ologies, and generation of biological networks for the integration of multi-omics data are necessary
for gaining insights into the appearance and progression of GBM. Systems biology approaches have
become indispensable in analyzing heterogeneous high-throughput omics data, extracting essential
information, and generating new hypotheses from biomedical data. This review provides current
knowledge regarding GBM and discusses the multi-omics data and recent systems analysis in GBM
to identify key biological functions and genes. This knowledge can be used to develop efficient
diagnostic and treatment strategies and can also be used to achieve personalized medicine for GBM.
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1. Introduction

Glioblastoma (GBM) is an aggressive and malignant cancer of the central nervous
system (CNS) [1,2], with a high incidence rate (3.23 per 100,000) [3]. Based on the increasing
evidence that early cancer diagnosis is life-saving [4], discovering biomarkers that could
be detected before the clinical presentation of cancer symptoms might improve survival.
Currently, the standard treatment approaches for GBM are surgical, radiotherapy, and
chemotherapy [5]. However, recurrence is one of the leading causes of the low survival
rate of GBM [6,7].

The increment of biological data obtained with the enhanced technology and emer-
gence of multi-omics approaches could lead to a reinterpretation of the molecular mecha-
nisms of GBM and enable the development of treatment approaches. The systems biology
methodologies provide a systems-level assessment of molecular events to find drug targets
for therapeutic purposes. Data obtained by high-throughput screening and computational
biology methods open up avenues of repurposing approved chemical agents as drugs with
tolerable side effects for cancer patients [8]. Moreover, innovative treatment approaches,
such as drug repositioning, might help in finding rapid solutions in the fight against
GBM [8].
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2. Biological Basis of Glioblastoma
2.1. Epidemiology and Classification

Although the global incidence of CNS cancers (1.7%) is less than the other types of
cancer, GBM is one of the cancer types with the highest mortality rate (median survival
8 months) [3,9]. Today, GBM accounts for 14.5% of all cancer types in CNS and 48.6% of
malignant CNS tumors [3,9]. According to the WHO classification of CNS tumors (5th
edition, 2021), glioblastomas have been divided into primary and secondary. Primary
glioblastoma is defined as diffuse astrocytic tumors in adults that must be IDH-wildtype,
and secondary glioblastoma equates to astrocytoma, IDH mutant, WHO CNS grade-
4 [10,11]. In addition, three variants are recognized, which are giant cell glioblastoma,
gliosarcoma, and epithelioid glioblastoma. The genetic criteria for a diagnosis of IDH-
wildtype glioblastoma are stated as TERT promoter mutation or EGFR gene amplification
or +7/−10 chromosome copy number changes [11]. Of note, in younger age groups, the
diagnosis should be based on the different types of diffuse pediatric-type gliomas [11].

2.2. Pathogenesis: Molecular Features and Genomic Alteration

Molecular studies have revealed major genetically based events in the develop-
ment of GBM: (1) Retinoblastoma tumor suppressor and p53 deactivation pathways;
(2) phosphatidylinositol-3-OH kinase (PI3K) pathway activation; (3) growth factor sig-
naling defects depending on receptor tyrosine kinase (RTK) activation [12,13]. Since the
WHO-based classification is a histological classification, it may not be sufficient to distin-
guish between molecular differences and genetic alterations. Therefore, molecular features
of GBM could help improve the classification. For example, classical, mesenchymal, and
proneural subtypes are mainly classified according to the molecular subtyping [14]. Dif-
ferences in gene expression profiles of PDGFRA-IDH1, EGFR, and NF1 could be used to
determine the proneural, classical, and mesenchymal types, respectively [13]. Moreover,
genomic screening may identify more profound and more extensive oncogenic alterations.
According to The Cancer Genome Atlas (TCGA) study, the highly deregulated signaling
pathways in GBM are RTK/PI3K signaling pathways, P53, RB, RTK/RAS, PI3K class
1/AKT, and PI3K class 2 signaling pathways. These pathways are involved in cell migra-
tion, cell survival, cell cycle, DNA repair, and apoptosis mechanisms, known as typical
cancer cell hallmarks [15].

In the last few years, CRISPR technology has expeditiously revolutionized the genetic
research, by enabling the investigation of the molecular mechanisms in tumorigenesis and
revealing the targets for drug development. Forward genetic screens using CRISPR-Cas9
systems have been performed to identify the driver genes for cell survival in solid tumors,
including GBM. For instance, MacLeod et al. identified the members of SOX transcription
factor family (SOCS3, USP8, and DOT1L) and protein ufmylation are the regulators of the
growth of glioblastoma stem cells [16]. Similarly, Prolo et al. showed the role of MAP4K4
in the glioblastoma invasion using CRISPR-Cas9 loss of function screens [17].

2.3. Heterogeneity

Histological studies reveal that GBM is a highly heterogeneous tumor regarding cell
types, cell sizes, cell density, mitosis number, vascularization, and necrosis distribution.
The integrated multi-dimensional genome sequence, transcriptomic, and epigenomic anal-
ysis helped discover and categorize oncogenic somatic alterations, in addition to the cancer
candidate genes shown in previous studies (e.g., TP53, MDM2, MDM4, PTEN, NF1, EGFR,
CDKN2A, RB1, CDK4, PIK3R, PIK3CA, PIK3R1, and IRS1) [18–20]. Today, only a few
large-scale genomic and epigenetic studies have enabled the discovery of new candidate
genes and helped in understanding the heterogeneity [12]. As an example, non-GBM-
related IDH1 mutation and chromosomal abnormalities, such as somatic mutations or copy
number changes, are shown to contribute to heterogeneity [19]. Heterogeneity could be
distinguished based on the gene expression profile, as in the distinction of GBM subtypes,
such as proneural, neural, classical, and mesenchymal. For example, the proneural subtype
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with intact PTEN and normal EGFR expression could be characterized by the expression of
genes associated with normal brain tissue and neurogenesis [20]. In parallel, DNA methy-
lations, especially hypermethylation of CpG islands, is one of the hallmarks of human
cancers. Hypermethylation of the CpG island in the promoter region often causes tran-
scriptional silencing of the associated gene by blocking the required transcription factors’
binding to transcription initiation sites. DNA methylations have been found in promoter-
associated CpG island hypermethylation in human GBM and other glioma subtypes [18].
The miRNA alteration is another critical factor in post-translational modifications and
plays a crucial role in modifying genes involved in carcinogenesis, cancer invasion, and
escaping from apoptosis mechanisms [18]. Clinically, according to the miRNA expression
profile, GBM is divided into five subtypes: Astrocytic, neural, oligoneural, radial glial, and
neuromesenchymal [21].

2.4. Tumor Microenvironment

Solid cancers change their microenvironment by utilizing intercellular matrices. In
addition, GBM shows the same behavior. However, it usually does not spread to localized
niches outside CNS. Instead, it is in the region where it originated and is protected from the
immune system behind the BBB. However, it has also been reported that recurrent GBM
might occur at a location farther from the region where it has first appeared. Therefore, the
therapy resistance due to dynamics and a poorly accessible microenvironment pose a great
challenge to treat GBM [22].

The GBM microenvironment comprises proliferative malignant astrocytoma, cancer
stem cells, pericytes, stromal, vascular endothelial, and immune cells. These cells create
different niches, including angiogenic tumor niche, invasive tumor niche, and hypoxic
tumor niche. Moreover, in these niches, different tumor cell types and non-cancerous cells
(e.g., microglia, dendritic cells, lymphocytes, macrophages) change the form dynamically
by interacting within the extracellular matrix framework. Although these niches provide
features, such as metabolic abnormality, cell growth, invasion, and glioma stem cell pro-
duction, the typical feature is the vasculature in the niche environment. For example,
tumor cells move toward abnormal angiogenic vasculature in niches. On the other hand,
tumor cells migrate into the brain parenchyma using ordinary blood vessels in invasive
niches. Finally, in the hypoxic niche, a necrotic area surrounded by hypoxic tumor cells is
formed [23].

2.5. Crosstalk between Tumor Cells and Their Microenvironment

Studies have shown that microglial or astrocytes stimulate the growth of GBM [24].
There is also evidence that tumor cells communicate with neurons through synaptic con-
nections [25]. The interaction of tumor cells with microglia and astrocytes are orchestrated
by the changes in the extracellular matrix and cytoskeleton. These interactions are estab-
lished by non-coding RNA, cytokines, chemokines, neurotrophic factors, morphogenic
factors, ABC transporters, extracellular vesicles, and metabolic factors [25]. Some metabo-
lites protect tumor cells from the immune system by forming an immunosuppressive
microenvironment [26].

During the progression of GBM, the BBB allows immune cells to enter the blood
circulation and causes neuroinflammation, which induces glial activation and chemoattrac-
tion. Marker studies have shown that microglial cells have a pro-tumor phenotype [24].
For instance, microglial cells produce plenty of pro-inflammatory substances, such as
nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), and other interleukins (ILs), that
stimulate astrocyte activation and cause progressive BBB degradation, which can in turn
cause irreversible BBB degradation. Furthermore, it has been shown that glial cells in the
tumor microenvironment stimulate tumor proliferation by expressing arginase-1 (ARG-1).
In addition, tumor cells induce astrocytes to be more reactive by interacting with astro-
cytes/microglial cells through the extracellular vesicles [24].
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2.6. Diagnosis and Current Therapy Approach

The current GBM therapy includes radiotherapy and chemotherapy following surgery
(Figure 1). However, due to the molecular heterogeneity of GBM, tumor recurrence is
highly possible. Therefore, some genetic markers (e.g., IDH1/IDH2 mutations, MGMT
promoter methylation, EGFR mutation/amplification, TP53 mutation, PTEN mutation) and
medical imaging have been used as a prognostic prediction in clinical trials (Figure 1) [27].
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Following the development of sequencing technologies and advances in multi-omics
analyses, personalized therapeutic approaches have become possible. Therefore, new GBM
treatment approaches, such as antibody-based drugs, vaccines, growth factor receptors
targeted molecular inhibitors, inhibitors blocking immune checkpoints, immune system
redirection therapies, and tumor-targeted oncolytic viruses, are some approaches under
development [28].

3. Systems Biology Approaches to GBM

Several biological data sources and disease models have been established to help
researchers characterize the disease, develop treatment approaches, and conduct drug
studies to tackle GBM. This knowledge could be derived from in vitro, in vivo, and in
silico studies. However, the GBM tumor extracted by surgical treatment and post-mortem
tissue is the primary source of biological data. Moreover, to produce biological data,
GBM models made by both animal and cell lines could be developed by silencing tumor
suppressors, such as P53, NF1, PTEN, RB/p107/p130 or the activation of oncogenes, such as
EGFR, HRasV12, KRasG12D, PDGF, and virus intervention [29,30]. Scientists could multi-
dimensionally investigate GBM metabolism through multi-omics approaches and generate
a wide variety of biological data through studies with cell lines, model organisms, and
post-mortem tissues. In addition, metabolite measurements from the cerebrospinal fluid
and blood facilitate the range of information and biomarker studies. With the enhancement
in the high-throughput technologies, the multi-omics approaches can cover the central
dogma and its beyond.

Systems biology is a holistic approach focusing on the relationship between biological
components rather than individual molecules to decipher biological systems’ complex-
ity [8,31]. Systems biology approaches could comprehensively evaluate the interpretation
of multi-omics data derived from wet-lab experiments. The success of systems biology
approaches, which aim to perform realistic predictions regarding biological conditions, is
closely dependent on the quality of the measured data and the computational methods [32].
Human, technical, and environmental factors may cause bias in human tissue samples and
biological data [33]. Published datasets that passed the quality control are considered safe
for further analyses (Table 1).
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Table 1. Omics sources for GBM.

Resources Omics Layer Notes Reference
Projects

TCGA Genomics, Proteomics,
Transcriptomics, Epigenomics

http://cancergenome.nih.gov/,
accessed on 29 October 2021

CGP Genomics, Proteomics,
Transcriptomics, Epigenomics

https://www.sanger.ac.uk/,
accessed on 25 October 2021

ICGC Genomics, Transcriptomics,
Epigenomics

https://daco.icgc.org/, accessed
on 23 October 2021

CPTAC Proteomics, Genomics https://proteomics.cancer.gov/,
accessed on 19 October 2021

Databases

GEO Genomics, Transcriptomic
https:

//www.ncbi.nlm.nih.gov/geo/,
accessed on 19 October 2021

Expression Atlas
Genomics, Proteomics,

Transcriptomics, Epigenomics,
Interactomics

https:
//www.ebi.ac.uk/gxa/home,
accessed on 29 October 2021

ArrayExpress
Genomics, Proteomics,

Transcriptomics, Epigenomics,
Interactomics

https:
//www.ebi.ac.uk/arrayexpress/,

accessed on 23 October 2021

Human Protein Atlas Proteomics, Transcriptomics https://www.proteinatlas.org/,
accessed on 25 October 2021

DDBJ Genomics, Transcriptomics https://www.ddbj.nig.ac.jp/,
accessed on 24 October 2021

ENCODE Genomics, Transcriptomics,
Epigenomics

https:
//www.encodeproject.org/,
accessed on 19 October 2021

StarBase Interactomics Pathway browser, Analysis tools http://starbase.sysu.edu.cn/,
accessed on 29 October 2021

BioGrid Interactomics Biological interaction, PPI https://thebiogrid.org/, accessed
on 22 October 2021

Reactome Genomics, Proteomics,
Transcriptomics, Interactomics

Reactions, Pathway browser,
Analysis tools, Visualization

https://reactome.org/, accessed
on 29 October 2021

KEGG Proteomics, Transcriptomics,
Proteomics, Interactomics

Reactions, Pathway browser,
Analysis tools, Visualization

https://www.genome.jp/kegg/,
accessed on 29 October 2021

STRING Interactomics Pathway browser, Analysis tools,
Visualization

https://string-db.org/, accessed
on 15 October 2021

HMDB metabolomics Pathway browser, Analysis tools https://hmdb.ca/, accessed on 13
October 2021

GeneBank Genomics Analysis tools
https://www.ncbi.nlm.nih.gov/

genbank/, accessed on 21 October
2021

Ensembl Genomics Genome browser, comparative
genomics, Analysis tools

https://www.ensembl.org/,
accessed on 21 October 2021

PRIDE Proteomics Analysis tools https://www.ebi.ac.uk/pride/,
accessed on 24 October 2021

Lipid Maps Lipidomics Analysis tools, Structure drawing https://www.lipidmaps.org/,
accessed on 29 October 2021

UniProt Proteomics Analysis tools https://www.uniprot.org/,
accessed on 29 October 2021

ChEBI Metabolomics Small chemical compounds https://www.ebi.ac.uk/chebi/,
accessed on 29 October 2021

MetaboLights Metabolomics Metabolomics repository
https:

//www.ebi.ac.uk/metabolights/,
accessed on 29 October 2021

http://cancergenome.nih.gov/
https://www.sanger.ac.uk/
https://daco.icgc.org/
https://proteomics.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/gxa/home
https://www.ebi.ac.uk/gxa/home
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
https://www.proteinatlas.org/
https://www.ddbj.nig.ac.jp/
https://www.encodeproject.org/
https://www.encodeproject.org/
http://starbase.sysu.edu.cn/
https://thebiogrid.org/
https://reactome.org/
https://www.genome.jp/kegg/
https://string-db.org/
https://hmdb.ca/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ensembl.org/
https://www.ebi.ac.uk/pride/
https://www.lipidmaps.org/
https://www.uniprot.org/
https://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
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Table 1. Cont.

Resources Omics Layer Notes Reference

Databases

JASPAR Interactomics TF binding, Analysis tools http://jaspar.genereg.net/,
accessed on 25 October 2021

geneXplain Interactomics Analysis tools, TF binding https://genexplain.com/,
accessed on 22 October 2021

HPRD Proteomics, Interactomics Pathway browser,
Analysis tools, PPI

http://www.hprd.org/, accessed
on 18 October 2021

miRTarBase Interactomics miRNA-target interactions
http:

//miRTarBase.cuhk.edu.cn/,
accessed on 12 October 2021

GWAS Catalog Genomics Genetic variant https://www.ebi.ac.uk/gwas/,
accessed on 19 October 2021

dbGAP Genomics, Epigenomics Genotypes and Phenotypes,
Analysis tools

https:
//www.ncbi.nlm.nih.gov/gap/,

accessed on 19 October 2021

dbSNP Genomics SNP genotyping
https:

//www.ncbi.nlm.nih.gov/snp/,
accessed on 19 October 2021

Tools

3Omics Transcriptomics, Proteomics,
Metabolomics

Pathway enrichment, correlation
and co-expression network,

ID conversion

https://3omics.cmdm.tw/,
accessed on 29 October 2021

BioCyc and MetaCyc Genomics, Proteomics,
Metabolomics

Pathway, Enzymes, Reactions,
Analysis tools

https://biocyc.org/, accessed on
23 October 2021

Cell Illustrator 5.0 Genomics, Transcriptomics,
Proteomics Visualize biological pathways

http://www.cellillustrator.com/
home, accessed on 29 October

2021

CellML Genomics, Transcriptomics,
Proteomics

Mathematical modeling, XML
markup language

https://www.cellml.org/,
accessed on 21 October 2021

COBRA Genomics, Transcriptomics,
Proteomics

Constraint-based
modeling, MATLAB

https://opencobra.github.io/
cobratoolbox/stable/, accessed

on 22 October 2021

RAVEN 2.0 Genomics, Proteomics Genome-scale metabolic
modeling, MATLAB

https://github.com/
SysBioChalmers/RAVEN,

accessed on 22 October 2021

Cytoscape Genomics, Transcriptomics,
Proteomics, Fluxomics

Visualizing and
integrating pathways

https://cytoscape.org/, accessed
on 14 October 2021

E-Cell Genomics, Transcriptomics,
Proteomics Modeling, simulation, and analysis https://www.e-cell.org/,

accessed on 12 October 2021

Escher Genomics, Proteomics,
Metabolomics

Visualization of
metabolic pathways

https://escher.github.io/#/,
accessed on 19 October 2021

Gaggle Genomics, Transcriptomics,
Proteomics, Fluxomics Integration of diverse database https://isbscience.org/, accessed

on 19 October 2021

IMPaLA Transcriptomics, Proteomics,
Metabolomics Pathway analysis http://impala.molgen.mpg.de/,

accessed on 19 October 2021

Ingenuity Pathway
Analysis

Transcriptomics, Proteomics,
Metabolomics Pathway analysis, commercial

https:
//digitalinsights.qiagen.com/
products-overview/discovery-

insights-portfolio/analysis-and-
visualization/qiagen-ipa/,

accessed on 25 October 2021

MarVis-Pathway Transcriptomics,
Metabolomics Pathway browser, Visualization http://marvis.gobics.de/,

accessed on 25 October 2021

MassTrix Metabolomics, Proteomics Mapping, Analysis http://masstrix.org/, accessed on
23 October 2021

http://jaspar.genereg.net/
https://genexplain.com/
http://www.hprd.org/
http://miRTarBase.cuhk.edu.cn/
http://miRTarBase.cuhk.edu.cn/
https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://3omics.cmdm.tw/
https://biocyc.org/
http://www.cellillustrator.com/home
http://www.cellillustrator.com/home
https://www.cellml.org/
https://opencobra.github.io/cobratoolbox/stable/
https://opencobra.github.io/cobratoolbox/stable/
https://github.com/SysBioChalmers/RAVEN
https://github.com/SysBioChalmers/RAVEN
https://cytoscape.org/
https://www.e-cell.org/
https://escher.github.io/#/
https://isbscience.org/
http://impala.molgen.mpg.de/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
https://digitalinsights.qiagen.com/products-overview/discovery-insights-portfolio/analysis-and-visualization/qiagen-ipa/
http://marvis.gobics.de/
http://masstrix.org/
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Table 1. Cont.

Resources Omics Layer Notes Reference

Tools

MetaboAnalyst Genomics, Transcriptomics,
Proteomics, Metabolomics Integrative Analysis http://www.metaboanalyst.ca/,

accessed on 29 October 2021

MetaboLights Metabolomics Database
http:

//www.ebi.ac.uk/metabolights/,
accessed on 29 October 2021

MetScape 3 Transcriptomics,
Metabolomics Visualization, interpretation http://metscape.ncibi.org/,

accessed on 29 October 2021

mixOmics Transcriptomics, Proteomics,
Metabolomics

Integration and exploration
of datasets

http://mixomics.org/, accessed
on 29 October 2021

OmicsPLS Transcriptomics, Proteomics,
Metabolomics Data integration, R

https:
//github.com/cran/OmicsPLS,

accessed on 29 October 2021

Omickriging Transcriptomics, Proteomics,
Metabolomics, Fluxomics Omics integration tools, R

https://cran.r-project.org/web/
packages/OmicKriging/index.

html, accessed on 21 October 2021

Omix visualization
tool

Transcriptomics, Proteomics,
Metabolomics, Fluxomics

Visualization and
modeling, commercial

https://www.omix-visualization.
com/#sthash.ScUNDhbD.dpbs,

accessed on 21 October 2021

PaintOmics 3 Transcriptomics,
Metabolomics Integrative visualization http://www.paintomics.org/,

accessed on 29 October 2021

PathVisio 3 Transcriptomics, Proteomics,
Metabolomics Pathway creation and curation https://pathvisio.github.io/,

accessed on 21 October 2021

SimCell
Genomics, Proteomics,

Transcriptomics,
Metabolomics

Cell simulation
http://wishart.biology.ualberta.

ca/SimCell/, accessed on 29
October 2021

VANTED Transcriptomics, Proteomics,
Metabolomics

Mapping, Processing,
Analysis, Visualization

https://www.cls.uni-konstanz.
de/software/vanted/, accessed

on 24 October 2021

Omics data
integration methods

for GEMs

tINIT Transcriptomics, Proteomics Task-driven model
reconstruction algorithm [34]

FASTCORE Transcriptomics Context specific
metabolic modeling [35]

E-Flux2 Transcriptomics Infers fluxes from
transcriptomic data [36]

SPOT Transcriptomics Correlation between fluxes and
enzymatic transcript [36]

PROM Transcriptomics The probability of a gene being
on-off in the inactivation of a TF [37]

MADE Transcriptomics, Proteomics The algorithm uses DEG genes or
proteins to generate a GEM [38]

GIM3E Transcriptomics, Proteomics,
Metabolomics

An algorithm creates a
condition-specific metabolic

network based on the objective
function, transcriptome,

and metabolome

[39]

With the system biology approaches, critical gains, such as classification, finding
biomarkers, and drug repurposing have been achieved [8]. Therefore, the analysis of GBM
multi-omics data to unveil the underlying molecular mechanisms of GBM and possible
treatment approaches is promising.

http://www.metaboanalyst.ca/
http://www.ebi.ac.uk/metabolights/
http://www.ebi.ac.uk/metabolights/
http://metscape.ncibi.org/
http://mixomics.org/
https://github.com/cran/OmicsPLS
https://github.com/cran/OmicsPLS
https://cran.r-project.org/web/packages/OmicKriging/index.html
https://cran.r-project.org/web/packages/OmicKriging/index.html
https://cran.r-project.org/web/packages/OmicKriging/index.html
https://www.omix-visualization.com/#sthash.ScUNDhbD.dpbs
https://www.omix-visualization.com/#sthash.ScUNDhbD.dpbs
http://www.paintomics.org/
https://pathvisio.github.io/
http://wishart.biology.ualberta.ca/SimCell/
http://wishart.biology.ualberta.ca/SimCell/
https://www.cls.uni-konstanz.de/software/vanted/
https://www.cls.uni-konstanz.de/software/vanted/
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The system biology approach has been applied to studies tackling complex diseases,
such as hepatocellular carcinoma, liver disease, and GBM [8,34,40,41], and promising
results have been obtained.

3.1. Omics Data

High-throughput methods are available to measure the biological conditions and
alterations resulting from the transmission of genetic information through the whole bi-
ological network. DNA is the source of biological information that forms the genomics
layer. DNA level alteration, such as mutation and copy number variation, directly affect
cellular functions. Genomic and epigenomic profiles involve the mechanisms regulating
gene transcription events, including transcription factors and post-translational modifica-
tions, which affect the structure and quantity of mRNA levels that form the transcriptomic
layer. Proteomics measure the protein levels in a biological sample, whereas metabolomics
determine the cellular metabolic activity due to enzyme activities. Measurement of the
flow rate of metabolites in intracellular reactions is defined by fluxomics. Interactomics
are also crucial to study in protein-protein interaction networks (PPINs) and regulatory
networks (RNs). Although each omics layer is valuable separately, transcriptomics and
proteomics are used by a majority in multi-omics integration studies within the scope of
system biology [42].

3.1.1. Transcriptomics

Transcriptomics related technologies empower scientists for the measurement of the
RNA profile of an organism. Transcriptomics point out an instantaneous structure of the
entire mRNA transcripts expressed in a cell. Two techniques are mainly used today. The
first is microarray technology, a precursor to the transcriptome profiling technique that
measures mRNA levels using predetermined gene-specific sequences printed on the array
chip. The second is RNA-Seq, the state-of-the-art RNA sequencing technique that uses
high-throughput sequencing to capture all of the RNA content [43].

a. Microarray-based transcriptomics of GBM

In the first microarray studies, a limited number of genes were identified in the
microarray library. Atlas® Human cDNA Expression Array was used in the first microarray
study for GBM. Only 597 genes, including 588 known and nine housekeeping genes, have
cDNAs on the membrane to determine the expression level [44]. This study compared the
gene expression profile of GBM and normal brain tissue, which is the first comparative
genomics. The first differentially expressed gene (DEG) analysis determined that the
CXCR-4 gene has high expression in GBM. The relationship between the overexpression of
the CXCR-4 and neurite outgrowth and cellular differentiation have been identified [44].
In another study, the gene expression profile was measured for 5760 individual targeted
genes and found that 117 genes were up- and 111 genes were downregulated. Specifically,
overexpression of the SPARC, IGFBP2, and VEGF was observed for the GBM profile [45].

Advances in technology and the creation of more comprehensive microarray chips
covered more genes and allowed for extensively profiling changes in metabolism. The first
microarray data published in the literature, GSE1923, was stored in the Gene Expression
Omnibus (GEO) database. In this study, 594 of 12,625 genes were significantly altered
and covered more genes than previous studies. This study identified a complex gene
expression profile resulting from PDGF-associated signaling in U87 MG glioblastoma
cells [46]. Although it was advanced technology in the early days, the microarray has
significant disadvantages. First, it needs a reference genome and depends on probes.
Second, it excludes uncharacterized genes. The stabilization of chips is another critical issue
that can cause inaccurate gene expression profiling. Nevertheless, it has made a significant
contribution to science by measuring numerous gene expressions simultaneously in its
time by establishing pioneer system-based approaches.
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b. Next-Generation Sequencing based transcriptomics

With the advancement in sequencing technologies, which has increased the impor-
tance of the big data concept in biology, a plethora of biological data have been produced
that can be used to understand complex disease phenotypes. The most outstanding contri-
bution to science is its ability to generate massive volumes of data, as well as its ability to
provide fast, cheap, and accurate genome information. NGS technology can be classified
as second and third generation. While second-generation sequencing methods require
the amplified sequencing libraries arrangement before sequencing the amplified DNA
clones, third-generation sequencing could be performed without the arrangement of ampli-
fication libraries. In 2000, the first NGS technology was developed by massively parallel
signature sequencing (MPSS, Lynx Therapeutics, Hayward, CA, USA). In the following
years, the appearance of multiple companies that develop NGS machines contributed to a
price reduction and offered alternatives. The rapid advancement in NGS technology has
contributed to the simultaneous development of systems biology approaches. NGS has
become widely used for whole-genome, whole-exome, methylation, and RNA sequencing.
The RNA sequencing could be used to determine the whole transcriptional activities, both
coding and non-coding RNA, as well as the targeted RNA transcripts in a biological sample.
It provides a more accurate and precise measurement of gene expression than microarray
analysis. In addition, RNA-Seq does not require a reference genome as in the microarray.
Therefore, RNA-Seq is an attractive method for discovering new genes. RNA sequence is
based on annealing and synthesis rather than hybridization. Consequently, it is not affected
by error sources, such as background noise and cross-hybridization, and it is advantageous
in detecting the profile of low-expression transcripts.

The first RNA-Seq data for GBM analysis was published in 2011 and was performed
for only two samples: Peripheral brain and tumor brain tissue samples. An RNA-Seq
analysis pipeline, named RNASEQR, was developed, and the results were compared
with genome and transcriptome references. As a result, numerous new and previously
unmapped gene regions were identified [47]. Another pioneer RNA-Seq study showed
that Atf3, Cbx7, and a few other candidates are tumor suppressor genes in human GBM. In
addition, potential oncogenes, such as Ccnd2 and Klf6, have been revealed [48].

3.1.2. Proteomics Data

Proteomics datasets offer an opportunity to examine the biology and disease mech-
anism of GBM on the genotype-phenotype axis by analyzing snapshots of metabolic
pathways, signaling pathways, and complex interaction networks [49]. In the flow of infor-
mation through the central dogma, the protein information after transcription is critical
for the cell to reflect essential functions, such as enzymatic activity, cell structure, and
signal transmission.

The first liquid chromatography-mass spectrometry (LC-MS) study conducted for
GBM was a protein-protein interaction research focusing on mitochondrial proteins. Nine
hundred and two proteins were measured simultaneously and explained the changes in
the protein levels due to oxidative stress and abnormal energy metabolism [50]. Proteomics
data have the potential to classify the GBM subtypes. For example, the SERPINE1 protein
was distinguished by overexpression in the mesenchymal subtype [51,52]. Although
the transcriptomics data contain much more gene information, the mRNA level may
not strongly reflect the protein level due to post-translational modifications that may
affect stability. Cellular activities mainly depend on functional proteins [51]. Therefore,
the metabolic network controlled by enzymatic reactions might more realistically reflect
cellular information through protein information.

3.2. Network Analysis of GBM

Advances in omics technologies have enhanced the evaluation of cancer metabolism
by developing a comparative analysis of healthy brain and cancer (Table 1). As a top-down
approach, omics technologies provide information regarding complex biological systems
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at different levels. However, the interaction between the omics data creates an increased
solution space on the complexity of biological systems. Therefore, holistic approaches are
required to evaluate the functions of biological systems (Figure 2).
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Figure 2. Multi−omics integration perspective. The central dogma describes the flow of genetic
information within a biological system. In multi-omics approaches, different ohmic layers can be used
separately or together for various purposes. The glioblastoma-specific metabolic model (GBMM) is
developed using generic metabolic models (GMMs), experimental results, databases, and patient-
specific omics data. Regulatory networks (RNs) are clusters of macromolecules belonging to different
omics layers that interact to control the expression level of various genes. Protein-protein interaction
networks (PPINs), formed by the interaction of two or more proteins, contain the information of
the subnetworks associated with the disease. Using RNs, PPINs, and GBMM together, the effect of
different omics layers on the metabolic profile can be estimated. M represents the metabolite (M1, M2,
M3, M4); E represents the enzyme; P represents protein. TF: Transcription factor; S: Stochiometric
matrix; V: Flux rate (V1 V2, V3, V4). The navy dashed-lined quadrangular represents a cell boundary.

3.3. Genome-Scale Metabolic Network Modeling

Genome-scale metabolic models (GEMs) are the mathematical representations of
biochemical reactions based on stoichiometry that reflect the metabolic activity within a cell
and decipher the information that regulates these reactions [41]. GEMs use the information
flow in the central dogma to simulate the reflection of the genotypes to the phenotypes
in the cell and are continuously updated with new information. System biology-based
studies using GEMs and interactome information (RNs, PPINs, co-expression networks)
are available in the literature [6,35,40,41,53,54].

The history of metabolic modeling dates back to the 1990s, aiming to model an entire
cell. A low number of metabolites and enzymes was used in the first metabolic models
as enzyme kinetics studies [55,56]. On the other hand, GEMS are very effective for flux
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estimation in small systems by the flux balance analysis (FBA) in the steady-state of
the cell [57]. The basic principle is based on the mass balance equation of a metabolite
consumed or formed depending on reaction rates. While ordinary differential equations
(ODEs) are used in kinetic modeling, FBA is based on the linear equation. Therefore,
the techniques developed, such as unstable state FBA (uFBA) could bring flexibility to
the steady-state assumption in genome-scale models regarding dynamic cellular states
caused by changes in intracellular flux distribution [58]. However, with the increase of
multi-omics data, genome-scale metabolic modeling methods have been widely improved.
Moreover, some benchmarking studies for methods that create GEMs have been carried
out to understand the appropriate method that is suitable for the purpose [35,59].

GEMs comprise acknowledged metabolic reactions of a living system, describing them
as a functional reflection of cell-specific metabolism. The procedure for reconstructing a
GEM has been systematically explained in the literature [60]. A draft reconstruction is
completed by incorporating reactions, enzymes, and gene information from databases
such as KEGG, BioCyc, BRENDA, and Human Protein Atlas. Gene-protein-rule (GPR),
which includes gene information that controls each reaction, is included in GEMs as in
the literature, allowing multi-omics data to be integrated into the model. Various omics
data integration strategies may explain tissue-specific and condition-specific intracellular
metabolic flux distributions with high resolution. Intracellular metabolic reactions produce
basic biochemical building blocks and energy to maintain the basic cellular activities.
Based on patient-specific data, personalized GEMs could be generated thanks to the
integration of multi-omics data guided by GPR, such as transcriptomics, proteomics,
and metabolomics, for personalized medicine. Given the environmental factors on the
omics levels, determining the changes to disruptions in intracellular metabolic fluxes and
metabolic responses is essential, in order to understand the basic mechanisms of the cell.
GEMs powered by omics data are valuable for evaluating the biological system, as they
provide the ability to analyze the genotype-phenotype relationship.

In the literature, human generic metabolic models are available. These models contain
a wide range of gene, reaction, and metabolite information. These models could be
transformed into disease-specific metabolic models with some methods (Table 2). The
GBM-specific GEM iMS570g model [54] was developed based on its previous version, the
iMS570 model [61], which is based on a comprehensive brain model. The GBM-specific
biomass reaction was added to the iMS570g model, and some updates were made by
reviewing the literature. Researchers used GIMME and MADE algorithms to map the
microarray data to the iMS570g model. This study simulated glycolytic TCA cycle fluxes
and the Warburg effect which is followed in the literature in terms of GBM metabolism.

Table 2. Current generic metabolic models.

Current Generic GEMs Reaction Number Metabolite Number Gene Number References

HMR1 8100 6000 3668 [57]
HMR2 8181 6006 3765 [62]

Human 1 13,082 8378 3625 [63]
Recon 1 3744 2766 1905 [64]

Recon 2.2 7440 5063 2140 [65]
Recon 3D 13,543 4140 3288 [66]

iNL403 1070 987 403 [67]
iMS570 630 524 570 [61]

iHsa 8264 5620 2315 [68]

Another GBM-specific metabolic modeling study created GBM generic models to
evaluate GBM mechanisms [41]. This study developed a patient-specific GBM metabolic
model by integrating patient-specific transcriptome data into the metabolic model using the
tINIT algorithm based on the HMR2 metabolic model. As a result of the gene-essentiality
analysis, SOAT1, PGS1, CMPK2, CRLS1, and SLC22A5 targets were estimated as potential
drug targets. One of them, SOAT1, was proposed as a therapeutic target for GBM [41].
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3.4. GBM Related Systems Biology Studies

Since GBM is a highly fatal, recurring, and invasive cancer, a limited number of
developed drugs are currently in use for its treatment. Another crucial point in combating
GBM is the availability of biomarkers. With the emergence of omics data due to the
high technology and state-of-the-art approaches, such as system biology, there have been
improvements in the diagnosis, treatment, molecular characterization, and determination
of subtypes of GBM. In the TCGA project, a comprehensive genomic characterization
study for GBM, some significant mutations, and somatic genome alterations were detected,
including TP53, EGFR, PTEN, NF1, PIK3CA PIK3R1, RB1, SPTA1, ATRX, IDH1, KEL,
PDGFRA, and GABRA6. Moreover, previously uncovered deletions in PARK2 and NF1,
and amplifications in AKT3 were detected. Furthermore, the roles of ERBB2, NF1, and
TP53 genes have been unveiled comprehensively. This genomic screening revealed a link
between the hypermutator phenotype in GBM treated with Temozolomide in the context
of MGMT-promoter methylation. Another remarkable piece of information is that all
of the 38 mutations in the TP53 gene were detected in the DNA binding domain (The
Cancer Genome Atlas Research Network, 2008). Analysis of genome-wide methylation
data with systems-based approaches revealed biologically distinct GBM subtypes [18]. The
study explained that the DNA methylation pattern of the MGMT gene promoter occurs in
48.5% of GBM patients. In addition, the methylation profiles of the GATA6 (68.4%), CD81
(46.1%), DR4 (41.3%), and CASP8 genes were confirmed by GBM patient data [69]. Verhaak
et al. [13], proposed the GBM subtype classification by evaluating transcriptome profiles
with a system-based approach: Proneural (high PDGFRA gene expression and frequent
IDH1 mutation), neural (defects on SYT1, SLC12A5, GABRA1, and NEFL), classical (chr.7
amplification, chr.10 loss, RB inactivation, and NES overexpression), and mesenchymal
(P53, PTEN, and NF1, overexpression in NF-κB pathway). Another study suggests the
combined expression of STAT3 and C/EBPB, which is associated with the mesenchymal
state of GBM, as a prognostic biomarker for tumor aggressiveness [70].

3.5. Examples of Systems Biology Studies in Other Cancers
3.5.1. Kidney Cancer

Renal cell carcinoma (RCC) is also a cancer type with highly individual heterogeneity,
and 70% of RCC are clear cell renal carcinoma (ccRCC) [71]. Due to the high heterogeneity,
many studies have applied systems biology approaches to stratify ccRCC into different
subtypes, and then explored the oncogenic mechanism based on the distinct multi-omics
characteristics or identified drug targets or effective drugs for each subtype. For example,
Brannon et al. used unsupervised consensus clustering to classify the ccRCC patients
into two subtypes (ccA and ccB) based on the gene expression microarray data [72]. The
patients of ccA and ccB subtypes have different mRNA expression patterns and prognostic
survival outcomes. Another well-known TCGA classification system stratified the ccRCC
into four subtypes (m1-4) by the unsupervised clustering based on the mRNA-seq data [73].
These subtypes have different frequencies of genetic mutation and levels of DNA promoter
methylation based on an integrated multi-omics analysis. Recently, Li et al. identified three
subtypes of ccRCC with different prognoses, and identified a set of biomarkers that could
robustly stratify the patients into different subtypes using the relative expression orders of
biomarker genes [74].

Furthermore, they identified a shared drug target, SOAT1, by GEMs analysis and
repositioned it as an FDA-approved drug, mitotane, to treat ccRCC. In terms of drug
repositioning in ccRCC, a widely used method selects a drug that has a reversal pertur-
bation on the gene expression of tumors compared to normal tissues as the therapeutic
drug [75–77]. ConnectivityMap [78] is one of the most well-known drug perturbed gene
expression databases, commonly used for drug repositioning studies. Various studies have
focused on molecular subtype classification, biomarker, drug target identification, drug
development/repositioning using different systems biology methods in kidney cancer.
However, the considerations for promoting these biomarkers, which are used for clinical
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practice, repurposed drugs involved in drug combination, and alternative doses, must be
further explored.

3.5.2. HCC

Hepatocellular carcinoma (HCC), the primary form of liver cancer, has a very high
mortality rate, partly due to its high heterogeneity. Therefore, it is one of the primary
causes of cancer deaths globally. This makes it challenging to identify appropriate and
effective therapeutic targets for dealing with HCC.

For this reason, systems biology approaches that can capture high tumor heterogeneity
have been used in many studies to identify effective therapeutic targets [79]. For example,
in comprehensive research, analysis of RNA expression, miRNA, protein expression, and
DNA methylation derived from HCC patients revealed some highly mutated genes, such
as LZTR1, EEF1A1, SF3B1, and SMARCA4. In the same study, by investigating integrative
molecular subtyping with unsupervised clustering methods, three subtypes of HCC were
identified, one of which was associated with a poor prognosis of HCC. In addition, the
same study proposed potential therapeutic targets for which the inhibitor is available,
including WNT signaling agents, such as TERT, MDM4, VEGFA, IDH1, MCL1, MET, as
well as immune checkpoint proteins, such as CTLA-4, PD-1, and PD-L1 [80].

Cellular network analysis approaches are used to understand the biological aspect
of heterogeneity in cancer, and determine potential therapeutic targets. Nevertheless, the
functionality of the biological network may not be prioritized for ranking candidate targets,
whilst avoiding toxicity to non-cancerous tissues. In this context, a novel systems biology
approach has been adopted to overcome these problems by integrating gene expression
data into GEMs [79]. In this study, network topology was used to rank therapeutic tar-
gets. Eventually, several potential targets were identified to inhibit cell growth, such as
74 different anticancer metabolites and the other three gene targets, PRKACA, PGS1, and
CRLS1. Finally, the predicted anticancer metabolites were searched in the literature and
found compatible with current FDA-approved cancer drugs. In addition, those three genes,
PRKACA, PGS1, and CRLS, were experimentally confirmed with liver cancer cell lines
HepG2 and Hep3B. These systems biology approaches demonstrate that they successfully
identify therapeutic targets for the effective treatment of cancer [79].

3.5.3. Drug Repositioning Applications in GBM

In recent years, the anticancer effects of repurposed drugs have gained significant
interest due to the lack of directed treatments for life-threatening cancers [8,74,81]. Drug
repurposing applications combine diverse approaches by complementing experimental
and computational methodologies to discover targets in the fight against various cancers,
including GBM [82]. In addition to its cost-effectiveness in drug development, repurposed
molecules can readily be involved in clinical phase studies or applied to expanded access
programs, particularly for patients with no alternative therapies. Moreover, drug repur-
posing methodologies provide a more comprehensive data source for exploring additional
insights into the metabolic reprogramming of cancer, along with the drugs with originally
unnoticed anticancer features that can expand in order to reveal the complex character-
istics of tumor biology [83]. On the other hand, drug repurposing unveils previously
unknown biological networks, developing them into distinct target biomolecules, despite
the possibility that the identified targets may not be carried out in clinical studies [84].

Computational methods for drug repurposing can be widely classified as signature-
based, network-based, chemical structure-based, and genome-wide association studies.
Briefly, signature-based approaches compare the features of a molecule against another
drug or disease using various omics or clinical phenotypes [85]. Similarly, in network-based
drug repurposing, the drug and target/drug/disease interaction networks are constructed
using the data according to gene expression profiles, protein-protein interactions or disease
associations [86]. Another helpful drug repositioning method is estimating one molecule’s
relative orientation and position at the binding site of another molecule by molecular
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docking methods. Finally, GWAS aims to identify differences in genetic material and helps
in understanding the physiology of diseases accordingly [87].

Characterization of the cells at molecular levels, and detection of the relationship
between pathways and numerous drug groups, provide an initial point for a successful
precision medicine. In this manner, Johansson et al. analyzed the pharmacogenomic profile
of patient-derived GBM cell cultures with 1544 drugs and stated that the response to protea-
some inhibitors is correlated with TP53 and CDKN2A/B variations [88]. In parallel, virtual
screening of mutations in critical proteins (e.g., kinases) proposes the emergence of a robust
strategy for candidate molecule identification from the available therapeutics targeting
GBM. For instance, Bonnet et al. used a computational prediction algorithm to unveil
molecular targets for mebendazole, an anthelminthic drug and found that 12 proteins signif-
icantly upregulated at GBM. Furthermore, molecular modeling showed that mebendazole
was able to bind to MAPK14 [89]. Similarly, a molecular docking screening accompanied
by cell-based validation to identify possible compounds against hnRNP, indicated that
riluzole, an FDA-approved drug for amyotrophic lateral sclerosis, may be reutilized to
treat GBM [90]. These studies support the concept that an anticancer molecule targeting
kinase might be useful in combating the GBM. In summary, there are viable alternatives in
the system-level that analyze the drug-target associations, in order to explore candidate
proteins for drug repurposing.

4. Future Perspectives

Systems biology approaches are powerful tools to understand the flow of information
in living systems. A wide variety of tools and methods could be used to gain meaningful
insights into condition-specific cellular functioning. The analysis and integration of omics
datasets provide a holistic understanding of biological processes and diseases, facilitating
many studies. However, this brings some challenges in statistical analysis, data processing,
and in combining various data. Moreover, due to the heterogeneity of individual omics
data, large datasets, and the diversity of computational tools, the lack of studies that priori-
tize powerful tools and methodologies make systems-based multi-omics data integration
analysis a confusing task.

Since omics data are produced using various platforms, the data storage and format
type diverse significantly. Most of the systems biology analysis tools need specific data
formats. Consequently, individual data must be pre-processed with specific data filtering,
normalization, and quality control approaches. However, it is challenging to decide on
an appropriate pre-processing approach due to the lack of universal standards, since in
omics, integration tools that design for the same purpose could produce different results.
In this context, developing new systems biology methods and tools or minimizing their
differences in an inclusive platform could enable the efficient handling of large datasets. The
primary step in the systems-based analysis is the selection of a suitable method to solve the
biological question of interest. In this regard, researchers recently conducted comparative
studies that comprehensively evaluate systems biology tools in order to select the most
appropriate approach and methodology. More comprehensive comparative studies are
essential for pioneering the scientific society in order to understand the wide range of
tools. Another critical factor in the interpretation of omics data is clinical information.
Therefore, robust methods could be developed for the integration of non-omics variables,
such as epidemiological, demographic, and clinical metadata in order to understand the
biological questions.
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