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Abstract: Computational approaches including machine learning, deep learning, and artificial intelli-
gence are growing in importance in all medical specialties as large data repositories are increasingly
being optimised. Radiation oncology as a discipline is at the forefront of large-scale data acquisition
and well positioned towards both the production and analysis of large-scale oncologic data with the
potential for clinically driven endpoints and advancement of patient outcomes. Neuro-oncology is
comprised of malignancies that often carry poor prognosis and significant neurological sequelae. The
analysis of radiation therapy mediated treatment and the potential for computationally mediated
analyses may lead to more precise therapy by employing large scale data. We analysed the state
of the literature pertaining to large scale data, computational analysis, and the advancement of
molecular biomarkers in neuro-oncology with emphasis on radiation oncology. We aimed to connect
existing and evolving approaches to realistic avenues for clinical implementation focusing on low
grade gliomas (LGG), high grade gliomas (HGG), management of the elderly patient with HGG,
rare central nervous system tumors, craniospinal irradiation, and re-irradiation to examine how
computational analysis and molecular science may synergistically drive advances in personalised
radiation therapy (RT) and optimise patient outcomes.

Keywords: radiation oncology; neuro-oncology; computational; machine learning; deep learning
and artificial intelligence; molecular biomarkers

1. Introduction

Computational approaches including machine learning, deep learning, and artificial
intelligence are growing in importance in all medical specialties as large data repositories
are increasingly being curated and optimised. Radiation Oncology is a specialty that
has evolved to deliver highly precise and accurate treatment to tumors surrounded by
normal tissue and is at the forefront of large-scale data acquisition in Oncology. As such,
Radiation Oncology is well positioned for both the production and analysis of large-scale
oncologic data with the potential for clinically driven endpoints and advancement of
patient outcomes. Neuro-oncology is comprised of malignancies that often carry poor
prognoses and significant neurological sequelae as well as the potential for life altering
acute and late effects [1]. These are also tumors that tend to recur in the radiation field
emphasizing the need to understand tumor radiosensitivity and resistance to treatment
both of which cannot be robustly addressed by creating robust connections to molecular
science. At the intersection of Radiation Oncology and neuro-oncology, a number
of literature reviews [2–4], and original studies [5–7] have explored computationally
mediated research that may eventually lead to precision management by employing
large scale datasets. This review analysed the state of the literature pertaining to large
scale data and computational analysis in neuro-oncology with emphasis on Radiation
Oncology and connected the existing and evolving approaches in molecular biomarker
development to realistic avenues for clinical implementation. In particular, the focus
was on specific clinical areas of controversy: management of low-grade gliomas (LGG),

Int. J. Mol. Sci. 2021, 22, 13278. https://doi.org/10.3390/ijms222413278 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://doi.org/10.3390/ijms222413278
https://doi.org/10.3390/ijms222413278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413278
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413278?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13278 2 of 14

high grade gliomas (HGG), the specific scenario of the elderly patient with HGG as well
as rare central nervous system tumors, craniospinal irradiation, and re-irradiation with
a proposal of how computational analysis may drive personalised radiation therapy
(RT) to optimise patient outcomes and merge traditional radiation planning concepts
with improved molecular profiling.

2. Computational Analysis in Radiation Therapy Treatment Planning—Current State

Radiation therapy deals with the administration of therapeutic radiation for mostly
malignant and some nonmalignant conditions [8]. Radiation is aimed at specific targets
or volumes delineated by the clinician using information originating in the patient
history, physical exam and radiologic imaging. Data collected is represented by direct
data entry fields (manual or automatic) in the treatment planning system (e.g., tumor
site, treatment intent, ready to treat dates, patient setup and desired technique employed
in treatment planning), as well as tumor and normal tissue volumes delineated by
the clinician and RT dose delivered using multiple DVH (Dose Volume Histogram)
(Figure 1). These large-scale datasets can be employed for administrative purposes,
such as capturing the number of patients on treatment that share a common histology
or planning technique, but are also most relevant to computational approaches that
involve artificial intelligence (AI) [3,4,9–13], machine learning (ML) [2,4–7,9,13–22], deep
learning (DL) [2,3,11,23–27], ground truth [7,13] and radiogenomics [2,13,14,28–34] (See
Table 1 for definitions). Radiogenomics can allow for the relationship between dose
delivered to tumor volumes and normal tissues and their response to be linked to
clinician observed toxicity and tumor response as well as patient reported outcomes.
Although the latter two parameters may be collected, it is often in a system separate
from the treatment planning system itself and, thus, there is no direct communication
between the two that would enable a seamless analysis. Noteworthy is the fact that whilst
advancements have been made in terms of targeted systemic management, radiation
therapy (RT) treatment volumes, doses, and fractionation for central nervous system
(CNS) tumors have remained largely unaltered over time despite ongoing advances in
molecular tumor characterization [35]. The parallel progress in radiomics and genomics
has generated significant interest in the radiation oncology literature but less so in
the context of neuro-oncology (Figure 2) [36]. Treatment planning in RT is based on
generating volumes or targets using contrast enhanced MRI co-registered with CT
simulation, with treatment volumes comprised of areas the radiation oncologist deems
consistent with tumor presence on MRI (GTV or Gross tumor volume), adding margins
for what may represent areas at risk of tumor involvement (CTV or Clinical Target
Volume) and a geometric margin for setup variability and motion (PTV or Planning
Target Volume) [8]. Relevant available imaging including metabolic imaging when
available may also be employed to help generate the G, but no radiomic, genomic
or radiogenomic approaches in either the general oncology context or the radiation
oncology specific context (Table 1) are currently incorporated as standard of care [37].
The CTV in high grade glioma is comprised of the GTV on T1 gadolinium enhanced
scans with a 2 cm geometric expansion in an attempt to capture what historically is
suspected to represent subclinical disease. The PTV is subject to patient immobilisation
and technique and is generally 5 mm on most linear accelerators and can be reduced in
the context of stereotactic radiation therapy. In low grade glioma, a secondary CTV may
be treated to a lesser dose if generated using the T2 FLAIR abnormality with a 1.5 cm
margin. In some histologies with overt or significant risk for craniospinal dissemination,
craniospinal irradiation may also be administered with additional dose or boost to
areas of disease in the spine. The dose administered to high grade glioma is generally
60 Gy [38] and low-grade glioma 54 Gy [39] at 1.8–2.0 Gy/fr. Ongoing advancement
in radiogenomics has not altered volumes, dose or fractionation in most CNS tumors.
While commonly employed RT planning software such as Eclipse inherently collect
both treatment volume information (clinician annotated data by contouring or outlining
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tumors based on patient imaging), as well as dose distribution (dose delivered to both
the tumor targets and organs at risk in the field), the ability to incorporate treatment
planning and dosimetry information into radiomics using common radiology platforms
(e.g., PACS) is complex, lacking in the clinic and in limited use as yet in radiomic
research [40]. This is due to barriers that include both the mining and the farming
aspect of the data [40]. Key data elements may be missing and/or retrieval may be
difficult ultimately requiring significant process changes and data transformation. Most
computational studies aimed at radiation therapy volumes have instead focused on
autogenerating volumes while accounting for neuroanatomy [41–43] but less so on
molecular classification or the incorporation of radiogenomic techniques [4,6,23]. The
link between dose distribution and dose to tumor volumes and organs at risk and normal
tissue toxicity as well as radioresistance and radiosensitivity has only received limited
exploration in the big data context at this time although active efforts are ongoing to
data farm in anticipation of progress in this domain [44].
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Figure 1. Harnessing large-scale neuro-oncology data and computational analysis to achieve precision neuro-oncology in
RT. Top left panel: Tumor volumes (as well as normal tissue) are delineated (contoured) on standard of care acquired MRIs
of the brain which are co-registered with CT. The images are hence clinician annotated representing a form of ground truth
that can be employed in training AI methods. Bottom left panel: the co-registration of MRI and CT allows for radiation
therapy dose to be calculated to the structures that have been delineated allowing for ML approaches that can examine
the relationship between tumor and normal tissues volumes, radiation therapy dose, tumor response and failure. Top
right panel: Omics data of all subtypes can be aggregated with imaging and radiation therapy data to identify clinically
meaningful biomarkers.
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Figure 2. Cumulative number of related articles/studies in PUBmed 2010 to present (30 September 2021)
aimed at (A) omics. (B) computational approaches and (C) molecular biomarkers and evolving public
data bases grouped by Radiation oncology and Neuro-oncology as a discipline. Machine Learning
(ML) approaches represent the most mature and most rapidly growing subset of computational
analysis approaches overall. C. Molecular biomarkers and evolving public omic data sets resulting in
analyses of differentially expressed genes (DEG) [36].
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Table 1. Definitions of terms.

Term Definition References

Artificial Intelligence (AI)
Computational approach where a computer algorithm automatically
develops a model that transforms input data to output without using

rules defined by humans.
[3,4,9–13]

Machine learning (ML)
ML is a sub-field of AI. Classical ML methods require input data to

have well defined sets of variables in the format of structured
data (features).

[2,4–7,9,13–22]

Deep learning (DL)
DL is an emerging sub-field of ML where the DL algorithm can take

raw data, such as images, as input and “learn” to define its own
features needed for computing the outcome.

[2,3,11,23–27]

Ground truth
A number of labelled data sets with known information employed to

train machine learning algorithms (e.g., In radiation oncology, manual
segmentation by clinicians or trained personnel.

[7,13]

Radiogenomics (in the broader
oncology context)

State-of-the-art science in the field of individualised medicine.
Radiogenomics combines a large volume of quantitative data extracted

from medical images with individual genomic phenotypes and
constructs a prediction model through deep learning to stratify

patients, guide therapeutic strategies, and evaluate clinical outcomes.

[2,13,14,28]

Radiogenomics (in the radiation
oncology context)

Radiogenomics has two goals: (1) develop an assay to predict which
cancer patients are most likely to develop radiation injuries resulting

from radiotherapy, and (2) obtain information about the molecular
pathways responsible for radiation-induced normal tissue toxicities

with the ultimate goal of improving oncologic outcomes.

[13,29–34]

3. Low Grade Gliomas

Diffuse low-grade gliomas (DLGGs, WHO Grade II gliomas), comprise 13–16% of
all primary brain tumors [1]. The 2016 WHO classification of central nervous system
tumors, unlike its predecessor, included molecular parameters as well as morphol-
ogy to establish diagnosis [1]. Low grade gliomas (LGG) carry generally a superior
prognosis as compared to high grade gliomas (HGG) and are defined both in terms of
histology as well as their molecular classification. The diagnosis of oligodendroglioma
and anaplastic oligodendroglioma requires demonstration of both an IDH gene family
mutation and combined whole-arm losses of 1p and 19q (1p/19q codeletion) [1]. The
management of patients with LGG usually involves resection followed by observation,
radiation and or chemotherapy but remains heterogenous and is best carried out in a
multidisciplinary setting [39,45–47]. The acute need to provide precision management
for these tumors is enforced by the longevity that patients with LGG exhibit [47] and
the need to minimise both acute and late toxicity secondary to chemotherapy and
RT. To improve outcomes and personalise management, the neuro-oncology field has
accurately recognised that both the need for tumor sequencing and computational
interpretation of imaging are crucial [14]. However, efforts here have focused largely on
diagnosis, grading and the type and timing of systemic management [28,48]. Molecular
profiling has been evaluated in the CATNON and CODEL trials [49,50] to identify
the appropriate chemotherapy to administer in conjunction with RT but has not been
used prospectively to evaluate the ideal delivery of RT. LGG is a particularly challeng-
ing entity in that randomised trials may take many years to produce results [45,46],
traditional endpoints such as overall survival and progression free survival may not
reflect challenges in patient outcomes and hence observational large scale data may
carry a large role if appropriately employed [48]. Research efforts in LGG have fo-
cused on two major areas: radiomics and genomics [3,6,14,28]. Radiomics aims to
harness imaging features that would normally be subject to human interpretation to
help classify gliomas [28]. In parallel genomic analysis of tumor samples provides
a molecular profile [51]. Radiogenomics, at the intersection of these two approaches
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allows statistical correlations of radiomic features with genetic aberrations obtained
from mutational analyses or next-generation sequencing data and has the potential to
provide “virtual biopsy” maps [3] and the creation of radiogenomics pipelines can help
define tumor biology [2]. Machine learning (ML) (Table 1) techniques, including deep
learning, can thus be employed to identify a pattern that can predict and or refine tumor
classification from MRI or MRI/PET [51–54] such as using MRI and deep learning to
define 1p19q co-deletion in gliomas [52]. Existing approaches do suffer from lack of
standardisation with respect to image acquisition, processing, segmentation, feature
extraction, machine learning algorithm and validation and large ground truth data
sets (Table 1 and Figure 3) [3,7,15,24,55]. Efforts towards standardisation are being
made [56] but will require ongoing adjustment and mandated inclusion into clinical
trial design. While some studies have examined radiomics in the context of treatment
response [57], most available studies have largely focused on prognostic diagnosis,
classification, and prognostic features [2,3,9]. As a result, current findings have yet to
impact RT volumes, dose or fractionation [58] and the inclusion and standardisation of
radiation related data has yet to be defined or implemented [4]. Late effects including
data defining normal tissue toxicity, including impact on organs at risk in the RT field,
and the development of neurocognitive changes in response to RT dose distribution,
have undergone limited study [59–61]. Future trials and data farming in large scale
registries would have to mandate a merger with RT data including volumes, dose, dose
per fraction and dose distributions, to examine both patterns of failure and correlation
with recurrent disease in conjunction with genomic and radiomic analyses as well as
late effects [40]. This will allow for analysis of tumor response and a personalised
approach to RT in LGG.
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4. High Grade Gliomas

The majority of gliomas are high-grade (WHO grade III and IV), with the most
common and aggressive form of glioma being Glioblastoma (GBM). GBM (WHO grade
IV) represents over half (56.1%) of all gliomas [1]. In high grade gliomas the prognosis
remains poor with 6% 5-year survival [1]. These tumors exhibit both significant het-
erogeneity and radioresistance [35,62]. HGG is managed with maximal safe resection
followed by concurrent chemoirradiation [38]. Precision neuro-oncology can help per-
sonalise management to prolong life by gaining a deeper understanding of the location,
extent and molecular classification and possible avenues of response of radioresistant
disease. Approaches have involved studies aimed at methylation and its connection to
imaging changes [16,17,25,63–65]. However, existing approaches are hampered by differ-
ences between primary and recurring tumors as well as links between DNA methylation,
the tumor microenvironment, and the association of epigenetic tumor heterogeneity with
patient survival in this genetically diverse and heterogenous malignancy [63]. An impor-
tant avenue for research has centred on computational approaches with the challenge of
distinguishing progression from pseudoprogression. Currently this distinction is subject
to the RANO guidelines [66] but as radiomics, genomics and machine learning converge,
it would be imperative to advance the existing RANO framework by including machine
learning driven criteria for progression vs. pseudoprogression which are currently subject
to clinical and radiographic interpretation. Recent publications [67], Kim [68], Ismail [69],
Kebir [70], Akbari [71] focused on specific aspects, including only MRI imaging [68], only
PET [70] or only histopathology [71] but few included the RT treatment fields [67,72]. Each
of these approaches employed single institution data and small patient samples and hence
reproducibility may prove challenging. Unfortunately, most proposed workflows that
include radiogenomics in glioma stop short of including radiation therapy management or
dosimetry [2,9,26,72]. In addition, significant challenges remain to safe data sharing and
amalgamation of multiple sources of information that would allow for superior results
from machine learning approaches [18].

5. Management of the Older Patient with High Grade Glioma—An Area of
Controversy in the Clinic

Within the high-grade glioma patient cohort, the management of the elderly patient
with glioblastoma remains particularly controversial [73,74] given that prognosis is partic-
ularly poor and the goal of care if often highly palliative in most patients. This is further
complicated by poor representation in clinical trials [75]. In this patient cohort, defining
the most appropriate level of aggressiveness of management to achieve the best outcome
for the patient while balancing neurologic function, quality of life and longevity can at
this point only be addressed robustly with real world data [76]. Real world data has been
analysed concluding the importance of capturing performance status in order to facilitate
analysis while attempts at generating prognostic scores have been made [76,77]. Poor
capture of performance status in large scale data sets and more limited genomic analysis
in the context of a higher biopsy rate versus resection rate, have hampered efforts to har-
ness radiogenomic approaches in elderly patients with glioma. As of yet, radiogenomic
approaches have not impacted precision management in the clinic in the elderly patient
with high grade glioma.

6. Radiogenomic Advances in Rare CNS Histologies, Craniospinal, and
Re-Irradiation Settings

Radiomics and radiogenomic driven approaches to radiation therapy in rare central
nervous system tumors such as ependymoma, medulloblastoma, craniopharyngioma, Dif-
fuse intrinsic pontine glioma (DIPG) are understandably even less advanced as compared
to glioma and no attempts have been made to alter standard of care RT by leveraging
large scale data, radiogenomics or computational approaches. Due to the rare nature
of these tumors, large-scale real-world data is mostly lacking, and randomised data are
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almost impossible to acquire making computational approaches especially relevant. Most
studies have focused on diagnosis in the context of CNS tumors where tissue acquisition is
challenging or impossible such as pediatric posterior fossa tumors [19], rare histologies
or histologies that present difficult diagnostic interpretation (ependymoma, pilocytic as-
trocytoma, medulloblastoma, craniopharyngioma) [10,20,27,78,79] and very few studies
examined computational avenues to optimise RT [80], Zhu [81]. In meningioma attempts
have focused on diagnosis and grading especially in the context of radiomics and surgical
resection [21] and linked analysis to extent of tumor and brain or bone invasion [82–85].
If analysed in conjunction with biomarkers and RT dosimetry, these endeavors could
prove highly relevant to RT volumes and dose as well patterns of recurrence [86–88] but
clinical applications are only starting to emerge [89]. Attempts to alter RT volumes in
future trials should focus on optimizing RT treatment planning in a manner consistent with
radiogenomic driven pattern of failure analysis [90]. Other areas of ongoing debate include
the administration of craniospinal irradiation and RT volumes in this scenario particularly
in rare tumors with superior long-term prognosis where risk to normal tissue and late
effects are particularly relevant. This is often a point of discussion in ependymoma and
medulloblastoma but also in other rare histologies. No computational analysis has been
identified in this scenario yet.

7. The Future of Molecular Science—Using AI and Big Data to Bring Molecular
Biomarkers into the Clinic

We have observed significant progress in radiomics, genomics with significant growth
in molecular biomarkers (Figure 2) [36]. Although clinically actionable information based
on FDA approved biomarkers was most frequently observed in oncology, within oncol-
ogy most of the research has focused on biomarker-drug pairs associated with cancer
drugs compared to those for other therapeutic areas (n = 92 (59.7%) vs. n = 62 (40.3%),
p < 0.0051) [91]. In histopathology, significant advances are ongoing [11] to extract biomark-
ers directly from histology images and summarise studies of basic and advanced image
analysis for cancer histology. This includes inference of molecular features, prediction
of survival and end-to-end prediction of therapy response. There are currently no FDA
approved genomic markers related to RT. No relationships have yet been investigated with
a biomarker lens with respect to RT dose, dose/fraction, volume of tumor and normal
tissue. Radiogenomics aimed at oxic and hypoxic response gene signatures in conjunction
with imaging and dosimetry [29] could help advance personalisation of RT volumes and
dose to optimise outcomes. Re-irradiation upon tumor recurrence represents another
instance where data aimed at balancing response and toxicity is lacking [30–33]. While
technological advances have improved the ability to target tumor recurrence while limiting
dose to organs at risk, radiosensitivity of both malignant and normal tissues remain subject
of ongoing investigations. In the clinic, dose constraints currently employed are based on
large dated series with significant limitations with respect to ability to compare dose per
fraction and limited robustly collected normal tissue complication probability data particu-
larly in the CNS and in the context of SRS and SRT [59–61,92]. There is significant potential
in examination of tumor as well as normal tissue response with respect to gene expression
profiling, lymphocyte assays, radiogenomics with structural variations including single nu-
cleotide polymorphisms (SNPs), copy number variations (CNVs), gene expression (mRNA,
miRNA, lncRNA) [33,34]. In this context the challenge of leveraging existing molecular
data that is increasingly curated in large scale public data bases (Figure 2C) including The
Cancer Genome Atlas Program (TCGA) [93–95], Gene Expression Omnibus (GEO) [96], the
growing presence of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) [97] lies
in both merging the acquisition of further data towards robust clinical endpoints as well as
merging dose volume histogram and pattern of failure data present currently in distinct
silos with exisiting results [29,98–101]. These efforts are gaining ground at the trascrip-
tome [99,100,102] and proteome [97] levels with paralleled progress in the identification
of differentially expressed genes (DEG) (Figure 2C). However, further advancement will
require robust frameworks and workflows in the clinical space that allow for continual
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linking to the research space (Figure 3) [55]. Future trials would do well to also consistently
incorporate functional and novel imaging that define both tumor response and normal
tissue toxicity and link acquired data to evolving molecular biomarkers in order to succeed
in generating a radiogenomic-based personalised approach, particularly as data becomes
more abundant.

This would be needed in conjunction with robust “at the elbow” connection of
all relevant data (pathology, imaging, genomic analysis and RT dosimetry of both
tumor and normal tissue) [44]. This may be advanced by endorsing the pooling of data
across large collaborative teams and embracing the diversity of the data that is likely
to come forth [34]. Attempts at this are ongoing with the Radiogenomics Consortium
(RGC) [34], ReSPOND consortium [12], RadiationGeneSigDB [29], MarkerDB [103], and
federated learning [104]. Clinicians will need to exercise significant ownership outlining
transferable, lasting, clinically driven endpoints to be captured including a pluralistic
definition of progression and response that also includes the impact on normal tissues
and neurocognitive function.

8. Conclusions

The current nuances involved in the molecular classification of central nervous system
tumors are not reflected in the current volumes treated in radiation therapy due to lack
of biomarkers supporting a change in standard of care volumes and fractionation and a
lack of robust understanding of differential radiosensitivity or resistance. Advances in
radiogenomics may well provide the needed evidence to allow for more personalised dose
distributions, which are highly achievable with current technology. Increased emphasis
needs to be placed on biologically optimising RT to improve outcomes with the solid
backing of molecular science. Current prospective protocols call for standard for care
radiation therapy even as they advance the acquisition of tumor sequencing and radio-
genomics by attempting to standardise both imaging and mandate tumor sequencing. Yet
robust links between the dose volume distribution generated by the RT treatment plan are
often divorced from genomic and radiomics analysis. Growing large scale repositiories
at all omics levels will make such link possible. Precision neuro-oncology as it relates to
radiation oncology lies currently in the more distant future due to limited data sharing
and lack of robust implementation of radioresistance and radiosensitivity as we follow
ongoing growth of molecular biomarkers. These carry unsurpassed potential for clinically
meaningful outcomes and will need to be incorporated as end points into clinical trials and
large-scale registries and prioritised in clinical trial design to allow for true advancement
in this space.
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